
RELATIONAL DATA BASE: HOW DO WE KNOW IF WE NEED ONE?

Orland Larson
Hewlett-Packard Company, Cupertino, California, USA

SUDmlary

!he field of relational technology is clearly misunderstood by a large number of
people. One major obstacle to acceptance of the relational model is the
unfamiliar terminology in which relational concepts are expressed. In addition,
'there are a number of misconceptions or "myths" that have grown up in the past
tew years concerning relational systems. The purpose of this paper is to define
~hose terms, correct some of those misconceptions and to help you decide if your
company can benefit from adding relational data base technology to your current
capabilities.

~is paper reports on the growing body of knowledge about relational technology.
I~ begins by reviewing the challenges facing the MIS organization and the
motivation for relational technology. It then briefly describes the history of
relational technology and defines the basic terminology used in the relational
approach. This will be followed by an examination of the productivity features
of the relational approach and why it should be seen as a complement rather than
a replacement for existing network databases such as the IMAGE data base
management system. Typical application areas where the relational approach can
be very effective will also be surveyed. Finally, a checklist will be reviewed
that will help the audience determine if, indeed, they really can benefit from
using a relational data base.

IntrOduction

'!'he Challenges Facing MIS

~e MIS manager is facing many challenges in today's modern information systems
organization. The backlog of applications waiting to be developed is one of key
challenges concerning MIS. In most medium to large installations the backlog of
applications waiting to be developed is anywhere from two to five years. This
estimate doesn't include the "invisible backlog~' the needed applications which
aren't even reques~ed because of the current known backlog. Software costs are
increasing because people costs are going up and because of the shortage of
skilled EDP specialists. The data base administrator is typically using non­
relational data bases where a great deal of time is spent predefining data
relationships only to find that the users data requirements are changing
dynamically. These changes in user requirements cause modifications to the data
base structure and, in many cases, the associated application programs.

The application programmer is spending a significant amoUllt of time developing
applications using these non-relational data bases, which require traversing or
navigating the data base. This results in excessive application development
time. Because the users requirements change dynamically, it also means a great
deal of time spent maintaining applications. The programmer is also frequently
restricted by the data structures in the data base, adding to the complexity of
accessing data.

187



188

End users or business professionals are frustrated by the limited access to
information that they know exists somewhere in the data base. Their business
environment is changing dynamically, and they feel MIS should keep up with these
changes. They find the applications are inflexible, due to the pre-defined
relationships designed into the data base. They also lack powerful inquiry
facilities to aid in the decision-making process, which would allow them to ask
~hing about anything residing in that data base.

The Motivation for Relational

Dr. Codd, considered to be the originator ot the relational model for data
bases, noted when presented the 1981 ACM Turing Award, that the most important
motivation for the research work resulting in the relational model was the
objective of providing a sharp and clear boundary between the logical and
physical aspects of data base management (inclUding data base design, data
re~rieval, and data manipulation). This is called the data independence
objective.

A second objective was to make the model structurally simple, so that all kinds
of users and programmers could have a common understanding of the data, and
could therefore communicate with one another about the database. This is called
the communicability objective.

A third objective was to introduce high level language concepts to enable users
to express operations on large chunks of information at a time. This entailed
providing a foundation for set oriented processing (i.e., the ability to express
in a single statement the processing ot multiple sets of records at a time).
This is called the set-processing objective.

Another primary motivation for development of the relational model has been to
make data access more flexible. Because there are no pointers embedded with the
data, the relational programmer does not have to be concerned about following
pre-defined access paths or navigating the database, which force him to think
and code at a needlessly low level of structural detail.

The Relational Data Model: ! Brief Histo;y

In 1970, Dr. E.F. Codd published an article in the Communications of the ACM
entitled "A Relational Model of Data for Large Shared Data Banks. 1I This classic
paper marks the "birth ll of the relational model. Dr. Codd was the first to
inject mathematical principles and rigor into the study of database management.

By the mid 70's, there were two database prototypes being developed. IBM was
behind a project called "System R,II and there was another relational database
being developed at the University of California, Berkeley called INGRES. It was
late 1979 before the first commercially available relational database arrived in
the marketplace called ORACLE, from ORACLE Corp., which was an implementation
based on System R. In 1981 Relational Technology Inc. introduced INGRES which
was a different implementation based on the research done at Berkeley. Today
there are several additional advanced relational products available, such as
SQL/DS and DB2 from IBM and Rdb from Digital Equipment Corporation. There are
additional products sometimes referred to as "born again" relational databases
such as IDMS/R from Cullinet, ADR's DATACOM/DB, and Software AG's ADABAS, to
name a few.



Relational Database Defined

The relational database model is the easiest one to understand - at least at the
most basic level. In this model, data are represented as a table, with each
horizontal row representing a record and each vertical column representing one
of the attributes, or fields, of the record. Users find it natural to organize
and manipulate data stored in tables, having long familiarity with tables dating
from elementary school.

The Table, or two dimensional array, in a "true" relational data base is subject
to some special constraints. First, no row can exactly duplicate any other row.
(If it did, one ot the rows would be unnecessary). Second, there must be an
entry in at least one column or combination of columns that is unique for each
row; the column heading for this column, or group of columns, is the "key" that
identifies the table and serves as a marker for search operations. Third, there
must be one and only one entry in each row-column cell.

A fourth requirement, that the rows be in no particular order, is both a
strength and a weakness of the relational model. Adding a new item can be
thought of as adding a row at the bottom of the table; hence there is no need to
squeeze a new item in between preexisting items as in other database structures.
However, to find a particular item, the entire table may have to be searched.

There are three kinds of tables in the relational model: base tables, views,
and result tables. A base table is named, defined in detail, filled with data,
and is more or less a permanent structure in the database.

A view can be seen as a "window" into one or more tables. It consists of a row
andlor column subset of one or more base tables. Data is not ~tored in a view,
so a view is often referred to as a logical or virtual table. Only the
definition of a view is stored in the database, and that view definition is then
invoked whenever the view is referenced in a command. Views are convenient for
limiting the picture a user or program has of the data, thereby simplifying both
data security and data access.

A result table contains the data that results from a retrieval request. It has
no name and generally has a brief existence. This kind of table is not stored
in the database, but can be directed to an output device.

The Relational Language

The defacto industry standard language for relational data bases is SQL.
stands for Structured Query Language. This name is deceiving in that it
describes one facet of SQL's capabilities. In addition to the inquiry or
retrieval operations, SQL also includes all the commands needed for
manipulation. The user only needs to learn four commands to handle all
retrieval and manipulation of a relational database. These four commands
SELECT, UPDATE, DELETE and INSERT.

SQL
only
data
data
data
are:

189



'The relational model uses three primary operations to retrieve records from one
or more tables: select, ·project and join. These operations are based on the
mathematical theories that underlie relational technology, and they all use the
same command, SELECT. The select operation retrieves a subset of rows from a
table that meet certain criteria. The project retrieves specific columns from a
table. The join operation combines data from two or more tables by matching
values in one table against values in the other tables. For all rows that
eontain matching values, a result row is created by combining the columns from
the tables eliminating redundant columns.

The basic form of the SELECT command is:

SELECT
FROM
WHERE

some data (field names)
some place (table names)
certain conditions (if any) are to be met

190

.In some instances WHERE may not be neccessary. Around this SELECT.. FROM .. WHERE
structure, the user can place other SQL commands in order to express the many
powerful operations of the language.

In all uses of SQL, the user does not have to be concerned with how the system
should get the data. Rather, the user tells the system what he-wints. This
means that the user only needs to know the meaning of the data, not its physical
representation, and this feature can relieve the user from many of the
complexities of data access.

The data manipulation operations include UPDATE, DELETE and INSERT. The UPDATE
command changes data values in all rows that meet the WHERE qualification. The
.DELETE command deletes all rows that meet the WHERE qualification and the INSERT
·command adds new rows to a table.

When retrieving data in application programs it is important to remember that
SQL retrieves sets of data rather than individual records and consequently
requires different programming techniques. There are two options for presenting
selected data to programs. If an array is established in the program, a BULK
SELECT can retrieve the entire set of qualifying rows, and store them in the
;array for programmatic processing. Alternatively, it is possible to activate a
~ursor that will present rows to programs one at a time.

SQL has a set of built-in, aggregate functions. The functions available are
'count, sum, average, minimum, and maximum. They operate on a collection of
'values and produce a single value.



In addition to commands for data retrieval and modification, SQL also includes
commands for defining all database objects. The data definition commands are
CREATE, ALTER and DROP. The CREATE command is used to create base tables and
views. The ALTER provides for the expansion of existing tables and the DROP
deletes a view. One of the most powerful features of SQL is its dynamic
definition capability. This function allows the user to add columns, tables and
views to the database without unloading and reloading existing data or changing
any current programs. More importantly, these changes can be made while the
databases are in use.

Productivity Features of Using Relational Technology

Relational technology is one very important tool that can contribute to making
data processing professionals more productive. The programmer can benefit from
a facility called interactive program development, which allows the development
and debugging of SQL commands and then permits the moving of those same commands
into the application programs. It is convenient and easy to set up test
databases interactively and then to confirm the effect of a program on the
database. All of these characteristics make SQL a powerful prototyping tool.
The on-line facilities of SQL can be used to create prototype tables loaded with
sample or production data. On-line queries can easily be written to demonstrat
application usage. End users can see the proposed scheme in operation prior to
formal application development. In this prototype approach, people-time and
computer-time are saved while design flaws are easily corrected early in
development.

The data base administrator profits from the productivity features already
described for programmers. The database administrator has a great deal of
freedom in structuring the database, since it is unneccessary to predict all
future access paths at design time. Instead, the DBA can concentrate on
specific data requirements of the user. Nonrelational models, on the other
hand, require all relationships be pre-defined, which adds to the complexity of
the application and lengthens development time.

Additional productivity features for the database administrator include the
capability to modify tables without affecting existing programs and the
capability to dynamically allocate additional space while the database is still
in use. SQL goes far beyond many database management systems in the degree of
protection that it provides for data. Views make it possible to narrow access
privileges down to a single field. Users can even be limited to summary data.
Protection can be specified for database, system catalog, tables, views,
columns, rows and fields. It is also possible to restrict access to a subset of
commands. These access privileges can be changed dynamically, as the need
arises.

In many installations, the key to overall productivity is the ability of DP too
offload the appropriate portions of the development and maintenance to the end
user. The flexible design approach of relational databases allows an
application to be designed with the end user's requirements in mind. This could
enable the DP professional to implement an application up to the point where the
end user could create and execute his own queries, thereby expanding the
application on his own and reducing his dependence on the data processing
department. Through SQL, the end user is provided with extremely flexible
access and simple but powerful commands.

191



192

Relational and Nonrelational: Complementary Technologies

Within a data processing department already using a well-established non­
relational DBMS, what role can relational technology be expected to play? We
know that DP will not automatically drop everything and go to relational.
Rather, relational technology should be seen as a complement rather than a
replacement for nonrelational database systems. Both approaches offer a host of
benefits, and most applications can be implemented with either of the two.

The relational approach is preferred when the application has a large number of
data relationships or when the data relationships are unknown or changing
dynamically. The relational approach provides the needed flexibility to
establish relationships at the time of inquiry, not when the database is
designed. If the application has unknown of incomplete data specifications,
which is usually the case in a prototyping environment, then a relational system
may be preferable. If the application requires a quick turnaround, the quick
design and implementation capabilities of a relational database can be
important. The ability to handle ad hoc requests is a definite strength of the
relational model as is the ability to extract data for use in a modeling,
forecasting, or analytical framework.

The nonrelational approach is preferred for high-volume on-line transaction
processing applications where performance is the most critical requirement.

Choosing the Right Technology

'The choice of the. "correct" database management system must be based on the
,environment in which the database will be used and on the needs of the
particular application. The key feature of relational technology is that it
allows for maximum flexibility, and will probably be the choice for many new
applications. On the other hand, nonrelational systems may continue to be
preferrable for very stable or structured applications in which data
manipulation requirements are highly predictable, and high transaction
throughput is important.

~The optimum approach for many MIS departments will be to use the relational
system concurrently with the existing nonrelational system, matching the
.appropriate technology to the applicatio~. The only problem with such an
·approach is that the data for an application developed in one technology may
sometimes be needed by applications developed in the other technology. Data may
be IIlocked out" from an application that needs it, or users might be tempted to
duplicate the data, maintaining both copies. ~le most desirable solution would
obviously be to provide both relational and nonrelational access to a single
·database.



Relational Applications

There are many application areas - particularly those involving user analysis,
reporting, and planning - where the very nature of the application is constantly
changing. Some typical application areas are:

* Financial
- Budget analysis
- Profit and Loss
- Risk assessment

* Inventory
- Vendor performance
- Buyer performance

* Marketing and sales
- Tracking and analysis
- Forecasting

* Personnel
- Compliance
- Skills and job tracking

* Project management
- Checkpoint/milestone progress
- Development and test status

* EDP auditing
- Data verification
- Installation configuration

* Government/education/health
- Crime and traffic analysis
- Admissions/recruiting/research
- Medical data analysis

These applications typify instances where it is of primary importance to
establish interrelationships within the database and to define new tables.

193



194

Checklist for Deciding Whether ~ Not You Need ~ Relational Database

Note: If you answer yes to any of the following questions t you should
seriously consider taking advantage of relational technology.

1. Does my company have an excessive backlog of applications to be
developed t including an invisible backlog?

2. Are we spending too much money developing applications due to the
complexities of using non relational systems?

3. Do our users t requirements for information change dynamically?

4. Are we spending too much time maintaining applications caused by
changing data requirements or relationships?

5. Do our users feel restricted by a non-relational database?

6. Are programmers spending an excessive amount of time writing code
to navigate through nonrelational databases?

7. Is the nature of our applications such that it is constantly
changing?

8. Would your users find it natural to organize and manipulate data in
tables?

9. Do your users currently use LOTUS 1-2-3 or spreadsheets?

10. Is your company moving towards a true distributed database
environment?



Bibliography

Codd, E.F., "A Relational Model of Data for Large Shared Data Banks,"
CACM, 13 6,(June 1970),pp. 377-387.

Codd, E.F.,"Relational Database: A Practical Foundation for Productivity,"
CACM, 25 2,(February 1982,pp. 109-117.

Date, C.J., An Introduction to Database Systems. Addison-Wesley, 1977.

_________,Relational Technology: A Productivity Solution, Hewlett-Packard Co.,
Computer Systems Division,Cupertino,Ca.,5954-6676,January 1986.

Biography

Orland Larson
is currently Information Resource Management Specialist for Hewlett-Packard. As
the database and application development specialist for the Information Systems
Tactical Marketing Center he develops and presents seminars worldwide on
database management, information systems prototyping and productivity tools for
information resource management. He is a regular speaker at Hewlett-Packard's
Productivity Shows and Users Group Meetings and also participates in various
National Data Base and 4th Generation Language symposiums. Previously he was
the Product Manager for IMAGE/3000, Hewlett-Packard's award winning database
management system.

Before joining HP he worked as a Senior Analyst in the MIS Department of a large
California-based insurance company and prior to that as a Programmer/Analyst for
various software companies. Mr. Larson has been with Hewlett-Packard since
1972.

195




	DB - Data Base Management Systems
	Relational Database: How do we know if we need one?


