TURBOIMAGE RUN-TIME OPTIONS: BALANCING PERFORMANCE WITH DATA BASE INTEGRITY

Author: Peter Kane, Information Technology Group,
Hewlett-Packard, Cupertino, California, U.S.A.

Summary

Along with improvements in the areas of performance and data base limitations,
run-time options were added to TurboIMAGE to allow more flexibility between having
high performance and high recoverability. A run-time option is an option which can
be used without changes made to any application. In the case of TurboIMAGE, all of
the options I will discuss can be enabled through DBUTIL. The purpose of this paper
is to compare all combinations of these options, considering the performance impact
and what recovery is available.

Introduction

In IMAGE/3000, two run-time options, LOGGING and Intrinsic Level Recovery
(ILR) are available. A user can enable LOGGING, ILR, both, or neither. There are
two differences between thése options. The first is that ILR guarantees only
physical integrity, i.e. no broken chains, while using logging and DBRECOV
guarantees both physical and logical integrity, i.e. only finished transactions
appear in the data base after recovery. The second difference is that with ILR,
recovery happens automatically on the first DBOPEN of the data base following an
interrupted DBPUT or DBDELETE, while using DBRECOV means restoring an old copy of the
data base and waiting while all finished transactions in the log file are issued.
Whatever the wait on DBRECOV, it is a much less lengthy process than recovery of a
data base not using either ILR or logging, which is by DBUNLOAD and DBLOAD (or a
third party utility).

Another option which is not a run-time option since it means application changes,
is output deferred mode. Output deferred can be enabled in IMAGE/3000 only when
the data base is opened in mode 3 (exclusive modify access), and is enabled by
calling DBCONTROL with mode 1. Output deferred can therefore be used only in single-
user environments. This mode can drop significantly the elapsed and CPU times needed
by DBPUT, DBDELETE, and DBUPDATE. The reason is that modified buffers and set labels
are not written to the data base until either the buffer is needed to hold a
different data block, or else a DBCLOSE mode 1 or 2 is issued. The drawback of output
deferred can be inferred by this last point, which is that a system failure occurring
in the middle. of an output deferred application can leave a badly damaged data base.
The usual use for output deferred is in a batch environment, where the data base is
stored before running the applications. If the system fails while the applications
are running, the stored data base would be restored and the applications would then be
restarted. Output deferred mode can be used in an interactive environment, if logging
js set up (otherwise a DBUNLOAD and DBLOAD is necessary if the system fails). However,
exclusive access is required, which usually eliminates output deferred for consideration
in an interactive environment.

The above options allow some flexibility, but some issues have been outstanding:

1. If there are a lot of transactions on a log file, recovery to achieve logical
integrity can mean a lot of down-time.

2. In shortening the maintenance cycle so that recovery can take less time, the

data base must be stored more often. Users can not issue transactions
against the data base during these times.

179



the above issues.

3. Applications using output deferred mode must be operating exclusively.
Therefore batch processing can take Tonger than necessary.

4. A high volume of modifications can have a major impact on performance.

Therefore two more run-time options have been added to TurboIMAGE as answers to

These are: AUTODEFER, or multi-user output deferred mode, and

ROLLBACK, or Rollback recovery which allows a faster recovery than IMAGE's recovery
method (which I refer to as Roll Forward recovery). The options which have been
available in IMAGE have all been carried over to TurboIMAGE, giving four different

run-time options.

These options can be used in seven different combinations to

balance performance and integrity. In this paper I will discuss each combination,
specifying the advantages and disadvantages and my recommendations for its use.

Combinations Available with TurboIMAGE

The following is a 1ist of the possible combinations:

NoOoO s~ wWwN =
e e e e e

No options used

LOGGING enabled

AUTODEFER enabled

AUTODEFER and LOGGING enabled
ILR enabled

ILR and LOGGING enabled
ROLLBACK enabled

It may noted that some options are not compatible with others, for instance
AUTODEFER and ILR are not compatible. It also should be noted that enabling ROLLBACK
automatically enables LOGGING and ILR.

Each of these combinations will now be Tooked at separately.

Combination 1:

180

Performance:

Integrity:

Advantages:

Disadvantages:

No options used.

Modified buffers and labels are written to disc (or cache if

caching is enabled and BLOCKONWRITE is set to NO), within the
intrinsic which did the modification. This means that modify
intensive applications must wait frequently for writes to occur.

It also means that buffers are never left dirty after an intrinsic
finishes, which has a positive impact on read intensive environments
(more on this in the discussion of AUTODEFER).

If the system fails during processing, physical corruption may
result. If this happens, a DBUNLOAD and DBLOAD (other utilities
from third parties may be used instead) is necessary to recover
the data base. Note that logical recovery is not possible in this
case. If disc caching is used and BLOCKONWRITE is set to NO,
multiple corruptions can result from a single system failure.

The multi-user, read intensive environment probably sees the best
performance with this combination. The overhead of logging and
ILR is not seen.

Very lengthy recovery if a system failure has caused physical
corruption.



Combination 1 (continued)

Recommendation:

Use for read intensive (approximately 80% reads, 20% modifications)
application mixes on non-critical data bases. Modify intensive
environments can be improved in performance by using other options.

Combination 2: LOGGING enabled.

Performance:

Integrity:

Advantages:

Disadvantages:

Recommendation:

Contrary to what many users believe, logging causes only a slight
(ranging from about 3% to 8%) degradation in performance. The
higher end of this range is usually seen in the modify intensive
environments. The reason the degradation is slight is because
with only logging enabled 1og writes stay in memory until a DBEND
or a DBCLOSE 1is issued, or if the log buffer in memory fills up.
Therefore this combination is only slightly lower in performance
than using no options at all.

Physical integrity can be achieved without using the lengthy
process of DBUNLOAD and DBLOAD. Logical integrity is possible if
the applications are written using DBBEGINs and DBENDs. By logging
to tape, disc failures can be recovered from.

Physical recovery is far less lengthy than DBUNLOAD and DBLOAD.
User specific data can be obtained from the log file. Logging to
tape or to a different disc from the data base can provide recovery
from media failures.

Dedicated tape drive or usage of disc space for log records. To
attain logical recovery, applications must have DBBEGIN and DBEND
calls to define logical transactions. Periodic down-time is
necessary to back up the data base and start a new log cycle.

Probably best use is in read intensive environments where logical
transactions have been defined, where logical recovery is desired,
and where application performance is more of an issue than down-
time required to recover from a failure. Also provides best
protection against media failures. °

Combination 3: AUTODEFER enabled.

Performance:

Usually will prove to allow the best performance, especially in
modify intensive environments. Dirty buffers and labels are not
flushed to disc (or cache) until DBCLOSE mode 1 or 2, or unless a
buffer is needed to hold a different data block from the data base
and all other buffers are dirty. From this one can see that
TurboIMAGE will try to keep dirty buffers in memory as long as
possible, in an effor to eliminate unnecessary writes to disc.
This is useful if users are modifying the same buffers over and
over again. However, if one user modifies a buffer containing a
data block no other user ever accesses, that block may stay in its
buffer for a long time. This will mean less buffers for the other
users to do reads, which will in turn mean that buffers may be
overlayed with other data blocks before the original user is
through. This has an impact on the read intensive environment
where there are occasional modifications. In the modify intensive

181



Combination 3 (continued)

Performance: environments this is not much of an issue because all of the
(continued) buffers are modified in time.

Integrity: In short, NEVER use AUTODEFER by itself in interactive environments.
This is because the user never has any idea whether the modified
blocks or labels (which contain data set ends of file, delete
chain heads, etc.) have made it to disc until DBCLOSE time. A
DBUNLOAD/DBLOAD is necessary to recover anything at all if the
system fails while applications are running. AUTODEFER is fine
with batch processing, if a store of the data base is done first.
Then if the system fails, the data base could be restored and the
applications redone.

Advantages: Highest performance in applications which do more than an
occasional modification.

Disadvantages: Physical integrity is highly at stake. Logical recovery not
possible at all.

Recommendation: Batch processing where applications modify the data base more than
occasionally.

Combination 4: AUTODEFER and LOGGING enabled.

Performance: Since the Tog writes are buffered by MPE until the buffer fills or
until DBCLOSE or DBEND, logging adds very little performance
overhead in this combination as opposed to having AUTODEFER alone.
The performance advantages of AUTODEFER are still realized with
this combination.

Integrity: Roll forward recovery is available. Therefore, physical integrity
can be achieved, while Togical integrity can be achieved if
transactions have been defined in the applications using DBBEGINs
and DBENDs.

Advantages: High performance in applications which do more than occasional
modifications along with a recovery method in case of a system
failure. May be the best combination for environments which are
€PU bound.

Disadvantages: Roll forward recovery is not the fastest recovery method. Down-
time is necessary to back up the data base and start a new log
cycle. Dedicated tape drive or disc space is necessary.

Recommendation: Use in interactive environments where application performance is

highest concern, and where data base modifications are done more
than occasionally.

182



Combination 5: ILR enabled.

Performance:

Integrity:

Advantages:

Disadvantages:

Recommendation:

Performance degradation with modifications, for two reasons. The
first is because there are at least two additional writes to disc
to update the ILR file for each DBPUT and DBDELETE. The second
reason is that all writes to the data base and to the ILR file go
through the Serial Write Queue. TurboIMAGE calls FSETMODE to set
this file system option if it determines that ILR is enabled.
Going through the Serial Write Queue means that writes can not
operate concurrently if they are to different discs.

Automatic physical recovery on the first DBOPEN of the data base
following an interrupted DBPUT or DBDELETE. ILR has been enhanced
to redo the interrupted intrinsic rather than rolling it out as

in IMAGE. No logical recovery is available. ILR alone does not
protect against media failures.

Quick physical recovery method, which is automatic. Easy to
use.

Performance degradation for applications using a high number of
DBPUTs and DBDELETEs. No logical recovery available. Can not
recover from media failures. Not compatible with AUTODEFER.

For environments with a low volume of DBPUTs and DBDELETEs, this
is an inexpensive and painless way of insuring physical integrity.
For applications without DBBEGINs and DBENDs, this may be more
useful than enabling ROLLBACK.

Combination 6: ILR and LOGGING enabled.

Performance:

Integrity:

Advantages:

Disadvantages:

Recommendation:

Logging will cause a slight amount of degradation over having
ILR alone enabled.

Can achieve quick and automatic physical recovery with ILR, and
can have logical recovery with DBRECOV. Media failures can be
recovered from.

Quick physical recovery method. Logical recovery available.
Recovery from media failures is available.

Performance degradation due to ILR during DBPUTs and DBDELETEs.
Logging maintenance.

Probably best use is in environments where ILR's automatic
recovery is the usual recovery method, and where logging is used
to protect from media failures. For environments where logical
recovery is possible (DBBEGINs and DBENDs are used), ROLLBACK

is probably a better option.

183



Combination 7: ROLLBACK enabled (ILR and LOGGING will also be enabled).

Performance:

Integrity:

Advantages:

Disadvantages:

Recommendation:

Biography

Peter Kane

This combination has some more degradation over Combination 6.
This is because Tog writes will now be written directly to disc
using BLOCKONWRITE instead of being buffered by MPE as in all

of the other combinations using logging. Furthermore, since all
data base and ILR writes on this option will go through the Serial
Write Queue, the log write will have to wait for any or all of
the previous writes before it can be written itself. Therefore,
DBPUT and DBDELETE should see the most performance degradation
from this method. )

Rollback recovery used for system failure or "soft crash".
Ro11 forward recovery can be used if there has been a media failure
or "hard crash". Logical and physical recovery are both available.

Quick logical and physical recovery (rollback is much faster

than roll forward recovery). Stores of the data base do not have
to be taken as often, since the length of the log file is not as
great of an issue with rollback.

Performance degradation, especially on DBPUTs and DBDELETEs.
DBUPDATEs also affected. :

Use where transactions have been defined and where it is crucial
that the data base be available, and logically intact.

has been with Hewlett-Packard for the last 3 1/2 years. He is an Online Support
Engineer for Data Base products, which includes IMAGE/3000 and TurboIMAGE/3000.
He in the past was responsible for SE training on the same products.

184









	DB - Data Base Management Systems
	TurboIMAGE Run-Time Options: Balancing Performance with Data Base Integrity


