
TRICKS WITH(IN) IMAGE

Jan Janssens
Cobelfret N.V.

Antwerpen, Belgium

summary

IMAGE-databases are very attractive for storing information: they
are very reliable, they are easy to use, they can be accessed by
querylanguages and they can be easy managed. Allmost every application
on a HP3000, which is very important or deals with a huge amount of
Qata, is forced to use IMAGE for its data-storage. (Of course there are
other possibilities, but that seems to be more like re-inventing the
wheel).

Unfortunately IMAGE/3000-databases have also some disadvantages:
they can become slow if chainlengths or datasetcapacities are growing
(10.000 entries is fine, but 1.000.000 entries is something else 11),
they don't provide in a indexed access, their structure is sometimes too
simple or rigid for the given problem.

This paper describes a method for "inventing tricks" to bypass the
problem (which by the way can be applied to all kind of problems) and
gives detailed (non-PM!!!) methods to overcome some IMAGE/3000-problems.

1. The "finding tricks"-technology

We will illustrate this technology through the use of the following
example:

- A certain bookkeeping application had some databases and some
other files in a separate account per company for which
bookkeeping was done by a certain group of users. The files
were builded by the financial on-line program and formed the
input of a complex batchprogram that runned at night.

- If a user wanted to switch to another company, he had to log
off and log on in the appropriate account. This involved a lot
of overhead, and had to be done for every single inquiry in
another account (company).

- The programs could easily be adapted to access the database and
files in another account, BUT could not create (:BUILD) the
inputfiles in another account (where the batchprogram and
on-line programs of other users expected them) unless they
should use PM. -

1.1 Getting started

The first thing that has to be done is to FORMULATE THE PROBLEM.
For the above example this seems to be "building files into another
account". This is really THE problem, because if you could build

161

files into another account, the users could "swap" easily from the
bookkeeping system of one company to that of another one (
reinitialisation + close/open of database and files).

1.2 Think it over

The second step is : "WHY DO WE WANT TO SOLVE THIS PROBLEM?". Why
do you want something to do that is very difficult, impossible or
has some disadvantages? In this case the reason is that programs
expect to find the files in the "home-account", but that you can't
build them from another one.

1.3 Look for "weak" and "strong" points

When we've located the real problem, we can attack it. It is
comparable with the situation of an army that has surrounded a fortress
and wants to take it over.
One could take the fort by attacking the big entrancedoor with a lot of
soldiers. But is very likely that the 'current fortress owners' have
made a fine defence system around the door and that the door is made of
a very good material. The door is a "strong" point of the problem and
its better to avoid it. Perhaps there are more less obvious ways in
entering the fortress, but giving the same result. The defence system is
perhaps not so strong if you could go in by the system. that provides the
fortress in fresh water. .

In our case the implicit expectation of finding/building files in
the homeaccount is the "strong point".
The "weak point" is that it is not necessarily to have the files in a
certain account: as long as we are in the possibility to refind all the
files that belong to one company, everything is okl

1.4 Bypass the "weak" point

In the above case the problem can be bypassed by adding a dataset
to the company database with a key=FILENAME and a field which has the
fully qualified filename (filename + group + account) of the file under
which name it was really saved.
All programs must first read in the (already open) database to find the
actual filename! They also must do a delete or an update to it when the
file is deleted or renamed.

162

•

2. Example of an own database system within an IMAGE database

2.1 Definition of the problem

The setup of a database system for a bookkeeping application posed
the following problems (after the "think-it-over" phase):

- it mUGt be possible to do extremely fast lookup in very long
chains (i.e. give all entries for a big customer from 18 JUNE
till 28 JULY)

- it must be possible to locate very fast all records belonging
to a certain period (the period was unpredictable)

- the user-input, which consisted· sometimes of more than 50
lines, must be registrated in a detail data-set with 3 keys
(DOCUMENT, CUSTOMER, FILE), so that "up-to-second" consulting
was possible.Allmost all transactions (say 98 %) were done on
this data-set.
Some chains exceeded the IMAGE/3000 upperlimit of 65535 entries.

- a payment of a single customer could cover more than 1500
entries, which must be updated on-line to avoid double usage.
It must be possible to interrupt a transaction and to go on
with it the next working day.

- the "accounts payable" and "accounts receivable" must be
located in separate datasets to speed up batchjobs (serial
read) and on-line transactions (reorganisation of the records
to minimize DISCIO when consulting via the CUSTOMER-path (a
frequent transaction»

- a certain department required such a complex presentation of
their "accounts payable and receivable" that it was nearly
impossible to do all that work at inquiry-time. (A lot of
lookups in other data-sets was needed to define the
sortcriteria and presentation lay-out).
It must also be possible to run their job with a minimum
elapsed time.

- it must be possible to use querylanguages on the developed
datastructure.

2.2 "strong" and "weak" points

The "strong" points were:
- the complete system must work with the same efficiency for big

and small databases.
the long chains couldn't be changed into a lot of small ones
with each a different key.
the large transactions couldn't be broken up into small ones.
if IMAGE was not used then a lot of maintenance-, management
and inquiry-programs needed to be written

163

The "weak" points were:
1:- all transactions were done in a chronological order: at each

moment, input was done in only two (bookkeeping) periods, and
the periods changed always in a chronological manner.
Consulting was also done in chronogica1 order.

2:- info entered in the system, was never deleted to allow full
aUditing. (Besides of "clean-up" jobs after some years).

3:- the number of "outstanding records" was only a fraction of the
complete history. People wanted to keep track of all bookings
for at least 2-3 years (900.000 records), and the
"outstandings" covered only 30.000 records.

4:- when entering information in the detail-dataset with 3 keys,
most of the time 2 of 3 keys didn't change within the
transaction. A lot of transactions also left some keyva1ues
zero or blank.

5:- the department that required the complex inquiries and jobs
was a very important, but a small one.

6:- it was unnecessary and even unwanted to update immediately all
payments. As long as one could not pay 2 times the same
invoice, everything was ok. By not doing the update
immediately users had the time to correct mistakes they
encountered when closing their payments at the end of the day.

2.3 Bypassing the "weak" points

2.3.1 Data-structure for "historic" information

Working on the first 2 "weak points" the following design was drawn
for the "history" detail-dataset:

Man-Master

KEY

Detail

KEYPOINT

Detail

DETAIL-HIST

I---I first for A I----------I I----------I
I A I--l----------->I*A 01JAN86I------->I A I<--01JAN86
I B I Ilast un1/reII*A 02JAN86I-----I I B I
I C I I----------->I*A 05JAN86I---I I I A I
I D I I I B 01JAN86I I I I C I
I E I I I C 01JAN86I I I I D I
I I I I*A 10JAN86I-I I I I E I
I I I I C 10JAN86I I I I->I A I<--02JAN86
I I I I •......• l I I C I
I I I last for A I ..•..... l I I A I
I I I----------->l*A 27FEB86I-I I I A I
I I I I I I I B I
I I last in setl I I I I B I
I---I ---------->I F 28FEB86I I I A I

I I I I C I<--05JAN86
I----------I I I C I

I--->I A I
I B I
I A I<--last
I I in set
I----------I

164

AND

- The detail data-set with 3 keys is a stand-alone detail-dataset.
This dataset is always filled up with "empty" records. This
gives us the opportunity to place the records where we want them
by doing an DBUPDATE instead of a DBPUT. To find all records
within a given period, we only have to read all records starting
with the first record of the given "startdate" till we find a
record with a date greater than the "enddate".An index is
maintained to keep track of the first record for each date and
the last "used" record. Locating ALL records of ALL keys within
a given period out of a dataset of more than 1.000.000 entries,
is now possible in a fraction of a second!!!!!

- For each of the 3 keys a pointerchain is maintained in the
detaildataset. Because no information will be deleted and
consulting doesn't need a "backchained read", a
"forward"-pointer is enough. The pointerchain gives us the
possibility to do a "chained get" a certain record of a chain is
read.

- For each key a "KEYPOINT"-data-set is maintained which gives the
recordnumber of the first record of that key with a date greater
or equal to a given date. This data-set is also a stand-alone
detaildataset prefilled with "empty"-records and contains again
a pointerchain for each keyvalue. The masterdata-set "KEY" has
pointers to the first and last entry for that key in the
"KEYPOINT"-data-set. In addition the last "free" entry in
KEYPOINT must be kept aside.

In the KEYPOINT-dataset are pointers written if:

- the number of records written in DETAIL-HIST, since the
last record which has a pointer to it in KEYPOINT,
exceeds a given number. The recordcounter and its
upperlimit are also stored in the KEY-dataset.

- the date differs from the date in the last record for the
key in DETAIL-HIST.

This system allows to define how many "entrypoints" you want to
the chain of a given key. The number of entrypoints grows
dynamically with the number of entries in the detail-dataset.

- To locate the first entry for a key for a date greater or equal
to a given date, the search can be done in the data-set
KEYPOINT.
Once a record is read with a value greater than the given date,
one must "backtrackU one record, read in DETAIL-HIST at the
location given by the pointer of KEYPOINT and read further in
DETAIL-HIST by following the pointers of the appropriate key
until a record is read with date greater or equal to the asked
startingdate.
Because KEYPOINT contains less records than DETAIL-HIST and has
a greater blocking factor, locating of a record in the chain
goes much faster than a chained read in DETAIL-HIST.

165

166

- If the number of records fc= a given key in KEYPOINT becomes
great, localizing records in DETAIL-HIST will slow down
(although it will still be faster than the chained read in
DETAIL-HIST) •
To overcome this situation an "unload-reload" of the data-set
KEYPOINT can be done, so that records with the same keyvalue
become adjacent.
This gives already a very good improvement by eliminating a lot
of disc IO (KEYPOINT can have a blocking factor of 80-100).
The "unload-reload" can be done by writing a simple program.
Because this program can write its records from the end to the
beginning (only forward pointers are maintained) and only
DBUPDATE's are done, processing of it goes very fast.

- It is also possible to do a "partial unload-reload" : one could
reorganize only those entries after the last record of the last
"full unload-reload". This action puts all records of the same
key together in two blocks instead of one (one "partial reload"
after a "full reload").
Because we have only forward pointers, one must have a pointer
to the last "fully unload-reloaded" record in KEYPOINT for each
key.
The effort is minimal, timesavings are high and results can be
great: users are often consulting the most recent history and a
"full reload" with a few "partial reloads" gives nearly the same
effect as a set of "full reloads".
This concept of "partial reloads" can also be applied to
"normal" IMAGE-datasets. It's a pitty that such a smart reload
is not yet available.

- By maintaining in the data-set KEY the last record in KEYPOINT
which is "fully unloaded-reloaded" another improvement can be
done in speeding up consulting: If the given startdate is less
than the date given by the last "unloaded-reloaded" record, a
binary search can be done in KEYPOINT between the first record
for that key and the last "unloaded-reloaded" record of it.

- For 1 of the 3 keys (DOCUMENTNR) a different approach was made
because the number of entries was rather small (1 to 100) and
all records were always introduced in one single transaction.
(This is in fact another "weak" point).
Only a pointer to the first and last record are provided.

2.3.2 Data-structure for "current" information

Considering "weak points" 3 and 4, a separate dataset (DETAILCUR)
is used which holds all outstandings yet in DETAILHIST and all
input of the day.

KEY DETAILCUR

I-------I first entry I-------I
I A I-I---------------------->I A * c I
I B I I I A * h I
I I I I A * a I
I-------I I last reorganised entrI A * i I

I---------------------->I A * n I
I I B I
I I C I<-- last unl/rel
I I . I
I last entre in HIST. I A * I
I---------------------->I A * I
I I B I<-- last hist
I last entry I . I
I---------------------->I A * I

I B I
I F I<-- last used
I I
I I
I-------I

- For each key the following pointers are provided in the master KE

- first entry in this dataset for the given key
- last entry in this dataset for the given key

last entry in this dataset for the given key that is already
present in DETAILHIST. (lasthistoryponter)

- last entry in this dataset for the given key that was
"unloaded-reloaded"

In addition a pointer to the last "used" record, the last "fully
unloaded-reloaded" and the last record already in DETAILHIST of
this dataset itself must be kept aside.
In the dataset DETAILCUR all entries belonging to the same key
are linked together with forward pointers.

Here we don't need the KEYPOINT-dataset because:

- most of the time all outstandings are asked (no selection on
date)

- the number of entries is rather small and and the dataset
itself can be "unloaded-reloaded" for the most used path
(CUSTOMER) in a rather small amount of time. The trick of a
"partial unloadreload" can also be used.

167

168

- Consulting of "outstandings" can be done in the same manner as
explicated above for the KEYPOINT dataset. The trick of
consulting with the binary search mechanism only works for the
path to which reorganizing was done!!!!

- All input is done to DETAILCUR-dataset, even if it's not
"outstanding".
All those records receive a special code and will be skipped when
consulting the outstandings.
No input is done in the DETAILHIST-dataset. When consul~ing the
history for a given key, one starts reading ~n the
DETAILHIST-dataset untill the end of the chain is reached, reads
the record in~DETAILCUR indicated by the "lasthistorypointer",
and continues reading the next record of the chain.

Speeding up registration of a booking is done as follQws:

- the pointers for a key are only updated if the key changes
in the next record. For most of the bookings our dataset now
acted as a detaildataset with only one key.

- no pointers are created if a key is omitted (say zero or
blank) •

- only "DBUPDATE"'s are done instead of DBPUT's.
- registration.is only done in 1 dataset instead of 2.

- Input of the day is posted to the DETAILHIST-dataset by a
batch-job that runs overnight. When no "reorganisation" is done
the job can start at the record just after the one indicated by
the "lasthistorypointer" of this dataset.
All modifications to already existant records in DETAILCUR are
also redone in the DETAILHIST-dataset.' Because modifications
mo~tly exist of "payments of outstanding records" and those
records are linked together with another "chain", one can easily
retrieve the modified records. Other modifications are tracked
by writing away the documentnr in a separate dataset.

- The complete system now becomes:

DETAILHIST KEY1POINT KEY1 DETAILGUR

I-------I 5 I-------I 1 I-------I 6 1------1
B->I 12 1<---------1 11 I<--------I-I 1-1------->1 13 I

I I I-----I I 2 I I I I I I
I I I I I<--------I I I I I I
I I I 1--1 I I I I I I I

B->I I<---I I I I I I I I I I
I I I I I I I I I I I

B->I I<------I I I I 1-------1 I 7 I I
I I I I I 1------->1 I
I I D I 131 I I I
I I ---->1 1<--------1 I 8 I I
I I C I I I 1------->1 I

B->I I ---->I-------I I I 9 I I
I I I 1------->1 I
I I 4 I I I
I 1<---------------------------1 I I
I I I I

B->I I KEYP01NT2 KEY2 I I
I I I I
I I 5 1-------I 1 1-------1 6 I I
I 12 1<---------1 11 I<--------1-1 1-I------->I 13 I
I I I I 2 I I I I I I
I I I I<--------I I I I I I

B->1 I I I I I I I I I
I I I I II II I I
I I D I I I I I I I I
I I ---->I I I I-------I I 7 I I
I I I I I 1------->1 I
I I I 131 I I I

B->1 I C I 1<--------1 I 8 I I
I I ---->1 I I I------->I I
I I 1-------1 I I I I
I I I 191 I
I I 4 I 1------->1 I
I 1<---------------------------I I I

B->I I I I
I I I I<-G
I I KEY3 I I
I I 10 1-------1 6 I I
I 12 I<---------------------------I-I I-I------->I 13 I
I I II II I I

B->I I I I I I I I
I I I I I I I I<-F
I I II II 7 I I
I I I I I 1------->1 I
I I I 1-------1 I I I

B->I I I I 8 I I
I I 4 I 1------->1 I
I 1<---------------------------1 I I I
I I I 9 I I

A->I I 1------->1 I<-E
I I I I
I I I I
1-------I 1------1

169

1: A pointer to the first record in KEYPOINT.
In KEYPOINT all records of the same key are linked together and are
always sorted on date. This is done by the overnight batchjob.

2: A pointer to the last "fully unloaded-reloaded" record in KEYPOINT.
This pointer is maintained by the "fully unloadreload" program.

3: A pointer to the last record in KEYPOINT.
A record in KEYPOINT is written if :

- the number of records written in DETAILHIST since the last
record in KEYPOINT exceeds a certain value (both to be
registrated in dataset KEY) and the date differs from the date
of the last record in DETAILHIST.

OR
- the current pointer o (no entries in history yet for key)

4: A pointer to the last record in DETAILHIST.
The pointer is maintained by the overnightjob.

5: For each combination of KEY and DATE : a pointer to the first record
in DETAILHIST. written by the overnightjob.

6: A pointer to the first record of the key in DETAILCUR. Updated by
the on-line programs and by the "reorganisation"-job of DETAILCUR.

7: A pointer to the last record of the key in DETAILCUR that is already
available in DETAILHIST. Updated by the overnightjob.

8: A· pointer to the last record of the key that is "fully
'unloaded-reloaded" •
Updated by the "reorganisationjob".

9: A pointer to the last record of the key in DETAILCUR. This pointer
is updated by the on-line programs and by the "reorganisationjob".

10: A pointer to the first record of the key (DOCUMENTNR) in DETAILHIST.
Updated by the overnightjob.

11: In KEYPOINT are all records with the same key linked together.

12: In DETAILHIST are all records with the same key linked together.

13: In DETAILCUR are all records with the same key linked together.

A: Pointer to the last used record in DETAILHIST.

B: Pointer to the first record of a given date in DETAILHIST

C: Pointer to the last used record in KEYPOINT.

D: Pointer to the last "fully unloaded-reloaded" record of KEYPOINT.

E: Pointer to the last used record in DETAILCUR.

F: Pointer to the last record of DETAILCUR that is also in DETAILHIST.

G: Pointer to the last "fully unloaded-reloaded" record of DETAILCUR.

170

2.3.3 Speeding up complex inquiries

To allow fast processing of the jobs of the (small) important
department and to solve their complex inquiries the following
modifications were done on the above design:

the complete structure is made in double one for the
important department and one for all the others. This reduces
the capacity of all datasets for that department by 3000 %
(compared with the other departments).
The result on the elapsed time of jobs that have to do a serial
read is in the same order.

- a separate small file is bui1ded (by a now fast running job)
which contains the "outstandings" in a complex
presentation-layout. The job runs overnight and at the quiet
periods in the day.
A separate masterdataset is builded which contains pointers to
the file for each key and a pointer to the last record of
DETAILCUR that is already in the file. When consulting is done
on that file, all records of the given key are given, and
eventua1y additional records in DETAILCUR complete the
overview.
Whenever the jobs runs during the day, records are always added
to the file and the appropriate pointers are changed after
adding all records to the fileo Consulting stays possible when
the job is running!!!
The EOF of the file is reset to zero when the jobs starts
overnight.
A file was chosen because:

- writing in it goes faster than writing in a database
- all info is safely placed in the database
- all info can be reconstructed by rerunning the job
- reading in it goes faster than reading in a database

2.3.4 Large interruptable transactions

The registration of the complex payments (update of over 1500
entries in a single transaction with the possibility to "undo" it
within the same working day was handled in the following way:

- A (central) bitmap for the DETAILCUR-dataset is created. Each
bit in it corresponds with an (outstanding) record in DETAILCUR
with a relative recordnumber equal to the bitnumber in the
bitmap. When the bit = 0, the corresponding record is "free" for
payment, otherwise it is "used".

- When the user starts the input of a certain payment, a copy of
the bitmap is taken into an XDS (local bitmap).
When payment references to an already registrated document, the
records of it are read in DETAILCUR. If the corresponding bit
(in the local bitmap) is zero, one can go on, otherwise the
document is already used in another transaction.

171

The recordnumber of each line in the workfile or scroll is added
to the line itself.
No bits are set in the local bitmap.

- When a user terminates a transaction (i.e. payment of a customer)
a module is called to set the appropriate bits in the central
bitmap.
(His workfile or scroll will be scanned to gather the right
bitnumbers). The results of this module can be:

- Everything ok: the transaction of the user can now
(temporarily) be stored outs~de the database
in a normal MPE-file.
Further payments on referenced documents in
it, are now disabled by the bitmap.
1500 or more DBUPDATE's are changed to a few
discaccesses to UPDATE the bitmap!!!!

- Double usage of bits : the user entered two times the same
document. The workfile or scroll is
scanned to retrieve them (relative
recordnumber) and a message is
given to the user.

- A bit changed to 1 another user referenced the same record
before this user could registrate his
input.

- When a user deletes a transaction the same module is called to
reset the referenced bits in the central bitmap to zero. The
appropriate records are again free.
If some of the corresponding bits are already zero, the current
bitmap is "corrupt", and must be recovered starting from the
MPE-files (the user-input).

- When a user wants to change a transaction, the same is done when
deleting one (but the user-info is not cleared to allow
modifications).
When registrating the modified transaction, the bits are resetted

- After validating the complete input (eventually after hours, or
even at the end of the day), a job runs to post the user-input
in the MPEfiles into the database. This can be done at the quiet
periods or even overnight.

2.3.5 Query

The use of querylanguages was rather easy to imply:

- Because all data is located in lMAGE/3000 databases, reporting
itself imposes no problem, once the records are retrieved.

- Modules were build to "localate" records in DETAILCUR and
DETAILHIST, using the available pointers in the datasets KEY,
KEYPOINT, DETAILCUR and DETAILHIST. Those modules build a
"selectfile" that holds the relative recordnumbers of the
retrieved entries and is used as input for the query-reporter.

172

3. "Various" tricks

3.1 Speeding up registration in a detaildataset

A lot of transactions work on detaildatasets in the following way:

If there are entries available in the detaildataset for a given
key, they are shown to the user.

- The user can add, delete and insert lines or change existing
lines.

- Registration in the database.

Because inserting and deleting records in a chain is a rather
difficult thing to achieve within IMAGE, the easiest programming way for
this problem is deleting all existing entries and then writing the new
records.

However, as long as the keyvalues remain the same the thing can
easily speeded up in the following way:

clear flag fend
<findfrom,db="BASE",ds="SET",di="ITEM",from="ITEMVALUE">
if $image = 17 then set flag fend

<getchain, db=" BASE" ,ds="SET" ,di="ITEM">
if $image = 15 then set flag fend
while info available in user workfile or scroll

move values from workfile or scroll to buffer
if flag fend

<putdb,db="BASE",ds="SET">
else

<updatedb,db="BASE",ds="SET">
<getchain,db="BASE",ds="SET",di="ITEM">
if $image = 15 then set flag fend

endif
endwhile

endif
ifnot flag fend

while $image = 0
<deletedb,db="BASE",ds="SET">
<getchain,db="BASE",ds="SET",di="ITEM">

endif

Changing information becomes now quicker than introducing new
information! !

173

3.2 Locking in a PH-environment and use of MR-capabilities

To avoid "overlapping updates" on data, there are 2 possibilities:

--> METHOD 1 <--

transaction WITHOUT permanent lock

- get data
- modification by user
- lock data
- re-get data
- if re-getted data old data

'update'
else

appropriate action or
give message to user

endif
- unlock data

--> METHOD 2 <--

transaction WITH permanent lock
===============================

- lock data
- get data
- modification by user
- 'update' data
- unlock data

The first method leaves the database free of "locks" until the
update really takes place. It assures a minimum of lockingproblems (not
avoiding deadlocks, but avoiding that a user has to wait for another one
(who is entering his information or is drinking a cup of coffee while he
has something locked that prevents the other user to registrate his
data) •
The disadvantage is that the processing can become difficult or even
impossible.

Method 2 has the advantage that it is easy. It even gives no
problems if locking can be done on ITEM-level. The problem arises when
one has to lock one or more datasets or eventually the complete
database. (Remark: locking on dataset-level is required when updating
MASTER-datasets).
In a PH-environment where a process stays alive when activating another
one (perhaps in in the middle of a transaction that has a lock on the
database) this method can not be used and can cause deadlocks (because
MR-capability must be used).

The problem can be solved by applying first a "soft lock" and later
on a "hard lock". The "soft lock" takes a lock at item-level in a
complete separate database. This database consists only of 1 standalone
detail-dataset with just 1 field and has no records in it.
When a user wants to add, modify or delete certain data, a lock at
itemlevel is taken on the dummy database. The lockdescriptor is composed
as follows:

- descriptionidentifier (i.e. "CUSTOMERNR")
- value (i.e. "62417") --> "CUSTOMERNR62417"

Although the modifications
datasets or even databases,
database is required.

174

itself require locking on several items,
only one "logical lock" in the dummy

(Data of given CUSTOMER can be stored in several records in several
datasets and even several databases).
"Logical or soft" locks should be defined for the whole application
system, and all programs should use them in the following way:

- conditional lock on dummy database at ITEM-level.
- if lock is not granted

user-access in application program changed to "READ" as
long as user works on this data.

else
user is allowed to make his modifications
lock data ("hard lock" as required by IMAGE)
update data
unlock data ("hard lock")
unlock dummy database ("soft lock")

endif

This system has two advantages:

- only specific "working data" is locked, leaving "THE" database
free of locks, so that waiting time for obtaining locks is
minimalized.

- no complicate processing when doing the "real" update, so that
the number of quiet periods on the database can stay at a good
level.

Remark: as long as there are no transactions that lock the complete
database, or work on more than on database, the "soft-locking"
can be done on a dummy dataset of the database itself.

3.3 The use of dummy sorted paths

IMAGE lacks the capability to do an indexed look-up with the
possiblity to retrieve the next or prior value for a given item. If all
your keys follow a certain pattern (i.e. DATE, DOCUMENTNR ••.) and if
entries are most of the time entered in "good" sequence, the following
approach can be taken:

Suppose a follow-up program for certain stockmarket indexes: each
day all indexes are registrated and the program must give a quick
overview of the evolution of them, starting with a date greater or equal
to a given date:

175

1------------I I-------------I
I DUMMY-KEYS I I DATES I
I------------I I--------- ---I

I
I

path sorted I 1 entry for each
on DATE I I--------------------I date

I I MARKET-INDEXES I
I I--------------------I
I I •.•.....• I
I I I
I---->I 02 JUL 86I

I c 03 JUL 86I
I h 06 JUL 86I <---
I a 07 JUL 86I
I i 08 JUL 86I
I n 09 JUL 86I
I I I
I--------------------I

DUMMY-KEYS is an automatic master with just one entry. The path to
MARKET-INDEXES is sorted on DATE(YMD). DATE is also an automatic
master.
All transactions simply work on the dataset MARKETINDEXES. Because
most figures are inputted in sequencial order (the input are the
figures of the day), there is little overhead due to the sortpath.

To localize the first entry and read the next entries

get in dataset DATES with the given date
while no record found

compute next day
get record in dataset DATES 'with computed date

endwhile
read corresponding entry in MARKET-INDEXES for path DATE
reread same entry in MARKET-INDEXES for path DUMMY-KEY
chained read in MARKET-INDEXES for path DUMMY-KEY

Remark: the application program has to check if the startdate falls
in "a region of values" that is "supported" by the
database. otherwise, locating the first record can take too
much time.

3.4 "Bulk"-handling of information

If one has to store a huge amount of userdata in one single
transaction, and if re-screening of it must be done very fast, it is
impossible to write all information record by record into a database.

However, if the records are compacted to one big record, the
improvement can be astonishing ! Suppose you have a workfile or scroll
that has to be saved, and which has 200 lines in it, each of 80
characters wide. The maximum entrysize in IMAGE is 2047 words 4094

176

bytes. Up to 50 lines of your workfile or scroll will fit in such one
big IMAGE-record, and the complete information can be stored in 4
IMAGE-records!
A very easy compression technique like compression of blanks will
further reduce the amount of records with a factor 2 (a lot of data has
blanks in it) and even reduce CPU-usage by avoiding extra IMAGE-calls.
See further to 3.1 to increase speed when writing to a detaildataset.
Retrieving data goes at the same spectacular speed. At our site, storing
and restoring information in this manner requires on a loaded machine
less than 1 second for a "screen" with 200 lines.

The price that is paid, is that the data is now in its denormalized
form. This can be overcome by writing the modified key-values to a
message file.
A second process can now in background read the messagefile and reread
'the saved (denormalized) entries and write them to a second
"CLONE"-database in its normalized form.
Programs that work on information "in the way" it was stored, can still
'work on the fast denormalized database. The others must work on the
normalized one.

Biography

Jan Janssens is since 1980 system manager at Cobelfret N.V. - Antwerp,
where he worked exclusively with HP3000-computers. He is a civil
engineer of the KU-Leuven and followed MBA at the university of Ghent.

177

	DB - Data Base Management Systems
	Tricks With(in) IMAGE

