
MULTI SYSTEM DATABASES
By Rolf Frydenberg
Hewlett-Packard Norge A/S
Oslo, Norway

The term Multi System Databases (or MSDB, for short), is used to refer to
applications that utilize data from more than one database, located on geograp
hically separated computers.

The paper presents and discusses MSDB, or distributed data sharing systems
as they are sometimes referred to. This area is still largely experimental,
but a major R&D effort is going on. MSDB will probably become of major im
portance within the next decade, and at least by the turn of the century.

The first part of this presentation focuses on the end-user needs that make
MSDB a future necessity. Distributed data sharing systems based on homogeneous
computers and database management systems are discussed, as well as those based
on heterogeneous systems.

The second major part of this paper presents two existing (though mostly
experimental) MSDB's. We have also included a brief prensentation of HP3000
capabilities in this area.

Finally, we indicate the direction we think this area is moving in, and how
we - as users - can prepare for that development.

ICI WHAT IS A HOLUSYSTEH DATABASE!

Before proceeding to the details of this presentation, I would like to give
you a thumbnail sketch of what multisystem databases are. This should bring
the area into closer perspective, so that we all know what we are looking at.

A multisystem database is a database that consists of information stored on
more than one computer system. The data stored may be of different formats, or
the same. And we will also look at any file - flat file, KSAM file, or "true"
database - as being a database or part of one; so long as a description of its
format is available to us.

The computer systems that store the multisystem database may be identical 
e.g. a set of HP3000's - or they may be different - e.g. some PC's, some
HP3000's and a non-HP mainframe.

The data communications link between the computers is assumed to work, but
we will not specify it in any level of detail: It might be a dial-up asynchro
nous link, a leased 9600 bps line, an X.25 connection, or an SNA-1ink. For
the sake of this presentation, we will ignore those differences.

Let me also mention that there are two other expressions often applied to
multisystem databases: Distributed databases, and distributed data sharing
systems. We will treat these expressions as referring to the same generea1
concept, though some people do consider at least the term "distributed databas
es" as being more restrictive that the other two terms.

There are many possible approcaches to distributing a database over a net
work of computer systems. Four of the main distribution strategies are:

1. Independent databases; this means that each computer system has its "own"
database(s), controlled fully by this computer system. Each independent
database "contributes" some of its data to the overall Multisystem
database.

2. Centralized database with replicated subsets; this means that there exists
one, centrally located, database, which contains all the data. Subsets of

147



148

this database are copied to other locations, mainly for higher speed of
access to frequently used data. Typically, updates are only accepted at
the central site, and transmitted to remote locations in batches.

3. Horizontal partitioning; this means that the same record types may exist
at many locations, but a specific record is at just one location. A file
of orders, for example, could be distributed so that all orders are located
at the warehouse that will process them.

4. Vertical .partitioning; this means that different components of a specific
record may be located at different sites. Ina vertically partitioned da
tabase, some kind of replication may be used, so that all locations may
know all customer-numbers and customer-names, but more detailed information
is only stored at the site that actually handles this customer.

In many real-life situations the best solution is a combination of strate
gies. Strategy number 1 - independent databases - is the most common method of
handling the integration of previously independent databases. That makes this
strategy important now, though not necessarily as important in the future.

Another aspect of multisystem databases is whether they allow purely local
users to exist. Local users are those who access data on one specific computer
in the network, without knowledge of, or access to, the "complete" mulitsystem
database. Some MSDB systems allow this - particularly those systems desi~ned

to handle existing databases - whereas others treat all users ~s global users,
and all transactions as global transactions.

Processing global queries (i.e. data retrieval from. the multisystem databa
se) is a reasonably straight forward operation. Updates, though are potential
ly much more complex. There are two reasons for this complexity: If data is
replicated, then all copies of the record must be updated; if the record is
split between multiple sites, then all sites must update their part of the rec
ord. And, of course, the MSDB's system must keep track of whether the indivi
dual updates succeeded, and if they did not, then it must perform whatever
backtracking is necessary.

If there is no replication within the multisystem database, then it is pos
sible to restrict all updates to being purely local transactions, i.e. transac
tions that may be processed completely on a single computer system. This sig
nificantly simplifies the manner in which updates are processed. Centralized
systems also simplify updating the database, since only the central copy of the
data must be updated.

IICl TBB HEED lOll MDLnSYSDII DATABASES

A large amount of research into the area of multi system databases is cur
rently being carried out allover the world. Is this research just being car
ried out "for the fun of it", as the business world often accuses the academic
community of, or is it something we will really need in the not too distant
future? .

It is my contention, that multi system databases are something we need, and
consequently that it is an important topic for research. And though it may
take a number of years before complete, high-performance, easy-to-use systems
are available, we need to forge ahead in this research. There may be many in
termediate solutions that represent small steps in the right direction.

Since this is not intended as a theoretical paper - I am not a theoretical
computer scientist, but rather a practical engineer - let me present the kind
of situations where I think multi system databases can represent a solution for
users.

Many data processing users currently have more than one computer system.
This is true not only of large corporations with central mainframes, but also
for medium-sized companies that may have two or more minicomputers; or smaller



companies where the computer mix is made up of microcomputers only, or micros
combined with minis. In all these cases, corporate data is stored on more than
one computer.

These, often diverse, computer systems communicate more and more closely.
This need for communication has grown out of the need for access to data
through terminal-emulators, but that is only a brief stage in the total deve
lopment of corporate data communications: As the storage capacity of "non
central" computers (micros and minis) continues to grow rapidly, so the need
for accessing this data directly, instead of transferring it to a central site
and accessing it there, grows proportionately.

For many users this is already in the process of becoming a problem. The
amount of data stored at the decentralized sites is growing so rapidly that it
is no longer possible to copy everything to the central site. So far, the so
lution is to keep "local" data at the decentralized sites, and "common" data at
the central siteo But this is not a valid solution for the future: Data is a
common corporate resource, and timely access to it is getting ever more
important.

In addition to the amount of local data increasing at a rapid rate, yet
another issue is cropping up: More and more "local" applications alsoa need
access to central data files, so parts of central databases are frequently cop
ied to the local sites. As soon as this data is updated centrally, the local
data bases are no longer consistent with the contents of the central data base.
Current DBMSs do not have any functions for managing this. Consequently, de
centralized sites do not know whether the data they use is valid or not!

The interim "solution" to this problem, is to copy the databases regularly
(e.g. once a week), or to collect all updates in a special file, which is
transferred at regular intervals to all sites. Either of these methods is use
ful, but it does not completely solve the problem: It is only immediately aft
er the file transfer that the databases are consistent; as soon as a single
update is made to the central data base, consistency is lost.

Another problem is that all updates of such databases must take place cen
trally: If we allow updates at the local level as well as the central level,
consistency is not only lost much faster, we can end up with updated informati
on being replaced by "obsolete" data from the central database at update-time.

One approach to solving this kind of problem is to avoid centralization,
and let every local site manage its own data. This means that for data which
is really common to all sites, we end up with as many copies of it as we have
sites. If the amount of common data is small, this may be acceptable, but.in
most cases it is not acceptable.

Yet another problem with this distributed approach of data management at
each site is the problem of stuctural consistency between databases. Even in
very distributed corporations, with high degree of local control of operations,
there is a need for communicating information to higher levels of management,
where this data is collected into corporate wide datao For this reason, as
well as for reasons of accountability and controllability, the data structure
used to store one type of data should be consistent across all local sites
within the corporationo With complete local control, this will often not be
the case.

Perhaps the main reason why HP3000 users are among those who need distribu
ted databases the most, is that the HP3000 is so popular as a departmental com
puter. For this reason, a large number of the corporations that have HP3000s
have more than one such computer. When you add to this the fact that the
HP3000 has very good data communications facilities (to other HP3000s particu
larly, but also to other computers, e.g. IBM mainframes), you get a system that
is almost "begging" to be used for the implementation of multi system
databases.

149



150

III. COIlIlEIIr SYSTIHS

The currently existing multisystem databases (MSDBs) are all experimental.
But these exipermental or pilot projects at least to some extent indicate the
driection in which the world of distributed processing is moving. And even
though a number of these projects are based in the academic conununity, which
has not always been known for a commercial orientation, there seems to be a
significant amount of realism behind many of the projects.

The selection of systems that we have done for this presentation is somewh
at random or haphazard. But they should still represent a cross-section of the
types of experimental multisystem databases currently under investigation at
research iAstitutions allover the world. Much of this presentation based on
data presented at the Second and Third International Symposia on Distributed
Databases, held in 1982 and 1984, respectively. The proceedings from these
conferences are available in book form (see the chapter on references).

IIIG A: MDLUBASE

Mu1tibase is a set of programs fo~ accessing data stored in multiple data
bases. These databases may exist on identical or diverse computers. Multibase
is intended as a commercial product, and as such is no longer a "prototype".
Multibase is a product of Computer Corporation of America. It is currently
only available for IBM mainframeso

There are four main reasons why we have included Multibase in this
presentation:

1. Mu1tibase is a "real" product, not just a prototype;
2. Multibase is a typical query-only multisystem database;
3. Multibase allows access to existing databases;
4. Multibase uses a copied catalogue concept.

This makes Multibase an "extreme" multisystem database from one point of
view, and it makes it very easy to contrast Multibase with another - and very
different - MDBS: POREL. We will have more to say about POREL later; for now
let us concentrate on the features and functions of CCA's MultiBase.

Multibase is a product that allows relational queries to be made that ac
cess multiple databases, on multiple computer systems. Queries Multibase are
formulated based on an integrated schema, which defines a "virtual" databases
(called views) that each may consist of the data in relations stored on one or
more of the computers in the network.

Some views may be "simple" in that they access only data stored in one re
lation, whereas others may be quite complex, and access data in multiple rela~

tions, with mapping of data from one field or item to another. Multibase also
supports recalculation before integration. An example of this is when data
from relation A specifies monetary values in Pesetas, and relation B specifies
it in dollars. In the integrated view, such monetary values from relation A
are recalculated as dollars before being introduced into the integrated view.

Another feature of Mu1tibase is that it does not require the actual data
storage to be relational. There are internal facilities in the system for re
lational retrieval of data from other types of databases, including hierarchic
al and network databases. This means that pre-existing databases of almost any
type may be accessed from the query facility of Multibase.

A Multibase user has access to a language called DAPLEX for dat.a definition
and manipulation. This language is first used to set up the views, through
definition of a Global Schema. Subsequent access t.o the integrated multi sy
stem database is though this schema. Additionally, DAPLEX Local Schemas are



defined for each actual database to be accessed. These schema map one-to-one
to the Local Host schemas, which define each database in the "native" database
definition language of the local computer system(s).

The overall organization of Multibase schemas is as illustrated below:

!
DAPLEX Local

Schema No.N
1
!

Host Local
Schema No.N

DAPLEX Local
Schema No.2

!
!

Host Local
Schema No.2

DAPLEX Global Schema
! ! ! !

------------ ! ! ------

!!
DAPLEX Local

Schema No.1
!
!

Host Local
Schema No.1

Figure 3.1: Multibase schemas.

When a user accesses Multibase, he does so through the Multibase Global
Data Manager (GDM). The GDM finds out how to process the query from the Global
Schema. The GDM splits up the query into a number of "single-site" queries
i.eo queries that can be accessed with knowledge only of one DAPLEX Local Sche
mao The GDM then forwards these single-site queries, through the communicati
ons network, to Local Database Interfaces (LDIs), where the DAPLEX Local Schema
is used in order to retrieve the necessary data from the actual database. LDIs
then send their. results back to the CDM, which performs any required coordina
tion of data, or operations that require data from more than one host· computer
Finally, the GDM passes the results of the whole query back to the user.

We have illustrated the relationships between the GDM, LDIs, and
schemas in the following figure:

•

Information flow:
DOWN: UP:

LDI No.N
1 Local Query
1

DBMS No.N

Schemas used:

DAPLEX Global

DAPLEX Local

Host Local

END USER
!
!

GDM
! I!----1----

lOI No.1
!
1

DBMS No.1

Global Query

Single-site
Query

Result

Formatted
Data

"Raw"-data

Figure 3.2: Multibase component interaction.

The Global Data Manager is the central piece of software in Multibase. It
contains a number of advanced functions, including a description of each LDI
concerning the capabilities - or lack of such - at each site within the net
work. This ensures that the queries sent to the LDIs only request functions
that really are supported by the local Host DBMS. This function should help to
keep the amount of work in creating Multibase LDIs for new systems low, which
again means that Multibase might quickly become implemented on a number of'di
verse computers.

151



152

Among other GDM functions, which are not unique to Multibase, but rather
standard for MSDBs, are global and local query optimization, and an auxiliary
database for data needed to coordinate data from different local databases Mul
tibase uses an internal DBMS to access this database in the final stage of pre
paring the results for the user.

The Multibase Local Database Interface (LDI), which gives DAPLEX support to
each local host DBMS, is a relatively simple processor. Its main' purpose is
the translation of queries from the DAPLEX language to whatever the host sup
ports. As has been noted previously, the GDM has knowledge of which functions
are supported by each LDI/Host DBMS combination, which also simplifies the de
sign of each LDI. For a typical DBMS, the effort necessary to implement an LDI
is of the order of 3-6 manmonths.

We can probably assume that typical Multibase networks will contain two
types of nodes: Those that support a GDM and LDI, and those that only support
an LDI. This means that Multibase is not a uniformly distributed system, which
may not matter much to actual users.

At the time of writing this paper, the author knew of no sites where Multi
base has been implemented. But since the product is now commercially available
the first real user experiences should be available soon.

111. °B: POIBL

POREL represents one of the other extremes of multisystem databases. POREL
is a prototype developed at the University of Stuttgart in the Federal Republic
of Germany. Among the major differences between POREL and Multibase are:

1. POREL is still only a prototype, not a product;
2. POREL only allows access to databases created with POREL;
3. POREL allows for all types of access, update and add as well as

retrieval;
4. POREL uses a distributed calagoue, where some information may be

retrieved from other sites;
5. POREL treats all users as "global".

In other words, we are looking at a database system with significant diffe
rences as compared to Multibase. Many of these differences, though on the po
sitive side; they are additional features, not available in Multibase or compa
rable systems.

Perhaps the most negative difference, from a user's point of view, is that
POREL requires all databases to be recreated. If data is to be copied over
from an existing database, the user will have to develop the necessary programs
on his own 0 This makes POREL primarily useful for dedicated, applications.
This clearly contrasts with Multibase, which is primarily intended as an access
method to existing databases.

Let tis now take a closer look at POREL, which it definitely deserves: It is
a very interesting system, and may point the way farther into the future then
the much more restricted Multibase-system. °

POREL is a distributed" database management system developed for a network
of interconnected minicomputers. POREL has been implemented on minicomputers
with an 16-bit addressing range, and therefore consists - on each computer - as
a set of interacting processes. All of POREL has been written in PASCAL. (This
should make it possible to transport POREL to the HP3000 and HPlOOO systems if
desired; though I have not performed any evaluation of this possibility).

For computer-to-computer data communications, POREL uses X.25o A POREL
system may be arbitrarily large, but the greater the number of processors, the
h1gher the probability of failure in communications.



One of the most noteworthy features in the design of POREL is the emphasis
placed on reliability and error-recovery. POREL is designed not only so that
the failure of one node does not bring the network down, but the restart of
nodes, including picking up where they were when they failed, has been careful
ly designed. (This may lead one to suppose that the computers used to imple
ment POREL are unreliable, or that the level of programming performed is not
reliable. There is no proof of either of these assumptions, though).

POREL transactions are described through either the use of a special query
language (ROBL = Relational Data Base Language) or though special code availa
ble to PASCAL programmers (P-RDBL). This PASCAL-support is based on the pro
grammer inserting special statements in his code, which is converted to proce
dure calls by a pre-compiler.

During the compilation of a PASCAL program with P-RDBL statements, or th
compilation of a query stated using regular RDBL, a Network Independent Analy
sis is performed. Then, after all checks have passed at this level Network
Oriented Analysis is performed. At this stage POREL may access nodes in order
to retrieve information about data stored there 0

When a c·omp1ete transaction has been analyzed, it may be executed. This
cause sub-queries to be sent to all relevant processors, and they are asked to
retrieve the specified data. In the case of an update, a two-phase locking
strategy is used, whereby first all data is locked (at all involved locations)
and then the update is' performed through the use of a COMMIT conunand. This
allows for backing out of a partially completed update if one or more node(s)
should fail during the update.

All POREL machines keep track of transactions in progress, and can therefo
re recover from the point where they were, should any kind of failure occur.
The machines also keep track of which other systems are UP or DOWN, which helps
avoid locking some data entries when it will not be possible to lock all the
ones that are needed for the transaction, because one or more of the machines
required are down.

POREL also has support for storing parts of a relation on different comput
ers as well as for storing duplicate copies of a relation - or part of one - on
separate computers. This will help keep the amount of data communications down
during query processing, but it adds a lot of complexity to update processing.
If we assume that query is the most common operation, and update is much less
frequent, this may not necessarily impact performance of the overall system too
much.

In managing multiple copies of a relation, POREL marks one as being prima
ry,and the other ones as secondaryo Updates of secondary copies may be delayed
until the next time the data in this tuple of the relation is needed, which

·means that we can postpone some of the update activity until the system has
"idle" time. POREL also keeps track of whether there are any outstanding upda
tes to be performed on a secondary copy of a relation, to avoid letting users
retrieved not fully updated information.

IV. BP3000 CAPABILITIES

The current capabilities of the HP3000 file and database systems do not
include MSDB support. But there are ways of implementing some MSDB type
functions. In this chapter we will look at some of these, both implementation
of multisystem databases where only HP3000s are involved and where the HP3000
is a node in a non-HP network (in this case, an IBM mainframe oriented SNA
network).

153



154

IVoA: BP300o-m-BP3000 MSDB'S

In order to access one HP3000 from another, the natural data communications
product to use is DSN/DS. This product allows two or more HP3000s to be con
nected together, running either BSC protocol or X.25 over a public packet swit
ched network (PSN). When using X.25 over a PSN, the HP3000 can also communica
te with computers from other vendors that support this method of communication.

DSN/DS can also be used to communicate with HP1000 computers, both the BSC
protocol and X.25 is supported on these computers. In this presentation we
will concentrate on communication between two or more HP3000s all of which DSN/
DS/X.25 over a packet switched networko

(HPs NS (Network Services) product, which handles communications over Local
Area Network (LAN) can also be used for HP3000-to-HP3000 communication. For
the presentation of DS in this paper, NS and DS may be viewed as providing es
sentially the same services. We will therefore only refer to DS, and it is up
to the reader to supply this with a conunent of "or NS" in each instance, if he
so desires.)

DSN/DS allows a user on one HP3000 to log on to another HP3000, and to run
those programs on the remote system which his account- and username give him
access to. It is also possible to handle the logon etco programmatically, so
that the user is not aware of the connection. With DS/X.25, one physical line
be used to access multiple computers, simultaneously, by one or several us~rs.

(X025 allows up to 4095 simultaneous sessions across one link; no current
HP3000 system can handle it, and the amount of data transmitted would be much
higher capacities than is currently available: Typical D8/X.25 connections are
at 9600 bps, or 1200 characters per second. Should 4095 users share this capa
city, they could each send one character every 3.5 seconds!)

One of the many important features of DS, compared to similar offerings
from other vendors, is the complete transparency of a DS-connection to softwa
re: A simple FILE-equation can be used to signal that a file resides on another
computer; the file system will then automatically use Remote File Access (RFA)
capabilitites to access the file on the remote system, in a fully transparent
manner - as seen from the user and the application programo

The same kind of capability is available for databases, through DS Remot
DataBase Access (RDBA). This provides the capability of accessing IMAGE data
bases on remote systems as if they were locally available.

RFA and RDBA are important capabilitites, but do not really support multi
system database access. One of the reasons for this is that they do not allow
for processing of queries on the remote computer before passing the result back
to the host (or local) computer. For this reason, selecting data on other than
an exact ,key match, will cause too much data to be transmitted over the data
cormnunica:tions link.

Let me give a small example: Let us suppose we have an IMAGE master that
contains information about customers. The key is probably the customernumber
or the customer name. If we want to find the customers who are in the city
Madrid (which could be nonel), we will have to search serially through the set.
In this case, if we use normal RDBA, information about about all the customers
would be transmitted, and the application program would have to select the data
it actually needs.

(There is only one available method for optimizing this access; that is to
read only a few fields from the set, typically the key (customer-number) and
the field we are scanning (city). For those that match, we can afterwards do a
direct lookup by key to get all information about this customer.

In order to support true multi system databases, we will have to develop
efficient programs that allow us to pass a query to the remote computer, inste
ad of an IMAGE intrinsic call. For relatively simple types of queries, this
should not be too difficult. The easy way to do it, is to develop inter-



process communication for the standard QUERY/3000 program, and use this as the
vehicle for retrieving information from databases on multiple systems.

There is another facility that is needed as well. This is the ability to
specify, in a DICTIONARY type of format, where the individual databases that
form our overall multisystem database are located. This dictionary must be
capable of defining different types of data transformations that should be per
formed on the local data before it is compared with data from other databases,
i.e. before it is integrated into the overall multisystem database.

IV.Bo BP300D-tO-IBK HSDB·s

Many HP3000 users also have large IBM minframes as their central data pro
cessing systems. These users frequently communicate between their HP3000s and
the maniframe(s), using either the BSC products (RJE, MRJE, or IMF), of the SNA
products (NRJE or SNA IMF)o For interactive communications, only two of these
products may be used, IMF (for BSC) and SNA IMFo These two products are compa
tible from the point of view of a user program attempting to access data on the
mainframe, since they have exactly the same intrinsics. There is only one
slight difference in one of the intrinsics (OPEN3270, which is called only once
by a program anyway).

There are three types of multisystem databases that can be created for a
mix of HP3000s and IBM mainframes. These are:

1. HP3000 can access IBM, not the other way;
2. IBM can access HP3000, not the other way;
30 Access is allowed both ways.

For approach l, above, programming need only be done on the HP3000. For
access other way, it is necessary to. implement programs on both types of com
puters even though approach 2 does not require access in both directions. This
is because IMF is a "one-way" type of product, for HP-to-IBM access, and requ
ires that communication is started from the HP3000.

Currently, there are some users who do interactive access to data stored on
IBM mainframes from HP3000s. This is mostly done in a tailored manner where
the application contains its own code for the actual data access on the main
frame 0 To the best of my knowledge, no general system existso But a general
approach has been described at a previous INTEREX conference, by the author of
this paper. Below I will try to explain how multisystem database access to an
IBM mainframe is possible with the current HP3000-to-IBM mainframe products:
IMF and SNA IMF.

The lowest, user-accesible, level of both IMP products is a well-defined
set of intrinsicso These intrinsics allow the user-program to emulate all fun
tions of an IBM327X terminal with 24 lines of 80 characters each (i~e. larger
screen sizes and graphics are not supported)o By calling these intrinsics, the
user-program can access any IBM mainframe database accessible through a user
oriented program (eog. a query fac.i1iy).

The customized way these intrinsics are ~rrently used is to allow program
interactive access to specific programs, which again access data in one or more
specific databases. By redesigning these programs, to work with a general que
ry facility on the mainframe, and a data dictionary (which could be on either
system) it is possible to allow the user to formulate a query on the HP3000,
execute the query on the IBM mainframe, transfer the resulting data to the
HP3000 via "screens", and f~na11y reformat and display the data to the end
user. This kind of facility exists today on PCs, generally designed to work
with a specific mainframe query-program, often from the same vendor as the PC

155



156

This kind of facility exists today on PCs, generally designed to work with a
specific mainframe query-program, often from the same vendor as the PC
software.

On the HP3000 we can take this approach one step further. We can develope
a data dictionary facility on the HP3000 that allows for specification of main
frame and HP3000 databases (local and remote), and then allow the user to for
mulate queries based on all these databases. These queries must then be sp
into subqueries, one for each computer, and transmitted to these system, where
the database is located for execution.

For this approach to be really useful, it would be an advantage to providea
vendor-independent access-method to the mainframe, since HP3000-users have dif
ferent query-facilities on their IBM mainframes. This is a challenge to HP and
to third parties who have HP3000-based query and'data dictional products.

Another approach to multisystem databases 'in a mixed HP-IBM environment, is
it implement an IBM mainframe oriented distributed database program, for examp
le Multibase, on the HP3000. This approach' would consist of two components:
The necessary software for allowing the MDBS to access IMAGE databases (i:.e.
the LOl level of Multibase), and the actual software for managing distributed
queries (i.e. the GDM facility of Multibase). This, of course, would have to
be done by, or in cooperation with, the vendor of the MDBS.

Perhaps one of the first pieces of software that will really help 115 to
move in this direction is HPSQL - an HP-developed, SQL-compatible query langua
ge the HP3000. This product could work 'as the access method to HP3000-based
databases, and would make it, easier to ensure compatibility between queries
formulated based on HP3000-structured databases, and IBM mainframe database
systems.

v• P1JTIJBB TRDDS

In this paper so far, we have looked at the current "future of the art" and
at most a few years into the future. Let me now look a little further ahead
towards "the shape of things to corne".

There are three specific trends that impact multisystem databases, and we
will look at each of these in turn. They are all related to standardization,
within the following areas:
i. Data communications facilities
ii~ Database structures
iii. Database query languages

V.Ao TRDDS III DATA COHIIDlIlCATIOBS

There are three trends in data communications worth watching. They are:
10 Protocol standardization, which focuses on the Open System

Interconnection (OSI) Model from ISO. The lower three levels of OSI are
~ virtually identical to X.25. (IBMs SNA is another focus for

standardization).
ii. Digitalization, which means that future communication services will be

provided through all-digital packet- and circuit-switched networks; the
modem is on its way out of basic system-to-system communications.

iii.Higher transmission rates, which makes the movement of significant amounts
of data through public and private networks feasible without excessive re
sponse times.

Taken together, these trends will lead to the availability of high-speed vir
tually error-free data communications between all points on the globe



(or into space, for tha t rna t ter ) • In the 1990s the typ ica1 packed-swi tched
interface will probably work at speeds up to 1 Mbit per second, rather than the
current 9600 bps.

All significant vendors in the 1990 computer business will supply software
and hardware to connect their systems to others, all supporting at least the
four or five lowest levels of OSI. With standardized LAN facilities in the 10
100 Mbps range, local conununication should also be standardized.

v•B. TURDS III DATABASE SmDCTIJIlES

Perhaps the most significant trend in database structures of late, is the
movement towards relational and semi-relationals structures. Another trend is
the emergence and use of system-wide data dictionaries, that can be accessed
from a multitude of progranuning languages, and that can perform additional
tasks such as data bas~ creation and restructuring.

Another trend in databases is the growing size - though not necessarily
complexity - of databases in common use in businesses. This is a trend that
has been made possible though the rapidly falling prices for direct-access sto
rage media. The emergence now of optical-disk systems for archival datastora
ge, means that in the future "old" data will not be stored offline on magnetic
tape (or paper, for that matter) in a vault somewhere, but will be accc~ible

on-line at all times. This will severely impact database size.
Even on single computers, there is a trend towards integrating data from

multiple databases into one common database - logically if not physically. This
means that some of the basis for implementing distributed databases is already
in place.

v.c. TURDS IN QUEB.Y LARGUAGES

Query languages of one form or another have existed since before the term
"database" was invented. Most of the query languages in existence today (in
cluding HP QUERY/3000) are more or less ad hoc solutions that have developed
slowly over the years, and have a set of functions dictated by combination of
history and user demands.

With the trend towards a standardized set of database functions, i.e. the
relational model for database structure, a standard for database query is
emerging. This is the query language SQL (Structured Query Language, also
known as SEQUEL), developed by IBM. Most vendors of relational database sy
stems seem to have jumped on the SQL bandwagon, and sell an SQL-compatib1e que
ry language together with their DBMS. This is now also true of HP.

More and more of the SQL-compatib1e query languages support a programmatic
interface, so that database access from a program can take place through the
same, simple interface that is used by on-line users. This is definitely an
advantage, something anybody who has progranuned using procedure calls for data
base access will recognize. This is even more true of programmers with expe
rience from DBMSs such as IMS.

In the rapidly expanding world of multisystem databases, SQL can almost be
considered the "de facto" standard for query languages. This trend will conti
nue, and we will also see that SQL-compatible query languages will become avai
lable for non-relational (i.e. network or hierarchical) databases.

157



158

CORCLUSI.OBS

This paper has spanned a wide area of topics, and therefore has been unable
to cQver the subject-matter to any great depth. Additionally, the area of
Multisystem Databases is a very large one, and it is growing rapidly. So we
have only scratched the surface. But still, we may draw certain conclusions
from the content of this paper. These are:

1. Multisystem Databases are possible;
2. Several approaches exist, with different capabilitie~;

3. The HP3000 datacommunications capabilities make it an interesting computer
for implementation of multisystem databases;

4. Several future trends point towards making multisystem databases feasible
in the near future.

So, in order to approach the year 2001 in a forward-looking manner, what do
we do as HP computer users, need to think of? In this area, at least, we
should consider the following:

10 Move towards relational or pseudo-relational database management systems,
not just on HP3000's, but on all our computers;

2. Move towards standardized query/retrieval languages for databases,
particularly systems such as HPSQL;

3. Use only internationally standardized data communiation facilities,e.g.
X.25 for wide-area datacommunications, and IEEE 802.3 for local area
networking.

By following the above guidelines, we should be on our way towards solving
the data-processing and data-communications challenges of the next few
decades 0

UnauCES

For a more complete description of Multibase, see: "An Overview of Mu1tiba
se" by T. Landers and R.L. Rosenberg; in H. J. Schneider (ed): Distributed Data
Base, North-Holland Publishing Company, Amsterdam, 1982.

This above paper - presented at "the second international symposium on
distributed data bases" in Berlin, 1982 - gives a concise description of Multi
base, it's capabilities and functions. For more information on this product,
contact Computer Corporation of America (Ann Arbor, Michigan, USA) or their
representatives.

For more information about POREL, see: "An Overview of the Architecture of
the distributed Data Base System "POREL" by E.J. Neuhold and B. Walter; in the
same book as quoted above.

'For a more detailed paper on access to on-line IBM applications from an
HP3000 using see: "Implementing Distributed Applicaitons in a Mixed HP-IBM En
vironment" by Rolf Frydenberg; in the proceedings of the HP3000 International
Users Group conference, Montreal, 1983; available from INTEREX Santa Clara,
California, USA.

Information about IMAGE Remote DataBase Access, and the products IMF and
SNA IMP is available from your local HP sales office.



Other books that may be of interest are: James Martin: "Distributed Pro
cessing", Prentice-Hall, Princeton, NJ, USA, 1980. F.A. Schreiber and W. Litw
in (eds): "Distributed Data Sharing Systems", North-Holland, Amsterdam, The
Netherlands, 19840

BIOGBa\PBY

Rolf Frydenberg
has been with Hewlett-Packard Norge AjS for four months. His job is that of an
Applications Engineer, specializing in Data Communicating and Programming Lan
guages. Before joining HP last year, Rolf Frydenberg worked as an independent
consultant and a software developer. He was one of the principals behind the
HP-to-IBM data communications product VTS/IMAS. He has also worked on other
types of data communications softwareo

Rolf Frydenberg has been a frequent speaker at INTEREX international and
national conferences since 1982, mostly on topics related to data communicati
ons. Rolf Frydenberg has also written articles for trade magazines in the USA
and Norway, and is the author of a book on selecting computer systems (in
Norwegian) 0

159




	DB - Data Base Management Systems
	Multi System Databases


