MULTI SYSTEM DATABASES
By Rolf Frydenberg
Hewlett-Packard Norge A/S
Oslo, Norway

SUMMARY

The term Multi System Databases (or MSDB, for short), is used to refer to
applications that utilize data from more than one database, located on geograp-
hically separated computers.

The paper presents and discusses MSDB, or distributed data sharing systems
as they are sometimes referred to. This area is still largely experimental,
but a major R & D effort is going on. MSDB will probably become of major im-
portance within the next decade, and at least by the turn of the century.

The first part of this presentation focuses on the end-user needs that make
MSDB a future necessity. Distributed data sharing systems based on homogeneous
computers and database management systems are discussed, as well as those based
on heterogeneous systems.

The second major part of this paper presents two existing (though mostly
experimental) MSDB“s. We have also included a brief prensentation of HP3000
capabilities in this area.

Finally, we indicate the direction we think this area is moving in, and how
we - as users - can prepare for that development.

I. WHAT IS A MULTISYSTEM DATABASE?

Before proceeding to the details of this presentation, I would like to give
you a thumbnail sketch of what multisystem databases are. This should bring
the area into closer perspective, so that we all know what we are looking at.

A multisystem database is a database that consists of information stored on
more than one computer system. The data stored may be of different formats, or
the same. And we will also look at any file - flat file, KSAM file, or "true"
database - as being a database or part of one; so long as a description of its
format is available to us.

The computer systems that store the multisystem database may be identical -
e.g. a set of HP3000°s - or they may be different - e.g. some PC’s, some
HP3000°s and a non-HP mainframe.

The data communications link between the computers is assumed to work, but
we will not specify it in any level of detail: It might be a dial-up asynchro-
nous link, a leased 9600 bps line, an X.25 connection, or an SNA-link. For
the sake of this presentation, we will ignore those differences.

Let me also mention that there are two other expressions often applied to
multisystem databases: Distributed databases, and distributed data sharing
systems. We will treat these expressions as referring to the same genereal
concept, though some people do consider at least the term "distributed databas-
es" as being more restrictive that the other two terms.

There are many possible approcaches to distributing a database over a net-
work of computer systems. Four of the main distribution strategies are:

1. Independent databases; this means that each computer system has its "own"
database(s), controlled fully by this computer system. Each independent
database "contributes" some of its data to the overall Multisystem
database.

2. Centralized database with replicated subsets; this means that there exists
one, centrally located, database, which contains all the data. Subsets of

147



148

this database are copied to other locations, mainly for higher speed of
access to frequently used data. Typically, updates are only accepted at
the central site, and transmitted to remote locations in batches.

3. Horizontal partitioning; this means that the same record types may exist
at many locations, but a specific record is at just one location. A file
of orders, for example, could be distributed so that all orders are located
at the warehouse that will process them.

4. Vertical partitioning; this means that different components of a specific
record may be located at different sites. In a vertically partitioned da-
tabase, some kind of replication may be used, so that all locations may
know all customer-numbers and customer-names, but more detailed information
is only stored at the site that actually handles this customer.

In many real-life situations the best solution is a combination of strate-
gies. Strategy number 1 - independent databases - is the most common method of
handling the integration of previously independent databases. That makes this
strategy important now, though not necessarily as important in the future.

Another aspect of multisystem databases is whether they allow purely local
users to exist. Local users are those who access data on one specific computer
in the network, without knowledge of, or access to, the "complete" mulitsystem
database. Some MSDB systems allow this - particularly those systems desizned
to handle existing databases - whereas others treat all users as global users,
and all transactions as global transactions.

Processing global queries (i.e. data retrieval from the multisystem databa-
se) is a reasonably straight forward operation. Updates, though are potential-
ly much more complex. There are two reasons for this complexity: If data is
replicated, then all copies of the record must be updated; if the record is
split between multiple sites, then all sites must update their part of the rec-
ord. And, of course, the MSDB’s system must keep track of whether the indivi-
dual updates succeeded, and if they did not, then it must perform whatever
backtracking is necessary.

If there is no replication within the multisystem database, then it is pos-
sible to restrict all updates to being purely local transactions, i.e. transac-
tions that may be processed completely on a single computer system. This sig-
nificantly simplifies the manner in which updates are processed. Centralized
systems also simplify updating the database, since only the central copy of the
data must be updated.

II. THE NEED FOR MULTISYSTEM DATABASES

A large amount of research into the area of multi system databases is cur-
rently being carried out all over the world. 1Is this research just being car-
ried out "for the fun of it", as the business world often accuses the academic
community of, or is it something we will really need in the not too distant
future?

It is my contention, that multi system databases are something we need, and
consequently that it is an important topic for research. And though it may
take a number of years before complete, high-performance, easy-to-use systems
are available, we need to forge ahead in this research. There may be many in-
termediate solutions that represent small steps in the right direction.

Since this is not intended as a theoretical paper - I am not a theoretical
computer scientist, but rather a practical engineer - let me present the kind
of situations where I think multi system databases can represent a solution for
users.

Many data processing users currently have more than one computer system.
This is true not only of large corporations with central mainframes, but also
for medium-sized companies that may have two or more minicomputers; or smaller



companies where the computer mix is made up of microcomputers only, or micros
combined with minis. In all these cases, corporate data is stored on more than
one computer.

These, often diverse, computer systems communicate more and more closely.
This need for communication has grown out of the need for access to data
through terminal-emulators, but that is only a brief stage in the total deve-
lopment of corporate data communications: As the storage capacity of ‘'non-
central" computers (micros and minis) continues to grow rapidly, so the need
for accessing this data directly, instead of transferring it to a central site
and accessing it there, grows proportionately.

For many users this is already in the process of becoming a problem. The
amount of data stored at the decentralized sites is growing so rapidly that it
is no longer possible to copy everything to the central site. So far, the so-
lution is to keep "local" data at the decentralized sites, and "common" data at
the central site. But this is not a valid solution for the future: Data is a
common corporate resource;,; and timely access to it is getting ever more
important.

In addition to the amount of local data increasing at a rapid rate, yet
another issue is cropping up: More and more "local" applications alsoe need
access to central data files, so parts of central databases are frequently cop-
ied to the local sites. As soon as this data is updated centrally, the local
data bases are no longer consistent with the contents of the central data base.
Current DBMSs do not have any functions for managing this. Consequently, de-
centralized sites do not know whether the data they use is valid or not!

The interim "solution" to this problem, is to copy the databases regularly
(e.g. once a week), or to collect all updates in a special file, which is
transferred at regular intervals to all sites. Either of these methods is use-
ful, but it does not completely solve the problem: It is only immediately aft-
er the file transfer that the databases are consistent; as soon as a single
update is made to the central data base, consistency is lost.

Another problem is that all updates of such databases must take place cen-
trally: If we allow updates at the local level as well as the central level,
consistency is not only lost much faster, we can end up with updated informati-
on being replaced by "obsolete" data from the central database at update-time.

One approach to solving this kind of problem is to avoid centralization,
and let every local site manage its own data. This means that for data which
is really common to all sites, wé end up with as many copies of it as we have
sites. If the amount of common data is small, this may be acceptable, but.in
most cases it is not acceptable.

Yet another problem with this distributed approach of data management at
each site is the problem of stuctural consistency between databases. Even in
very distributed corporations, with high degree of local control of operations,
there is a need for communicating information to higher levels of management,
where this data is collected into corporate wide data. For this reason, as
well as for reasons of accountability and controllability, the data structure
used to store one type of data should be consistent across all local sites
within the corporation. With complete local control, this will often not be
the case. '

Perhaps the main reason why HP3000 users are among those who need distribu-
ted databases the most, is that the HP3000 is so popular as a departmental com-—
puter. For this reason, a large number of the corporations that have HP3000s
have more than one such computer. When you add to this the fact that the
HP3000 has very good data communications facilities (to other HP3000s particu-
larly, but also to other computers, e.g. IBM mainframes), you get a system that
is almost 'begging" to be used for the implementation of multi system
databases.

149



150

III. CURRENT SYSTEMS

The currently existing multisystem databases (MSDBs) are all experimental.
But these exipermental or pilot projects at least to some extent indicate the
driection in which the world of distributed processing is moving. And even
though a number of these projects are based in the academic community, which
has not always been known for a commercial orientation, there seems to be a
significant amount of realism behind many of the projects.

The selection of systems that we have done for this presentation is somewh-
at random or haphazard. But they should still represent a cross-section of the
types of experimental multisystem databases currently under investigation at
research imnstitutions all over the world. Much of this presentation based on
data presented at the Second and Third International Symposia on Distributed
Databases, held in 1982 and 1984, respectively. The proceedings from these
conferences are available in book form (see the chapter on references).

III. A: MULTIBASE

Multibase is a set of programs for accessing data stored in multiple data-
bases. These databases may exist on identical or diverse computers. Multibase
is intended as a commercial product, and as such is no longer a "prototype".
Multibase is a product of Computer Corporation of America. It is currently
only available for IBM mainframes.

There are four main reasons why we have included Multibase in this
presentation:

1. Multibase is a "real" product, not just a prototype;

2. Multibase is a typical query-only multisystem database;
3. Multibase allows access to existing databases;

4. Multibase uses a copied catalogue concept.

This makes Multibase an "extreme" multisystem database from one point of
view, and it makes it very easy to contrast Multibase with another - and very
different - MDBS: POREL. We will have more to say about POREL later; for now
let us concentrate on the features and functions of CCA°s MultiBase.

Multibase is a product that allows relational queries to be made that ac-
cess multiple databases, on multiple computer systems. Queries Multibase are
formulated based on an integrated schema, which defines a "virtual" databases
(called views) that each may consist of the data in relations stored on one or
more of the computers in the network.

Some views may be "simple" in that they access only data stored in one re-
lation, whereas others may be quite complex, and access data in multiple rela-=
tions, with mapping of data from one field or item to another. Multibase also
supports recalculation before integration. An example of this is when data
from relation A specifies monetary values in Pesetas, and relation B specifies
it in dollars. In the integrated view, such monetary values from relation A
are recalculated as dollars before being introduced into the integrated view.

Another feature of Multibase is that it does not require the actual data
storage to be relational. There are internal facilities in the system for re-
lational retrieval of data from other types of databases, including hierarchic-
al and network databases. This means that pre-existing databases of almost any
type may be accessed from the query facility of Multibase.

A Multibase user has access to a language called DAPLEX for data definition
and manipulation. This language is first used to set up the views, through
definition of a Global Schema. Subsequent access to the integrated multi sy-
stem database is though this schema. Additionally, DAPLEX Local Schemas are



defined for each actual database to be accessed. These schema map one-to-one
to the Local Host schemas, which define each database in the "native" database
definition language of the local computer system(s).

The overall organization of Multibase schemas is as illustrated below:
DAPLEX Global Schema

! ! ! !
! ! ! !
!

! ! !

DAPLEX Local DAPLEX Local eee DAPLEX Local
Schema No.l Schema No.2 Schema No.N
! ! ! !
! ! ! !
Host Local Host Local PN Host Local
Schema No.l Schema No.2 Schema No.N

Figure 3.1: Multibase schemas.

When a user accesses Multibase, he does so through the Multibase Global
Data Manager (GDM). The GDM finds out how to process the query from the Global
Schema. The GDM splits up the query into a number of "single-site" queries
i.e. queries that can be accessed with knowledge only of one DAPLEX Local Sche-
ma. The GDM then forwards these single-site queries, through the communicati-
ons network, to Local Database Interfaces (LDIs), where the DAPLEX Local Schema
is used in order to retrieve the necessary data from the actual database. LDIs
then send their results back to the GDM, which performs any required coordina-
tion of data, or operations that require data from more than one host computer
Finally, the GDM passes the results of the whole query back to the user.

We have illustrated the relationships between the GDM, LDIs, and
schemas in the following figure:

Schemas used: Information flow:
DOWN: UP:
END USER
! Global Query Result
!
DAPLEX Global GDM
1 Single-site Formatted

! ! ! Query Data
DAPLEX Local LDI No.l cee LDI No.N

! ! Local Query "Raw'"-data

! '
Host Local DBMS No.l DBMS No.N

Figure 3.2: Multibase component interaction.

The Global Data Manager is the central piece of software in Multibase. It
contains a number of advanced functions, including a description of each LDI
concerning the capabilities - or lack of such - at each site within the net-
work. This ensures that the queries sent to the LDIs only request functions
that really are supported by the local Host DBMS. This function should help to
keep the amount of work in creating Multibase LDIs for new systems low, which
again means that Multibase might quickly become implemented on a number of di-
verse computers.

151



152

Among other GDM functions, which are not unique to Multibase, but rather
standard for MSDBs, are global and local query optimization, and an auxiliary
database for data needed to coordinate data from different local databases Mul-
tibase uses an internal DBMS to access this database in the final stage of pre-
paring the results for the user.

The Multibase Local Database Interface (LDI), which gives DAPLEX support to
each local host DBMS, is a relatively simple processor. Its main purpose is
the translation of queries from the DAPLEX language to whatever the host sup-
ports. As has been noted previously, the GDM has knowledge of which functions
are supported by each LDI/Host DBMS combination, which also simplifies the de-
sign of each LDI. For a typical DBMS, the effort necessary to implement an LDI
is of the order of 3-6 manmonths.

We can probably assume that typical Multibase networks will contain two
types of nodes: Those that support a GDM and LDI, and those that only support
an LDI. This means that Multibase is not a uniformly distributed system, which
may not matter much to actual users.

At the time of writing this paper, the author knew of no sites where Multi-
base has been implemented. But since the product is now commercially available
the first real user experiences should be available soon.

IIL. B: POREL

POREL represents one of the other extremes of multisystem databases. POREL
is a prototype developed at the University of Stuttgart in the Federal Republic
of Germany. Among the major differences between POREL and Multibase are:

l. POREL is still only a prototype, not a product;

2. POREL only allows access to databases created with POREL;

3. POREL allows for all types of access, update and add as well as
retrieval;

4. POREL uses a distributed calagoue, where some information may be
retrieved from other sites;

5. POREL treats all users as "global".

In other words, we are looking at a database system with significant diffe-
rences as compared to Multibase. Many of these differences, though on the po-
sitive side; they are additionmal features, not available in Multibase or compa-
rable systems.

Perhaps the most negative difference, from a user’s point of view, is that
POREL requires all databases to be recreated. If data is to be copied over
from an existing database, the user will have to develop the necessary programs
on his own. This makes POREL primarily useful for dedicated, applications.
This clearly contrasts with Multibase, which is primarily intended as an access
method to existing databases.

Let us now take a closer look at POREL, which it definitely deserves: It is
a very interesting system, and may point the way farther into the future then
the much more restricted Multibase-system. v

POREL is a distributed database management system developed for a network
of interconnected minicomputers. POREL has been implemented on minicomputers
with an 16-bit addressing range, and therefore consists - on each computer - as
a set of interacting processes. All of POREL has been written in PASCAL. (This
should make it possible to transport POREL to the HP3000 and HP1000 systems if
desired; though I have not performed any evaluation of this possibility).

For computer-to-computer data communications, POREL uses X.25. A POREL
system may be arbitrarily large, but the greater the number of processors, the
higher the probability of failure in communications.



One of the most noteworthy features in the design of POREL is the emphasis
placed on reliability and error-recovery. POREL is designed not only so that
the failure of one node does not bring the network down, but the restart of
nodes, including picking up where they were when they failed, has been careful-
ly designed. (This may lead one to suppose that the computers used to imple-
ment POREL are unreliable, or that the level of programming performed is not
reliable. There is no proof of either of these assumptions, though).

POREL transactions are described through either the use of a special query
language (RDBL = Relational Data Base Language) or though special code availa-
ble to PASCAL programmers (P-RDBL). This PASCAL-support is based on the pro-
grammer inserting special statements in his code, which is converted to proce-
dure calls by a pre-compiler.

During the compilation of a PASCAL program with P-RDBL statements, or th
compilation of a query stated using regular RDBL, a Network Independent Analy-
sis is performed. Then, after all checks have passed at this level Network
Oriented Analysis is performed. At this stage POREL may access nodes in order
to retrieve information about data stored there. )

When a complete transaction has been analyzed, it may be executed. This
cause sub-queries to be sent to all relevant processors, and they are asked to
retrieve the specified data. 1In the case of an update, a two-phase locking
strategy is used, whereby first all data is locked (at all involved locations)
and then the update is performed through the use of a COMMIT command. This
allows for backing out of a partially completed update if one or more node(s)
should fail during the update.

All POREL machines keep track of transactions in progress, and can therefo-
re recover from the point where they were, should any kind of failure occur.
The machines also keep track of which other systems are UP or DOWN, which helps
avoid locking some data entries when it will not be possible to lock all the
ones that are needed for the transaction, because one or more of the machines
required are down.

POREL also has support for storing parts of a relation on different comput-
ers as well as for storing duplicate copies of a relation - or part of one - on
separate computers. This will help keep the amount of data communications down
during query processing, but it adds a lot of complexity to update processing.
If we assume that query is the most common operation, and update is much less
frequent, this may not necessarily impact performance of the overall system too
much.

In managing multiple copies of a relation, POREL marks one as being prima-
ry,and the other ones as secondary. Updates of secondary copies may be delayed
until the next time the data in this tuple of the relation is needed, which
means that we can postpone some of the update activity until the system has
"jdle" time. POREL also keeps track of whether there are any outstanding upda-
tes to be performed on a secondary copy of a relation, to avoid letting users
retrieved not fully updated information.

IV. HP3000 CAPABILITIES

The current capabilities of the HP3000 file and database systems do not
include MSDB support. But there are ways of implementing some MSDB type
functions. In this chapter we will look at some of these, both implementation
of multisystem databases where only HP3000s are involved and where the HP3000
is a node in a non-HP network (in this case, an IBM mainframe oriented SNA-
network) .

153



154

IV.A: HP3000-TO-HP3000 MSDB’S

In order to access one HP3000 from another, the natural data communications
product to use is DSN/DS. This product allows two or more HP3000s to be con-
nected together, running either BSC protocol or X.25 over a public packet swit-
ched network (PSN). When using X.25 over a PSN, the HP3000 can also communica-
te with computers from other vendors that support this method of communication.

DSN/DS can also be used to communicate with HP1000 computers, both the BSC
protocol and X.25 is supported on these computers. In this presentation we
will concentrate on communication between two or more HP3000s all of which DSN/
DS/X.25 over a packet switched network.

(HPs NS (Network Services) product, which handles communications over Local
Area Network (LAN) can also be used for HP3000-to-HP3000 communication. For
the presentation of DS in this paper, NS and DS may be viewed as providing es-
sentially the same services. We will therefore only refer to DS, and it is up
to the reader to supply this with a comment of "or NS" in each instance, if he
so desires.)

DSN/DS allows a user on one HP3000 to log on to another HP3000, and to run
those programs on the remote system which his account- and username give him
access to. It is also possible to handle the logon etc. programmatically, so
that the user is not aware of the connection. With DS/X.25, one physical line
be used to access multiple computers simultaneously, by one or several usars.

(X.25 allows up to 4095 simultaneous sessions across one link; no current
HP3000 system can handle it, and the amount of data transmitted would be much
higher capacities than is currently available: Typical DS/X.25 connections are
at 9600 bps, or 1200 characters per second. Should 4095 users share this capa-
city, they could each send one character every 3.5 seconds!)

One of the many important features of DS, compared to similar offerings
from other vendors, is the complete transparency of a DS-connection to softwa-
re: A simple FILE-equation can be used to signal that a file resides on another
computer; the file system will then automatically use Remote File Access (RFA)
capabilitites to access the file on the remote system, in a fully transparent
manner - as seen from the user and the application program.

The same kind of capability is available for databases, through DS Remot
DataBase Access (RDBA). This provides the capability of accessing IMAGE data-
bases on remote systems as if they were locally available.

RFA and RDBA are important capabilitites, but do not really support multi
system database access. One of the reasons for this is that they do not allow
for processing of queries on the remote computer before passing the result back
to the host (or local) computer. For this reagon, selecting data on other than
an exact key match, will cause too much data to be transmitted over the data
communications link.

Let me give a small example: Let us suppose we have an IMAGE master that
contains information about customers. The key is probably the customernumber
or the customer name. If we want to find the customers who are in the city
Madrid (which could be none!), we will have to search serially through the set.
In this case, if we use normal RDBA, information about about all the customers
would be transmitted, and the application program would have to select the data
it actually needs.

(There is only one available method for optimizing this access; that is to
read only a few fields from the set, typically the key (customer-number) and
the field we are scanning (city). For those that match, we can afterwards do a
direct lookup by key to get all information about this customer.

In order to support true multi system databases, we will have to develop
efficient programs that allow us to pass a query to the remote computer, inste-
ad of an IMAGE intrinsic call. For relatively simple types of queries, this
should not be too difficult. The easy way to do it, is to develop inter-



process communication for the standard QUERY/3000 program, and use this as the
vehicle for retrieving information from databases on multiple systems.

There is another facility that is needed as well. This is the ability to
specify, in a DICTIONARY type of format, where the individual databases that
form our overall multisystem database are located. This dictionary must be
capable of defining different types of data transformations that should be per-
formed on the local data before it is compared with data from other databases,
i.e. before it is integrated into the overall multisystem database.

IV.B. HP3000-TO-IBM MSDB’s

Many HP3000 users also have large IBM minframes as their central data pro-
cessing systems. These users frequently communicate between their HP3000s and
the maniframe(s), using either the BSC products (RJE, MRJE, or IMF), of the SNA
products (NRJE or SNA IMF). For interactive communications, only two of these
products may be used, IMF (for BSC) and SNA IMF. These two products are compa—
tible from the point of view of a user program attempting to access data on the
mainframe, since they have exactly the same intrinsics. There is only one
slight difference in one of the intrimsics (OPEN3270, which is called only once
by a program anyway).

There are three types of multisystem databases that can be created for a
mix of HP3000s and IBM mainframes. These are:

1. HP3000 can access IBM, not the other way;
2. 1IBM can access HP3000, not the other way;
3. Access is allowed both ways.

For approach 1, above, programming need only be done on the HP3000. For
access other way, it is necessary to. implement programs on both types of com-
puters even though approach 2 does not require access in both directions. This
is because IMF is a "one-way" type of product, for HP-to-IBM access, and requ-
ires that communication is started from the HP3000.

Currently, there are some users who do interactive access to data stored on
IBM mainframes from HP3000s. This is mostly done in a tailored manner vhere
the application contains its own code for the actual data access on the main-
frame. To the best of my knowledge, no general system exists. But a general
approach has been described at a previous INTEREX conference, by the author of
this paper. Below I will try to explain how multisystem database access to an
IBM mainframe is possible with the current HP3000-to-IBM mainframe products:
IMF and SNA IMF.

The lowest, user—accesible, level of both IMF products is a well-defined
set of intrinsics. These intrinsics allow the user-program to emulate all fun-
tions of an IBM327X terminal with 24 lines of 80 characters each (i.e. larger
screen sizes and graphics are not supported). By calling these intrinsics, the
user-program can access any IBM mainframe database accessible through a user-
oriented program (e.g. a query faciliy).

The customized way these intrinsics are currently used is to allow program
interactive access to specific programs, which again access data in one or more
specific databases. By redesigning these programs, to work with a general que-
ry facility on the mainframe, and a data dictionary (which could be on either
system) it is possible to allow the user to formulate a query on the HP3000,
execute the query on the IBM mainframe, transfer the resulting data to the
HP3000 via "screens", and finally reformat and display the data to the end-
user. This kind of facility exists today on PCs, generally designed to work
with a specific mainframe query-program, often from the same vendor as the PC

155



156

This kind of facility exists today on PCs, generally designed to work with a
specific mainframe query-program, often from the same vendor as the PC
software.

On the HP3000 we can take this approach one step further. We can develope
a data dictionary facility on the HP3000 that allows for specification of main-
frame and HP3000 databases (local and remote), and then allow the user to for—
mulate queries based on all these databases. These queries must then be sp
into subqueries, one for each computer, and transmitted to these system, where
the database is located for execution. :

For this approach to be really useful, it would be an advantage to providea
vendor-independent access-method to the mainframe, since HP3000-users have dif-
ferent query-facilities on their IBM mainframes. This is a challenge to HP and
to third parties who have HP3000-based query and data dictional products.

Another approach to multisystem databases in a mixed HP-IBM environment, is
it implement an IBM mainframe oriented distributed database program, for examp-
le Multibase, on the HP3000. This approach would consist of two components:
The necessary software for allowing the MDBS to access IMAGE databases (ile.
the LDI level of Multibase), and the actual software for managing distributed
queries (i.e. the GDM facility of Multibase). This, of course, would have to
be done by, or in cooperation with, the vendor of the MDBS.

Perhaps one of the first pieces of software that will really help us to
move in this direction is HPSQL - an HP-developed, SQL-compatible query langua-
ge the HP3000. This product could work as the access method to HP3000-based
databases, and would make it easier to ensure compatibility between queries
formulated based on HP3000-structured databases, and IBM mainframe database
systems.

V. FUTURE TRENDS

In this paper so far, we have looked at the current "future of the art" and
at most a few years into the future. Let me now look a little further ahead
towards "the shape of things to come".

There are three specific trends that impact multisystem databases, and we
will look at each of these in turn. They are all related to standardizationm,
within the following areas:

i. Data communications facilities
ii. Database structures
iii. Database query languages

V.A. TRENDS IN DATA COMMUNICATIONS

There are three trends in data communications worth watching. They are:

i. Protocol standardization, which focuses on the Open System

Interconnection (0SI) Model from ISO. The lower three levels of 0SI are

virtually identical to X.25. (IBMs SNA is another focus for

standardization).

ii. Digitalization, which means that future communication services will be
provided through all-digital packet- and circuit-switched networks; the
modem is on its way out of basic system-to-system communications.

iii.Higher transmission rates, which makes the movement of significant amounts
of data through public and private networks feasible without excessive re
sponse times.

Taken together, these trends will lead to the availability of high-speed vir-

tually error-free data communications between all points on the globe



(or into space, for that matter). In the 1990s the typical packed-switched
interface will probably work at speeds up to 1 Mbit per second, rather than the
current 9600 bps.

All significant vendors in the 1990 computer business will supply software
and hardware to connect their systems to others, all supporting at least the
four or five lowest levels of OSI. With standardized LAN facilities in the 10-
100 Mbps range, local communication should also be standardized.

V.B. TRENDS IN DATABASE STRUCTURES

Perhaps the most significant trend in database structures of late, is the
movement towards relational and semi-relationals structures. Another trend is
the emergence and use of system-wide data dictionaries, that can be accessed
from a multitude of programming languages, and that can perform additional
tasks such as data base creation and restructuring.

Another trend in databases is the growing size - though not necessarily
complexity - of databases in common use in businesses. This is a trend that
has been made possible though the rapidly falling prices for direct-access sto-
rage media. The emergence now of optical-disk systems for archival datastora-
ge, means that in the future "old" data will not be stored offline on magnetic
tape (or paper, for that matter) in a vault somewhere, but will be accesible
on-line at all times. This will severely impact database size.

Even on single computers, there is a trend towards integrating data from
multiple databases into one common database - logically if not physically. This
means that some of the basis for implementing distributed databases is already
in place.

V.C. TRENDS IN QUERY LANGUAGES

Query languages of one form or another have existed since before the term
"database" was invented. Most of the query languages in existence today (in-
cluding HP QUERY/3000) are more or less ad hoc solutions that have developed
slowly over the years, and have a set of functions dictated by combination of
history and user demands.

With the trend towards a standardized set of database functions, i.e. the
relational model for database structure, a standard for database query is
emerging. This is the query language SQL (Structured Query Language, also
known as SEQUEL), developed by IBM. Most vendors of relational database sy-
stems seem to have jumped on the SQL bandwagon, and sell an SQL-compatible que-
ry language together with their DBMS. This is now also true of HP.

More and more of the SQL-compatible query languages support a programmatic
interface, so that database access from a program can take place through the
same, simple interface that is used by on-line users. This is definitely am
advantage, something anybody who has programmed using procedure calls for data-
base access will recognize. This is even more true of programmers with expe-
rience from DBMSs such as IMS.

In the rapidly expanding world of multisystem databases, SQL can almost be
considered the "de facto" standard for query languages. This trend will conti-
nue, and we will also see that SQL-compatible query languages will become avai-
lable for non-relational (i.e. network or hierarchical) databases.

167



158

CONCLUSIONS

This paper has spanned a wide area of topics, and therefore has been unable
to cover the subject-matter to any great depth. Additionally, the area of
Multisystem Databases is a very large one, and it is growing rapidly. So we
have only scratched the surface. But still, we may draw certain conclusions
from the content of this paper. These are:

1. Multisystem Databases are possible;

2. Several approaches exist, with different capabilities;

3. The HP3000 datacommunications capabilities make it an interesting computer
for implementation of multisystem databases;

4. Several future trends point towards making multisystem databases feasible
in the near future.

So, in order to approach the year 2001 in a forward-looking manner, what do
we do as HP computer users, need to think of? 1In this area, at least, we
should consider the following:

1. Move towards relational or pseudo-relational database management systems,
not just on HP3000°s, but on all our computers;

2. Move towards standardized query/retrieval languages for databases,
particularly systems such as HPSQL;

3. Use only internationally standardized data communiation facilities,e.g.
X.25 for wide-area datacommunications, and IEEE 802.3 for local area
networking.

By following the above guidelines, we should be on our way towards solving
the data-processing and data-communications challenges of the next few
decades.

REFERENCES

For a more complete description of Multibase, see: "An Overview of Multiba-
se" by T. Landers and R.L. Rosenberg; in H. J. Schneider (ed): Distributed Data
Base, North-Holland Publishing Company, Amsterdam, 1982.

This above paper - presented at "the second international symposium on
distributed data bases" in Berlin, 1982 - gives a concise description of Multi-
base, it“s capabilities and functions. For more information on this product,
contact Computer Corporation of America (Ann Arbor, Michigan, USA) or their
representatives.

For more information about POREL, see: "An Overview of the Architecture of
the distributed Data Base System "POREL" by E.J. Neuhold and B. Walter; in the
same book as quoted above.

‘For a more detailed paper on access to on-line IBM applications from an
HP3000 using see: "Implementing Distributed Applicaitons in a Mixed HP-IBM En-
vironment" by Rolf Frydenberg; in the proceedings of the HP3000 International
Users Group conference, Montreal, 1983; available from INTEREX Santa Clara,
California, USA.

Information about IMAGE Remote DataBase Access, and the products IMF and
SNA IMF is available from your local HP sales office.



Other books that may be of interest are: James Martin: 'Distributed Pro-
cessing", Prentice-Hall, Princeton, NJ, USA, 1980. F.A. Schreiber and W. Litw-
in (eds): '"Distributed Data Sharing Systems", North-Holland, Amsterdam, The
Netherlands, 1984.

BIOGRAPHY

Rolf Frydenberg

has been with Hewlett-Packard Norge A/S for four months. His job is that of an
Applications Engineer, specializing in Data Communicating and Programming Lan-
guages. Before joining HP last year, Rolf Frydenberg worked as an independent
consultant and a software developer. He was one of the principals behind the
HP-to-IBM data communications product VTIS/IMAS. He has also worked on other
types of data communications software.

Rolf Frydenberg has been a frequent speaker at INTEREX international and
national conferences since 1982, mostly on topics related to data communicati-
ons. Rolf Frydenberg has also written articles for trade magazines in the USA
and Norway, and is the author of a book on selecting computer systems (in
Norwegian) .

159






	DB - Data Base Management Systems
	Multi System Databases


