* BURN BEFORE READING *
HP3IGODO SECURITY AND You

Eugene Volokh

VESOFT, Inc.
9213 Warbler Place
Los Angeles, CA 80069

Keven
Rectangle

BURN BEFORE READING - HP30O0 SECURITY AND YOU
by Eugene Volokh

VESCFT, INC,
9213 Uarbier Place
Loo Angeles, CA 900639 USA
(213) 858-9656

Presented at the 1984 HPIUG Conference at Anaheim, CA, USA.

DISCLAIMER

One of the most important things vou can do for your sscurity syetem is to
plug holes that may exiet in it. To help you do this, thie paper shous some
ways in which moot inadequately secured systems can be penetrated. Although
thig information can be used by would-be security viclators to break into a
poorly gecured system, it i in my opinion more important that it can be
used by you to protect yourself against these violators,

ATTENTION WOULD-BE THIEVES! DO NOT READ ANY FURTHER!

INTRODUCTICN
Life’s not fair.

Just when you think you’ve got it made, just when you (or your company) have
found the pot of gold at the end of the rainbow, you find it out,

Someone eloe wants the same pot.
SECURITY

To prevent your property from becoming theirs, you set up a series of
obstacies betueen the would-be thief and your property. It is these
chstacles that comprise your security system, and it is the quality of these
obgtacles that determines whether or not your property {in our case, your
computer data) is secure,

These cbatacles come in two flavors:

* pbstacles te unsuthorized retrieval of data. Data is often valuable in
and of itself, whether it is salary information you want to keep gecret
from your employees, financial information you want to keep secret fron
your competition, or military information you want tc Keep secret from
THEM.

* Obstacles to unauthorized modification of data, Data does not exist for
its own sake; real-life decisions are made baged on that data, and
unauthorized modification of data can affect those decisions in an
ungesirable way.

NOWRUG May 16-18

SECURITY

This paper will try 1o give you some useful tips on saking vour valuable
data more secure.

THE ROAD TO YOUR DATA

Congider Jue Q. Sinister, who has his sights set on your payroll database,
There is a fixed road that he must travel to reach the data stored in it and
change it; knowing this road will help us erect the proper roadblocks,

His first step must be to log on to the computer; if we can frustrate his
attempts to do that, our data is secure. The techniques used tc prevent
unauthorized users from logging on to the computer are called LOGON
SECURITY.

LOGGR SECURITY

Logon security is probably the most important component of your security
fence, This is because many of ihe subsequent security devices (e.g. file
security) use information that is established at logon time, such as uger id
and account name. Thug, we must not only forbid unauthorized users from
logging on, but must also ensure that even an authorized user can only log
on to hie user id.

So, logon security essentially involves ensuring that the person logging on
is authorized to use the user id he is logging on to. How im this to be
done?

The optimal approach, of course, would be to somehow identify who the person
is (fingerprinte? retina scan?) and check to see if he is on the
authorization 1list for the particular user id. Unfortunately, these
approaches are not within the means of most HP 3000 users; however, another
good method is.

4 person can be identified by what he knous almost as well as by what he
looks like. For instance, a user id may be assipgned & password, ard only
the people authorized to use that user Id may be told that password. Then
(agsuming no one else somehow learns the password), If a person knows the
password, it follows that he i@ authorized. Alternatively, if one and only
one user is allowed to use & particular user id, he may be asked to enter
some personal information {mother's maiden name?) when he is initially added
to the system, and then be asked that question {or one of a mumber of such
personal questions} every time he logs on. This general method of
determining a user’s authorizations by what he knows we ¥ill call "knowledge
security.”

Unfortunately, the knowledge gecurity approach, although one of the best
available, hasg one major flaw -- unlike fingerprints, information im easily
transferred, be it revealed voluntarily or imvoluntarily; thug, someone who
iz not authorized to use a particular uyser id may nonethelesg find out the
user’s passuord. You may say: "Well, we change the passwords every month,
g0 that’'s not a problem.” The very fact that you have to change the
passwords every month meang that they tend to get out through the grapevinet
A good security system does not need to be redorne every month, especially

NOWRUG May 16-18

Keven
Rectangle

SECURITY

gince that would mean that -- at leagt toward the emd of the month -- the
systen iz already rather shaky and subject to penetration,

fronically, the biggest culprit in this respect is the user himself. Users
have often been knoun to write down pagswords and post them in promirent
places so they will not forget them; reveal passwords to people who really
shouldn’t know them; and, in general wreak havoc on your logon security
systen, Some nethods have been Ges;gnect to cope with this, such as the
personal profile security system {asking questions such as “What’s your
mother’s maiden name?,” “Yhere did you go on your first date?,” etc.)
described above, whose main advantage ie that users are less likely to
reveal personal data than impersonal passwords; additionally, there can be
more than one personal profile paseword -- several of thes or a random one
can be asked at logon time -- whereas the altermative is user password only.
However, the user is still the weakest lirk in the logon security systenm,
and major steps should be taken to avoid voluntary passuword digclosure by
the user. Thus, an important security rule arises:

* THE USER 1S THE UEAKEST LINK IN THE LOGON SECURITY SYSTEM -- DISCOURAGE
HIM FROM REVEALING PASSUORDS (by techniques such &g persomal profile
security or even by reprimanding people who reveal passwords -- they
seem innocent, but they can lose you millions).

Yet another way in which pascworda are often revealed is by having job
sireams with embedded passwords. First of all, unless you take Byeclal
precautions (such as altering the job gtreams so that Read access to them is
digallowed, and only Execute -- enough for STREAMing -- is permitted),

anyone uho can gtrean the job stream can also read it and thue see the
pasgucrds; in any case, any listing of the job stream {of which plenty are
iisble to be laying around the computer room} contains this pasgword. More
importantly, since changing a password means having to change every single
job stream that containe it, these passvords are virtually guaranteed never
to be changed., Fortunately, there is a simple way to resolve this problem:

there are plenty of programs, contributed and vendor- -gupporied, that take &
job stream without embedded passuords prompt for them, insert them into the
job stream, and then etream it,

* PASSWORDS EMBEDDER IN JOB STREAMS ARE EASY T0 SEE AND VIRTUVALLY
IMPOSSIBLE TO CHANGE -~- AVOID THEM,

Another way of increasing logon eecurity je by indirectly using another
aspect of user identification -- identification by uman beings, - Actually,
this could be the main part of wvour logon security system: any user who
wishes to sign on must first get clearance from a security guard or conaole
operator, Uoing quite this far is too expensive, but a little bit of this
can be obtained for free.

If some 15-year -old high school student walke into your data entry area and
gtarte using the computer, people are bound to notice, It is fear of being
identified as a security violator by other human beings that causes most
viplation attempts to come across phone lines, usually at night or on
weexends., Thus, another useful security feature is to be able to restrict
access by access location (i.e. terminal] and access time. The very fact
that aomeone is irying to run payrell across a phone line at 11 P.M. on a

NOWRUG May 16-18

SECURITY

Saturday is an indication of unauthorized access. Thus, it Is wortimile to
implement some form of securizy that prohibite access to certain user id's
and accounts at certain times of day, days of week, andfor from certain
terminale, Alternatively, you meht want to force pecple to answer an
additional passwcrd at certain times, or especially when signing on from
certain terminals,

This may seem like a poor approach indeed -- after all, if the thief hite
the time of day, day of week, or terminal prohibition/password, thiz means
that he hag successfully penetrated the rest of your security systems, which
will never happen -- r1ght'? in realzty, thisg is a very potent way of
frustratmg would-be gecurity wviclators, eepecmlly if the attempted
viclators are promptly imnvestigated, Thus, another maxia appears:

* SOME FORMS OF ACCESS ARE INHERENTLY SUSPECT (AND THEREFORE REQUIRE EXTRA
PASSUORDS) OR ARE INHERENTLY SECURITY VIOLATIONS. THUS, ACCESS TO
CERTAIN USER 1D’8 AT CERTAIN TIMES OF DAY, ON CERTAIN DAYS OF THE WEEK,
AND/OR FTROM CERTAIN TERMINALS (SUCH AS DIAL-IN OR DS LINES} SHOULD BE
SPECIALLY RESTIRICTED,

ASIBE ~- ATTEMPTED VIQLATION REPORTING

Before we go any further with our discussion of various security devices, it
iz worttwhile to pay particularly close attention ic something which should
be present in all security devices -- violation reporting.

No security aystes can cover you 100X -- given enough time, a determined (or
even relatively casuall thief can penetrate even the best systenm,
Fortumteiy, before this one successful pemetration, chances are that the
thief will make many unsuccessful attempts; if you pay attention to these
unsuccessful attempts, you can catch the thief (or at least improve the
security system by, say, temporarily shutting down dial-in lines) before he
gete in.

This may seem cobviousm, but few shops really pay attention to unsuccessful
penetration attempts -- when was the last time you looked at "INVALID
PASSUORD" messages on the system console or in the log Tiles? In reality,
gvery incorrect password entry is an indication of a possible attempted
security violation, even more so if there are several such errors in a row.

HP doeen’t help any either -~ the INVALID PASSUORD meswages look just like
any other conscle meagage {m enhancesents of any kind}; the only place
where invalid password entries are logged are in the syeten log files
together with the rest of the console log messages, It would bde far more
desirable to have the neasage logged to a separate log file, and naybe even
reported to the line printer or some special device, Addltmnaly, it might
be wise for a terainal on which an invalid password entry occurs to be shut
down for some period of time so that it would take more time for a would-be
thief to try more passwords,

But, even with the existing HP eystem, an alert console operater can nip

many & potential security violation in the bud by catching the INVALID
PASSUORD messages that can be a gign of an attempted violation, In fact,

NOWRUG May 16-18

SECURITY

there is & way to highlight ocome messages so they will be more easily
vigible. Since most MPE mespages are stored in the eysten file called
CATALOG,PUB.SYS, you can do the following:

1. Sign on as MANAGER.SYS.
2. In EDITOR {or 1TDP), /TEXYT CATALOG,PUB,SYS

3. Modify the first line in the file that starts with "65 " and the firgt
line that etarts with "68 " to contain an estape sequence such as
"epcapeddB” {inverse video} right after the blank after the message
runber and to contain a “escapedd@” (turn off enhancement} at the end of
the message. Alternatively, if you have a 263x with ewpanded character
get, Insert an "escapedkl18” (enter expanded set) right after the blank
after the message rumber and a "escapebk0S" (erit expanded set} at the
end of the message. Similar escape sequences may be put in if you have
sone other kind of termimal or a voice output device,

4. /XEEP the file as INPUT,
5. :BUN MAKECAT, PUg, 9YS,BUILD

6. Presto! Your "INVALIN) PASSWORD™ and "MISSING PASSIORD” messages are now
much eamier to read.

Thus:

* MANY SECURITY VIOLATIONS CAN BE AVERTED BY MONITORING THE WARNINGS OF
UNSUCCESSTUL VIOLATION ATTEMPTS THAT OFTEN PRECEIE A SUCCESSFUL ATTEMPT.
IF POSSISLE, CHANGE THE USUAL MPE CONSGLE MESSAGES SO THEY WILL BE MORE
VISIBLE.

LOGOEF SECURITY

Another threat to your eystem security is, unfortunmately, a rather common
one. If someone gigne on to a terminal and then walks away {perhaps for a
lunch break), a would-be thief can access your computer without even having
t¢ log on -~ he can just walk up to the terminal and use it,

You may think this to be a relatively rare occurrence, but congider: do your
pecple always sipgn off when they go to lunch? Haven't there been times when
they forget to gign off even before they leave for the day? Leaving a
terminal signed on is a very common rietake, and one that can greatly
jeopardize the security of your system,

How can you solve this problem? Well, for one, you can tell your people to
sign off whenever they leave the ierminal, Alternatively, if you find that
people often leave the terminal when it’s in some particular state {say, the
main meru of your accounts payable program), set a timeout just before
issuing the terminal read (with the ¥CONTROL intrinsic, mode 4). That way,
vher the user does not respond for a certain amount of time, the read will
abort, amd your program will be able to terminate and maybe log the user
off, Even better alternative is to use a contributed or vendor-supplied

NOWRUG May 16-18

SECURITY

program that automatically aborts all terminals that have been inactive for
more than a certain amount of time {such as Boeing’s BOUNCER or VESOST’s
LOGOFE).

Apother, more dangerous, problem occurs when a dial-in user hangs the phone
up ingtead of properly :BYEing off, Then, if the dial-in line is configured
with subtype 0, the user will not be automatically :BYEd off, and the next
person to call up the computer will be dropped into the gtill-logged-in
seseion. Thus, remember to configure all your dial-in lineg with subtype 1
or t&ll your users under no uncertain terms that they MUST aluaye (BYE off
when using the dial-in line,

Thug,

* LEAVING A TERMINAL LOGGED ON AND UNATTENDER IS JUST AS MUCH OF A
SECURITY VIOLATION AS REVEALING THE LOGON PASSWORD. WSE SOME KiND OF
TIMEQUT FACILITY TO ENSURE THAT TERMINALS DON’T REMAIN INACIIVE FOR
LONG; SET UP ALL YOUR DIAL-IN TERMINALS UITH SUBTYPE 1.

RESTRICTED VS. UNRESTRICTED USER INTERFACE

Ag was mentioned before, logon security is & very important component of
your Becurity system, but it is by no means the only one. Many security
viciations are committed by people who are allowed to sign on to the
computer but who manage to get at thinge that they are not permitted to
access.

There are two major ways of prohibiting authorized users from doing
unauthorized things. One is by permitting them to do only certain specific
things {the inclusive approach! and the other is by forbidding them from
doing specific things (the exclusive approach}, Each has its merits, its
uges, and ite security strategies,

THE INCLUSIVE APPROACH

Briefly, the inclusive approach is usually implemented by having an OPTION
LOGON, NOBREAX (the NOBREAK is important!) UDC that runs an application
program and then, upon exit from the program, immediately BYEs. Thus, the
user ig only allowed to perform the function or functions of thig one
program {or, if the program so wishes, only a subget of these functions],
and he is forbidden from doing anything else -~ accessing files, running
programs, or executing MPE commands,

This is, overall, a good spproach, Ite only real problem is that in sone
instances it is too restrictive -- some users [especially programmers) need
to have access to the entire power of MPE, However, when the user does not
reed to access MPE, it is not only more secure but it is also more
convenient for the user to be automatically dropped inte his program when he
gigne on and to be automatically signed off whenm he eKits the program,
However, certain technical issues musi be kept in mind:

NOWRUG May 16-18

SECURITY

1. Don’t forget to make the UDC OPTION LOGON, NOBREAK.. I1f you omit the
NOBREAK, the user can bit break, type :ABORT, amd get into MPE,

2. A lesser-knoun fact is that it is usually essential that you add a
CONTINUE 1ine before running your program, thus making your UBC look
something like

LOGONUDC

OPTION LOGON, NOBREAK
CONTINUE

RUN ACCPAY.PUB AP
BYE

Uhy? Because otherwise, if the program aborts, the entire UDC will be
flushed and the BYE will never be encountered, Although it might seem
quite improbable that your program will abort, the user can actually make
most programe abort by typing a :EOD {or sometimes just a :} when
prompted for input, This causes an end of file on $SIDIN and makes many
programg, including almost all BASIC, COBOL, FORIRAN, and PASCAL
programg, abort. .

Of course, thig approach need not be restricted to running eimple
applications programs. - One of the dest uses of this approach is to run a
program that displays a menu of allowed MPE commands or congtructs and agks
the user tc¢ choose one. Thus, if you want a uper to access the A/P systenm,
EBITOR, or the TELLOP command, you might write a program that displays these
three options to the user, aske the user for one, and then executes it {via
the “OMMAND or CREATE intrinsic}. Even better, get a gereral-purpose mem
procesing program that permits you €0 easily set up various memnus by juat
changing some data files, Thue,

¥ A USEFUL APPROACH TO SECURING YOUR SYSTEM IS 70 SEY UP A LOGON MEWU
WHICH ALLOWS THE USER TO CHOOSE OME OF SEVERAL OPTIONS RATHER THAN IO
LET THE USER ACCESS MPE AND ALL ITS POMER DIRECTLY.

THE EXCLUSIVE APPROACH

Sometimes, programmers or other yeers that have to uee a wide range of
programe, files, and MPE commande must have access to MPE itpelf. Thie is a
far less controlled envirorment than a program that is run at logon time,
but can still be secured very well.

One approach to secuyring the pystem while still allowing people 10 access
MPE is to disable certain MPE commands you find do not want to be executed,
For instance, gay you do not want your people to :STREAM jobs. You could
et Up & sygstem or account UDC

STREAM | FILENAME="$STDIN", 1COLON="!"
OPTION LIST
COMMENT YOU ARE NOT ALLOVED TO :STREAM FILES.

That way, whenever someona types a :STREAM command, he gets the UDC ingtead,

NOWRUG May 16-18

SECURITY

This approach, however, has a major flaw: although the command interpreter
glves precedence to UDXs over ordinary MPE commards {thus allowing you to
biock out :STREAM commands by setting up a SIREAM UBC), the COMMAND
intrinsic does not. Thug, if the user is allowed to access FUOPY, EDITOR,
TDP, SPOOK, or even a uger-written progras that calls the COMRAND intrinsic,
he will be able to bypass the UDC restriction. In other words, in the
example above, all I need do to bypass the :STREAM command restriction is to
run FCOPY, and type the :STREAM command from there!

The only exceptions to the above rule are the commands that cannot be -
directly ewecuted via the COMMAND imtrinsic, such as :RUN, :PREP, compiler
commands, SETCATALOG, and :SHOUCATALOG. But even these commands (all
except :SETCATALOG and :SHOUCATALOG] are available through some programs,
such as TDP and SPOOK.

Trus,

* BLOCKING OUT MPE COMMANDS VIA UDC'S WITH THE SAME NAME UILL USUALLY FAIL
UKLESS THE COMMAND 15 :SETCATALOG OR (SHOMCATALOG OR ¥ YOU ALSO FORBID
ACCESS TO MANY HP SUBSYSTEMS AND HP-SUPPLIED PROGRAMS. THIS SEVERELY
LIMITS THE USEFULNESS OF THIS METHOD.

Again, I’d like to stress that the :SETCATALOG and ;SHOUCATALOG can be
blocked out this way, as can (Mith more difficulty} the :BUN command and
some other commands; however, the set of commands still permitted will
usuaily be so small, the method imvolved so complen, and the chance of
penetration so great, that all advantages of the euclusive approach pale in
comparison,

By far the best way, in my opinion, of implementing the erclusive approach
ie by using the eristing MPE file, database, and program security features,
which is what the next few sections will discuss,

FILE SECURITY

File security ls quite poseibly the most sophisticated and the leagt used
and understood security systesm provided by MPE. If properly handled, it can
permit a user to use all MPE commands and all of MPE's power without
allowing hix to go bevond the confines of his files.

Each file has a go-called “security matriz,” an array of information that
describes what classes of users can read, write, append, exrecute, and/or
lock a file. Similarly, each group has a gecurity matriu degcribing the
security to be pet for its filee, and each account aleo has a2 security
matrix. These gecurity matrices are what LISTDIRZ shows you when you do a
LISTSEC (or LISTE, LISTGROUP, or LISTACCT}.

VUhen a user tries to open a file, MPE checks the account security matrix,
the group security matrix, and the file security matrix to see if the user
i@ allowed to access the file. If he is allowed by all three, the file im
opened; If at least one security matrix forbids access by thim user, the
open fails. For instance, if we try to open TESTFILE.JOHN.DEV when logged
on to an account other than DEV and the eecurity matrix of the group
JOHN,DEV forbide access by users of other accounts, the open will fail [even

NOWRUG May 16-18

SECURITY

though both TESTFILE’s and DEV’s security matrices permit access by users of
other accounts).

Each security matrix describes which of the !‘onmung clasgess can READ,
YRITE, EXECUTE, APPENE to, and LOCK the file:

* CR ~ File’s creator
* G - Any user logged on to the same group as the file is im

* GL ~ User logged on to the same group as the file is in and having Group
Librarjan (GL) capability

* AC - any user logged on to the pame account as the file is in

* al - Uger Jogged on to the same account ag the file is in and having
Account Librarian {AL) capability

* ANY - any user
* Any combination of the above {including none of the above}

By default, whenever any account is created, access to all its files is
restricted to AC {account users only}, escept for the SYS account, for which
Read and Execute access ie allowed for ANY; and Urite, append, and Lock
access for AC; whenever any group is created, access to all its files iz
restricted to GJ (group users only), except if the group is PUB, in which
case access is Bead and Ezecute for AC {ail account users} and write,
Append, and Lock for @U {group users} and AL {account librarian); and
uhenever any file is created, access to it is allowed to everyone.
incidentally, a System Manager can access (in any mode) any file in the
system, and an Account Manager can access any file in his account,

Thus, let us say that you, who build your files in JOHN.DEV, wish other
ugers to be able to read your files, To do this, you have to go to your
account manager, get him to allow Read access to the group JOHN,DEV for ANY,
and get him to ask the system manager to allow Read access to DEV for ANY.
This, needless to say, is rather complicated, and, in fact, most users go
the ruchk easier route of just :RELEASEing their fxles

However, the problem with RELEASEing a file is that when you do it, ANYBODY
is allowed to do ANYTHING to the file -- this nmeans read it, wr).m to it,
even purge it! And, since doing this is 80 easy, many nies are RELEA‘sEd
and never re-: SECURE& ting leaving them open for easy tampering by anyone;
another contributing factor to thig is that ordimary MPE :LISTF does not
show shether of not the file has been <RELEASEd, g0 many pecple don’t even
khow which of their files are :RELEASEd,

However, if getting the access restrictions on your group and account
loosened is Bo difficult, but :RELEASEing the file makes it mide-open for
any kind of access, what is to be done? Unfortunately, the solution is by no
neang easy.

NOWRUG May 15-18

SECURITY

The first step is to set wp all your accounts with all forms of access
allowed to ANY; l.e, alter them with a command such as

:ALTACCT accountname; ACCESS=(R,U,4,L, X:ANY)

This still leaves a level of security {group security} that will by defauilt
protect the file {except for PUB groups, which should therefore be built
with Read and Execute access for AC instead of ANY), while making the
security much easier to waive -- one would need to 1ift group security only
instead of group and account security,

Newt, when bmldmg each group, congtider closely the security that vou would
ms;h to put on it. If, for instance, this Hroup consists mostly of files
that should be madable by anybody, build it with Read access allowed to
ANY, Files can then be protected individually by ALTSECing them to a more
regtrictive security level.

Finally, if you :RELEASE a file so that someone can access ft, be sure to
:SECURE it immediately after the other person is done {unless you don’t care
about security for that file}j., It’s even better if you have some global
file manipulation utility {such as VESOFI's MPEX} with which you can ;SECURE
all the files in some fileget that have been ;RELEASEd,

Thus, some important file security guidelines exist:

* REMEMBER THAY :BELEASE’ING A FILE LEAVES IT WIDE OPEN FOR ARY KIND OF
ACCESS; RELEASE FILES CAUTIOUSLY, AND RE-:SECURE THEM a8 BSOON A4S
POSSIBLE,

* TRY TO MAKE IT AS EASY AS POSSIBLE FOR PEOPLE TO MAKE THEIR FILES
ACCESSIBLE BY OTHERS WITHOUT HAVING TO :RELEASE THEM, THUS, BUILD ALL
ACCOUNTS ¥ITH (R,,X,A,L:ANY] SO THAT ALLOVING ACCESS TO A GROUP UILL BE
EASIER.

* IF A GROUP IS COMPOSED MOSTLY OF FILES THAT SHOULD BE ACCESSIBLE BY ALL
USERS IN THE SYSTEM OR BY ALL ACCOUNT USERS, BUILD IT THAT UAY, THIS
WILL ALSQ REDUCE :RELEASE'S.

* THE :ALTSEC COMMAND IS USEFUIL FOR RESTRICTING ACCESS TO FILES IN A GROUP
TO GHICH ACCESS IS NORMALLY LESS RESTRICTER.

One more agpect of file security that bears mentioning is the file lockwsord,
With i1, you could conceivably restrict file access to only those users (or
programsi} who know the file lockword, even if the file's mecurity matrix
says that they have complete access 1o the file. However, the problem with
lockwords is the same &8 the problem with passwords -~ they don’t stay
secret for long. In my opinion, other security approaches (better use of
the sgcurity matrices, user id checks in programs being protected, etc.) are
superior,

* LOCKMORDS AREN’T ALY THEY'RE CRACKED UP TO BE, OTHER APPROACHES SHOULD
BE PREFERRED,

NOGURUG May 16-18

SECURITY

ASIBE -~ ALLOWING PROGRAMS TO READ ;SECURE’D FILES

Say that you want your accounts payable progran to ask the user for a
password and then check the uger’s imput against a password stored in a
file, Now, you naturally can’t store the password in a :RELEASEd file, fer
then the passvord would be readable by anybody; however, if it is stored in

a iSECUREd file, then the program won’t be able to access it either, since
the program is run by ordinary users,

One golution iz to :RELEASE a lee., but put a lockword on it. Then, the
program could open the file specifying the lockword, but users would not be
able to open the file because they wouldn®t know the lockucrd. Thig is a
relatively good solution; however, ite flaw ig that, like all pasewords, the
lockword is 1likely to become known sooner or later. Then, the entire
advantage of storing the password in a file, -- namely that the password can
be easily changed -~ would be mllified by the fact that the file's lockword
cannot easily be changed.

A different approach uses an undocumented feature of the FOPEN intrinsic.
If FOPEN is called in privileged mode, and the 4 low-order bits of the
“aoptions” parameter (third from the left) are eet to 15, the file is opened
for read access IGNORING ALL SECURITY. This iam mot a security violation
because it requires PM capability (see the CAPABILITIES section}; however,
gince PM must be granted to only the program and the group and account in
which it reasides {which could be PUB. SYS), the program will be able to
access the file regardless of who is running it, but sost users will not
{since the file can thus be :SECUREd).

CAPABILITIES

There are gome MPE capabilities that have a bearing on ayetem security,

Of these, $M and AM are simple to explain and relnuvely well understood --
they allow one to access {in any way) all filea in the system and the
account, respectively,

Some otherg -- 4L and GL -- allow one to establish special classea of users
{1ibrariang)} that are aliowed 1o accese files because they can be emplicitly
allowed access by the security msatrices (see FILE SECURITY).

Houever, the security effects of two other capabilities -~ OP and PM -- are
often not properly appreciated, much to the detriment of system security,

OF CAPABILITY

OP capability, which stands for System Supervisor (NOT Operator!}, has one
property that hae a great bearing on gystem security: & user with OP
capability can :STORE and :RESTORE any file in the syeter, This might not
sean much, but it really means that

A USER UITH OP CAPABILITY CAN READ AND URITE ANY FILE IN THE SYSIEM

NOURUG May 16-18

SECURITY

After all, all he has to do to read it is to :STORE it and then FCOPY the
tape to the line printer; and to write to it, he can store it, move it to a
System on which he hag Urma access to the f.ﬂ.e 8 group ard account nodify
it, store it again, and restore it on the origimal system. Can yﬂu trust
your operators Ewho are usually given this capability) with this kind of
power?

*® YOU SHOULD ONLY GIVE OP CAPABILITY T0 USERS WHO YOU TRUST AS MUCH AS YOU
YOULD A SYSTEM MANAGER, TO USERS WHO HAVE NO ACCESS TO MAGNETIC TAPES OR
SERIAL DISCS, OR 10 USERS WHO HAVE A LOGON UDC THAT DROPS THEM iNTO A
MENU UHICH FORBIDS THEM FROM DOING :STORE’S OR :RESTORE'S

PM CAPABILITY

No capability has been feared, discussed, or maligned quite ss much as PH
capability, in this paper, 1 will discuss only the the security
ramifications of PM capability; for a discussion of PM and gystem crashes,
see my paper "Privileged Mode: Use and Abuse.”

Unat does PM capability give you? Quite simply, it allows you to obtain SM
capability as follous:

s BEBUG

ABL-DL-17+2

DL-NNN Mgt - -
2B

Once you do this, you are (at least partially) & eyetem manager until you
iog off. You can access any file and even execute fygtom manager commandg
like :ALTACCT and :ALTGROUP to give yourself SM or any other capability
permanently.

Obviously, PM capability is not something you want to give to every Tom,
Dick, and Harry,

* YOU SHOULD ONLY GIVE PM CAPABILITIY TO USERS WHO YOU TRUST AS MUCH AS YOU
UOULD A SYSTEM MANAGER,

However, there are other ways in which ueere can get PM capability,

For one, for a program tc have PM capability {and thue use varicus
privileged operating system functions), the Program must reside in a group
arxd account which have PM ::apabxhty This is very good -- this way,
programs like DBUTIL and SPOOK, which use ;:nvuegad node, can be run by
plain vanillis users who do mt have to be given PM. However, this means
that if a privileged program does pomething to circusmvent normal MPE
gecurity {see the ASIDE -- ALLOWING PROGRAMS TC READ :BECURE’D FILES}, it’l1
do it for anybody who runs it, unless it exuplicitly checks who is running
it,

More uportantly, this meang that a user does not need to have PM capabihty

to write privileged programs -- only the ability to build files in a
privileged group {i.e. § [Savel access to that group} or to overwrite a

NOURUG May 16-18

SECURITY

progran file in that group with hig own file (i.e. ¥ [irite]l access to any
program file in that group) and then run them (i.e. X access to the program
file being overuritten or any access if he hag § access %o the growp -- then
he can just releage the filel.

For instance, say that | work out of EUGENE,BEV and the group PROG,BEV hag
PM capability and Save access for all account users. [can just write a
progran that uges privileged mode to access a file that I shouldn’t be abie
to secess or to grant myself all the capabilities (like in the :DEBUG
exanple abovel, :PREP it without CAP=PM (aince :(PREPping with CAP=PM
requires PM capability}, then change the program file to have PM capability
(a task that does not require privileged mode), and copy it into PROG,DEV.
Although I couldn’t run this program while it wag in EUGENE.DEV {gince it is
required that the group in which the program resides have PM capability),
once it is in PROG.DEV, I could run it. If I don’t have eHecute accese to
PROG.DEV, I can :BELEASE the program before rumming it, since I an the
creator of the file,

Or, say that somebody :RELEASEd any program file in PUB.SYS, thus giving me
write and execute access to it, Then, ! can write a program that uses
privileged mode to bypass system pecurity, :PREP it without CAP-PM, change
the program file to have PM capability, and copy it on top of that program
file in PUB.SYS, Then, since PUB.SYS has PM capability and I have execute
access to the file I just overwrote, I canm run the program.

Thus,

* IF ANY USER HAS SAVE ACCESS TO A GROUP UITH PM CAPABILITY, OR WRITE AND
EXECUTE ACCESS TC ANY PROGRAM FILE THAT RESIDES IN & GROUP UITH PM
CAPABILITY, HE CAN WRITE AND RUN PRIVILEGED CORE.

And, gince :RELEASEing a file gives everyone write and egecute access to it,

* ¥NEVER* :RELEASE A PROGRAM FILE THAT RESIDES IN A GROUP WHICH HAS P4
CAPABILITY!

As if this wasn’t enough, there are some other potential security violations
that can oceur with privileged mode. Consider the following circumstance:

Two HP 3000e, which we will call O-machine {intended for OPEN access] amd
$-machine {which the eystea manapement wants SECURED) are linked via
DE/3000. A person has a user id and a group with PM capability on O-machine
and a plain vanilla user id and group with only defauit capabilities on
S-machine. S-machine management thirks that its machine is secure, since
only MANAGER,SYS and PUB,SYS have PM capabiiity on their machine.

Now, there are several file system operations that bypass sywtem security
and thus require privileged mode; for imstance;

* FOPEN with the 4 low-order bits of acptions set o 15 (see ASIDE «-
ALLOWING PROGRAMS TO READ :SECURE’D FILES), when called from within
privileged mode, let® you read a file even when you have no access to
it

NOWRUG May 16-18

SECURITY

* FOPEN with EXECUTE access (4 low-order bits of aoptions set to 6;
document in System Intrinsics mamual}, when called from within
privileged mode, lets you read and write a file if you have only execute
access to it

* MUSTOPEN, a procedure identical to FOPEN in all respects except that,
when called in privileged mode, it ignores a file’s lockword.

* FOPEN of a privileged file {a file with a negative filecode, such as an
IMAGE database),

These are not inherently security violations: in fact, as the ASIDE --
ALLOJING PROGRAMS TO READ :SECURE’D FILES section shows, they can be used to
actually INCREASE your security. However, they are notl security violations
only because they require PM capability to be executed,

Now, consider our would-be security violator. He has his eyes on the
S-gyutem file FOO.JOB.SYS, which he knows is a job stream that contains an
enbedded password (it could just as well contsin any other kind of sensitive
data}. He signe on to O-gystem 8s a privileged user, and then to the
S-oystem via DS as a plain vanilia user, Now, because DS allows a progran
on one syatem to open a file on another eystem (by specifying the file’s
device to be the dsline device followed by & "#', e.g, “60#"], our user
writes a progran on O-system that opens file FOQ,JOB.SYS in the "ignore
pecurity” mode {(aoptions 4 low-~order bitg = 15} on S-pystem, Since the
program is rumning in privileged mode {remember, our O-system user is
privileged), the open succeeds, and the user can read the file!

Now note that the file system does not check that the user on S-zystem must
have PH capability to use this security-bypassing mode; the program need
merely be running in PM capability, regardless of which system it is on!

This is one of the few genuine flaws in MPE’s security system, amd it’s
nothing to sneeze at, What it means is that

* IF TEO HP3000?S ARE CONNECTED VIA DS, AND A USER HAS PM CAPABILITY ON
ONE AND AN ORDINARY LOGON ON THE COTHER, HE CAN VIOLATE THE OTHER’S
SECURITY. THUS, IF ANY HP3000 IN & DS NEIWORK IS BROKEN INTC OR LEFT
OPEN, ALL OTHERS ARE IN GRAVE DANGER,

Thus, if you want to keep one gystem gecure, you must Keep all systems
hooked up tG it via DS secure as well.

One other issue, somewhat more arcane but nonetheless relevant, arises shen
using privileged mode.

1f a program which has PM capability calls DEBUG when the user running it
does not have PM capability, even though the user will be dropped inte
non-privileged DEBUG, he can use this to break system gecurity.

Briefly, the user can modify some data in the program’s stack or the
program’s P pointer {which points to the current ingtruction being executed)
te cause the program 1o do sowething other than what it is supposed to do
when it performs itg privileged operations. One thing that actually

NOWRUG May 16-18

SECURITY

happened to one of my programs is that it called the WHO imtrinsic, fipured
out the logon user, account, and group, put them into global arrays, and
then went into privileged mode and got the logon user, account, and group
passuords and wrote them to a stream file. This was perfectly kosher -- if
a uger managed to sign on, he already knows his logon passwords; however,
the progran allowed the user to enter DEBUG even though he was
non-privileged. Although the program did not call DEBUG when privileged,
and the uger was not put into privileged debug, the user could modify the
user, account, and group id arrays in the stack to read, oeay,
"MANAGER™, “SYS", amd "PUB". Then, the nest stream the program buill would
contain HANAGER.S5YS’s pasmwords:

This is, as I said, a rather arcane and relatively infrequent problem;
however, it is a possible sgcurity flaw nonetheless, and should not be
ignored. In fact, I’d like to ask HP to correct its DBDRIVER program, which
ig privileged and has a which "/D" commard which drops the user into DEBUG
whether or not he is privileged,

In the same vein, dynamically loading {via the LOADPROC intrimsic] a
procedure from a user’s group or account SL and then caliing it should also
be forbidden to privileged programe -- the called procedure, even though It
resides in a non-privileged SL, can call GETPRIVMODE because the program
calling it is privileged. Again, rather arcane but atill worth noting.

Thug,

* PRIVILEGED PROGRAMS MUST NEVER CALL DEBUG UNLESS THEIR USER IS
PRIVILEGED, AND MUST NEVER DYNAMICALLY LOAD AND CALL PROCEDURES FROM A
USER’S GROUP OR ACCOUNT S UNLESS THE USER IS PRIVILEGED,

Now, I do not interd to unfairly na.lign P capability, It has its uses, and
in fact, some programs must have it f{esuch as the HP system ut).htzes in
PUB.SYS or wmany very ueeful contributed and vendor-supported programs).

However -- and { cannot stress this enough -- use of P must be walched very

carefully if you wish to keep your mystem secure, .

IGNORANCE SECURITY

Hany technigues of violating eystem security described herein may appear
rather complicated and improbable; in fact, they are. It is all too easy to
say: "Well, my users aren’t so smart -- they'd never think of pullme all
those tncke " Unfortunmately, it is out of such complacency that insecure
systems are born, After all, if we could think of these tricks, why can’t
gome sMart guy in your ghop? What if one of hie friends is a sophisticated
HP user? The agsets of your company are far too precious a thing to entrust
to the presumed ignorance of your users; you should rather improve the
gecurity of your system, 8o that even a smart user will rot be able to
penetrate it -- and if your users aren’t that emart, all the better,

NOWRUG May 16-18

SECHRITY

DATABASE SECURITY

IMAGE/3000°s security system is probably one of its most complex features
and also one of its least used. My first impulse was to chastise the HP
user community for not using thic wonderful security feature more, and to
blame 99.44% of all security violations on their failure to do so, but then
I realized that this is not such a wonderful facility after all,

IMAGE/3000 security permits the database creator 1o restrict access to each
individual data item and data set to only those users who epecify a certain
password when opening the database. Admistedly, this is a very useful
feature when you expect the database to be accessed via QUERY -« then you
can define ewactly what a uper can do by what pagsword you give him.
However, most databases are accessed by application programs, not through
QUERY, and most of the time it is the program, not the user, that specifies
the pa.saword So, unlesg you intend to reveal certain database passwerds to
only certain progrmers and thus protect your database against your
PTOgrammers, nOl youT users, you are probably far better off implementing
application secunty, i.e, having your application figure out what a certain
user is authorized or not authorized to do, rather than using IMAGE
secarity.

* IMAGE/3000 DATABASE SECURITY IS NOT PARTICULARLY USEFUL EXCEPT FOR
PROTECTING DATABASES AGAINST UNAUTHORIZED GQUERY ACCESS. 1IN FACT, SOME
DEGREE OF PROTECTION AGAINST UNAUTHORIZED QUERY ACCESS CAN BE GIVEN BY
USING DBUTIL’S “SET SUBSYSTEM" COMMAND TO DISALLOY ANY QUERY ACCESS OR
GUERY MODIFICATION OF A DATABASE,

DATA ENCRYPTION

1f you want to secure your data against unauthorized readmg even if some
ugers manage to access it, they won’t be able to understand it. This is the
principle of encryption -- change the format of your data so that nobody but
the authorized people will be able to understard it

Usually, encryption algorithme involve the use of so-called "keys." Say
that I want to encrypt the phrase “NOU IS THE TIME FOR ALL GOOD MEN TC COME
TG THE AID OF THEIR COUNIRY. 1 could do this by choosing some rumber {say,
7) and adding it to each letter of the sentence, 8o that A would become H, B
would become I, € would become J, R {#18) would become Z, 5 would become A,
etc, Then, the phrase would become "UVD PZ AOL APTL MVY HSS NVVK TLU AV
JVTL AV ACL HPK VM AOLPY JBVUAYF," an unreadable jumble of letteérs tg anyone
vhe doesn’t know that to decrypt it, one must subtract 7 from each
character, Thus, 7 is the key and the encryption algorithm ig to add the
key to each character,

Hn!‘c:rtunately, things are a bit more complicated than that, pr:umrl’.ly
because with gome work, one can realize that the letters A and V occur quite
often, the commmtmn A0 occurs frequently as well, and that there are only
60 many possible two-letter words {some of which aust correspond to PZ, AV,
and Wil. Thus, we could find out what key letters correspord to, and thus
decode the entire sentence.

NOWRUG May 16-18

SECYRITY

Forunately, there are more sophisticated encryption algorithms that are far
harder to decrypt. And, since the key need not be stored in the computer,
but only in the uger’s mind or some other safe place, encrypted data can be
decrypted only by an authorized person.

L 4

Another less geneml it nevertheless ugeful technique for encrypting
passwords is called “"one-way encryption.” Say that you wish a user to enter
a password into your program shen he is first set up, and then have your
progran agk him for the password every time he aubsequenuy 1039 on, Yo do
not need to actually decrypt the password -- just encrypt it once at user
set-up time, store it in encrypted fors, and then, every time the user tries
to icag on, ask him for a paseword, encrypt his answer, and compare it
against the encrypted real password,

Thug, your encryption algorithm can map the entire pagsword into a single
nusber (by, say, adding the sguares of all the letters, each multiplied by
the cube of ite pogsition in the password string], thus making it impossible
to decrypt; and, the encryption algorithm is much simpler than two-way
encryption algoritims that need to have a corresponding decryption
slgorithin. Unfortunately, this technique is limited to applications in
which decryption is never necessary, such as when passsords are stored,

One-uay enctypticn is easy to do; good two-way encryption Is harder -- I
know of no HP programe that do it, but hopefully that will be remedied soon.

* IN GENERAL, ENCRYPTION I8 ANMOTHER GOOD WAY OF PRUTECTING SENSITIVE DATA
FROM UNAUTHORYZED READING,

CONCLUBION

it is all too easy to get involved in the implementation and perfection of
an application system, putting “lLittle things” like security on the back
burner; unfortunately, this is precisely what accounts for the alming
anount of computer crime that is threatening ue today. What is best is that
with application of some simple guidelines and a little time and effort, you
could dramatically decrease your chancee of hecoming a victin, ¥No secuuty
aysien @ill cut these chances to zero, but if you have as much valuable data
in your machine as the average HP user has in his, doing nothing can
literally cost you millions,

NOURUG Hay 16-18

APPENDIX A: SUMMARY OF USEFUL HINTS

THE USER IS THE WFAKEST LINK IN THE LOGON SECURITY SYSTEM -- DISCOURAGE
BIM FROM REVEALING PASSUORDS by techniques such ae personal profile
gecurity or even by reprimanding people who reveal passwords -- they
seem innocent, but they can lose you millionsa),

PASSWORDS EMBEDDED IN JOB STREAMS ARE EASY TO SEE AND VIRTUALLY
1MPOBSIBLE TO CHANGE ~- AVOGID THEM,

SOME FORMS OF ACCESS ARE INHERENTLY SUSPECT {AND THUS REQUIRE EXTRA
PABSUORDS) OR ARE INHERENTLY SECURITY VIOLATIONS, THUS, ACCESS TO
CERTAIN USER IR'S AT CERTAIN TIMES OF DAY, ON CERTAIN DAYS OF THE WEEK,
AND/OR FROM CERTAIN TERMINALS ($UCH AS DIAL-IN OR DS LINES) SHOULD BE
SPECIALLY RESTRICYED,

MARY SECURITY VIOLATIONS CAN BE AVERTED BY MONITORING THE WARNINGS OF
UNSUCCESSFUL VIOLATION ATTEMPTS THAT OFTEN PRECEDE A SUCCESSEUL ATTEMET.
{F POSSIBLE, CHANGE THE USUAL MPE CONSOLE MESSAGES SO THEY WILL BE MORE
VESIBLE,

LEAVING 4 TERMINAL LOGGED ON AND UNATTENDED IS JUST AS MUCH A SECURITY
VIOLATION AS REVEALING THE LOGON PASSUORD. USE SOME KIND OF TIMEQUT
FACILITY TO ENSURE THAT TERMINALS DON*T REMAIN INACTIVE FOR LONG; SET uyP
ALL YOUR DIAL-IN TERMINALS WITH SUBTYPE 1.

A USEFUL APPROACH TO SECURING YOUR SYSTEM IS TO SET UP A LOGON MENU
WHICH ALLCUS THE USER TO CHOOSE ONE OF SEVERAL OPTIONS RATHER THAN TO
LET THE USER ACCESS MPE AND ALL ITS POUER DIRECTLY,

BLOCKING OUT MPE COMMANDS VIA UDC’S VITH THE SAME NAME UILL USUALLY FAIL
UNLESS THE COMMAND 1S :SETCATALOG OR :SHOWCATALOG OR IF YOU ALSC FORBID
ACCESS TO MANY HP GUBSYSTEMS AND HP-SUPPLIED. PROGRAMS., THIS SEVERELY
LIMITS THE USEFULNESS OF THIS METHOD,

REMEMBER THAT :RELEASE’ING A FILE LEAVES IT WIDE OPEN FOR ANY KIND OF
ACCESS; :RELEASE FILES CAUTIOUSLY, AND RE-:SECURE THEM AS SOON AS
POSSIBLE,

TRY TO MAKE IT AS EASY AS POSSIBLE FOR PEOPLE TO ALLOW THEIR FILES TO BE
ACCESSED BY OTHERS WITHOUT HAVING TO :RELEASE THEM., THUS, BUILD ALL
ACCOUNTS BITH (R,W,X,A,L:ANY} SO THAT ALLOVING ACCESS TO A GROUP UILL BE
EASTER.

IT A GROUP 15 COMPOSED MOSTLY OF FILES THAT SHOULD BE ACCESSIBLE BY ALL
USERS IN THE SYSTEM OR BY ALL ACCOUNT USERS, BUILD 1T THAT UAY. THIS
VILL ALSO REDUCE :RELEASE’S.

THE ALTSEC COMMAND IS USEFUL FOR RESTRICTING ACCESS TO FILES IN A GROUP
TO UHICH ACCESS IS NORMALLY LESS RESTRICTED.

LOCKWORDS AREN’T ALL THEY’RE CRACKED UP TO BE, OTHER APPROACHES SHOULD
BE PREFERRED.

YOU SHOULD OMLY GIVE OP CAPABILITY TO USERS UHO YOU TRUST AS MUCH AS YoU¥
WOULD A SYSTEM MANAGER, TO USERS WHO HAVE NO ACCESS TO MAGNETIC TAPES OR

NCURUG May 16-18

APPENDIX A; SUMMARY OF USEFUL BINTS

SERIAL DBISCS, OR TO USERS WHO HAVE A LOGON UDC THAT DROPS THEM INIO A
MENY WHICH FORBIDS THEM FROM DCING :STORE’S OR ;RESTORE’S

YOU SHOULD GIVE PM CAPABILITY ONLY TO USERS WHO YOU TRUST AS MUCH AS YOU
WOULD A SYSTEM MANAGER.

IF ANY USER HAS SAVE ACCESS TO A GROUP UITH PM CAPABILITY, OR URITE AND
EXECUTE ACCESS TO ANY PROGRAM FILE THAT RESIDES IN A GROUP UITH PM
CAPABILITY, HE CAN WRITE AND RUM PRIVILEGED COBE.

NEVER* :RELEASE A PROCRAM FILE THATZ RESIDES IN A GROUP UHICH HAS PM
CAPABILITY!

IF TWO HP3000'S ARE CONNECTED VIA DS, AND A USER HAS PM CAPABILITY ON
ONE AND AN ORDINARY LOGON ON THE OTHER, HE CAN VIOLATE THE OTHER'S
SECURITY. THUS, IF ANY HP3000 IN A DS NEIWORK IS BROKEN INTO OR LEFT
OPEN, ALL OTHERS ARE IN GRAVE DANGER.

PRIVILECED PROGRAMS MUST NEVER CALL DEBUG UNLESS THEIR USER IS
PRIVILEGED, AND MUST NEVER DYNAMICALLY LOAD AND CALL PROCEDURES FROM A
USER'S GROUP OR ACCOUNT SL UNLESS THE USER IS PRIVILEGED,

IMAGE/3000 DATABASE SECURITY 1S NOT PARTICULARLY USEFUL EXCEPT FOR
PROTECTING DATABAGES AGAINST UNAUTHORIZED QUERY ACCESS. IN FACT, SOME
DEGREE OF PROTECTION AGAINST UNAUTHORIZED GUERY ACCESS CaN BE GIVEMN BY
USING DBUTIL’S “SET SUBSYSIEM" COMMAND TO DISALLOY ANY QUERY ACCESS OR
HERY MODIFICATION OF A DATABASE.

IN GENERAL, EMCRYPTION IS ANCTHER GOOD UAY OF PROTECTING SENSITIVE DATA
FROM UNAUTHORIZED READING.

NOMEUG May 16-18

