
* BUR N B E FOR E REA DIN G *

H P 3 000 S E CUR I T Y AND YOU

Eugene Volokh

VESOFT, Inc.9213 Warbler PlaceLos Angeles, CA 90069

2 - 0

Keven
Rectangle



BURN BEFORE READING - HP3000 SECURITY AND YOU
by Eugene Volokh

VESOFI, INC.
9213 Warbler Place

Los Angeles, CA 90069 USA
(213) 859-9666

Presented at the 1984 HPIUG Conference at Anaheill, CA, USA.

DISCLAIMER
One of the ROSt iRportant things you can do for your security systeA is to
plug holes that Ray exist in it. To help you do this, this paper shows SORe
ways in which Aost inadequately secured systeRS can be penetrated. Although
this inforRation can be used by would-be security violators to break into a
poorly secured systeR, it is in RY opinion Rore iRportant that it can be
used by you to protect yourself against these violators.

ATTENTION WOULD-BE THIEVES! 00 NOT READ ANY FURTHER!

INTRODUCTION
Life's not fair.
Just when you think you've got it JIIade,just when you (or your coapany] have
found the pot of gold at the end of the rainbow, you find it out.
SOReone else wants the SMe pot.
SECURITY
To prevent your property frOlllbecOlllingtheirs, you set up a series of
obstacles between the would-be thief and your property. It is these
obstacles that cORprise your security systeN, and it is the quality of these
obstacles that de terninea whether or not your property (in our case, your
cORputer data) is secure.
These obstacles cOllIein two flavors:
* Obstacles to unauthorized retrieval of data. Data is often valuable in

and of itself, whether it is salary information you want to keep secret
froA your eNployees, financial inforRation you want to keep secret froA
your cOlllpetition,or Ailitary inforAation you want to keep secret frOR
THEl'I.

* Obstacles to unauthoriZed JIIodificationof data. Data does not exist for
its own sake; real-life decisions are Rade based on that datal and
unauthorized lIIodification of data can affect those decisions m an
undesirable way.

NOIdRUGnay 16-18

SECURITY

This paper will try to give you SORe useful tips on Raking your valuable
data Nore secure.

THE ROAD TO YOUR DATA
Consider Joe Q. Sinister, who has his sights set on your payroll database.
There is a fixed road that he Nust travel to reach the data stored in it and
change it; knowing this road will help us erect the proper roadblocks.
His first step Rust be to log on to the cOlllputer;if we can frustrate his
atteapta to do that, our data is secure. The techniques used to prevent
unau thorized users frOllllogging on to the coapu ter are called LOGON
SECURITY.
LOGON SECURITY
Logon securi ty is probably the ROSt iRportant coaponsnt of your security
fence. This is because lIIanyof the subsequent security devices (e.g. file
security) use inforAation that is established at logon tille,such as user id
and account naae, Thus, we Rust not only forbid unauthorized users frOR
logging on, but AUSt also ensure that even an authorized user can only log
on to his user id.
So, logon security essentially involves ensuring that the person logging on
is authorized to use the user id he is logging on to. How is this to be
done'?
The optiRal approach, of course, would be to sORehow identify who the person
is (fingerprints'? retina scan'?) and check to see if he is on the
authorization list for the particular user id. Unfortunately, these
approaches are not within the JIIeansof JIIostHP 3000 users; however, another
good Aethod is.
A person can be identified by what he knows alaoat as well as by what he
looks like. For instance, a user id JIIaybe assigned a password, and only
the people authorized to use that user id JIIaybe told that password. Then
(asSURing no one else sORehow learns the password), if a person knows the
password, it follows that he is authoriZed. Alternatively, if one and only
one user is allowed to use a particular user Id , he lIIaybe asked to enter
SORe personal information (Rother's lIIaidennaJIIe'?)when he is initiallY added
to the systeR, and then be asked that question (or one of a ll\llIlberof such
personal questions) every tiRe he logs on. This general Rethod of
determining a user's authorizations by what he knows we will call "'knowledge
security. "'
Unfortunately, the knowledge security approach, although one of the best
available, has one Aajor flaw -- unlike fingerprints, information is easily
transferred, be it revealed voluntarily or involuntarily; thus, sOAeone who
is not authorized to use a particular user id Aay nonetheless find out the
user's password. You lIIaysay: "'Llell,IIIechange the passwords every 1II0nth,
so that's not a problea." The very fact that you have to change the
passwords every aontn Aeans that they tend to get out through the grapevine!
A good security systeJlldoes not need to be redone every 1II0nth,especially

NOldRUGnay 16-18

2 - 1

Keven
Rectangle



SECURITY

since that would Nean that -- at least toward the end of the Ronth -- the
systeN is already rather shaky and subject to penetration.

Ironically, the biggest culprit in this respect is the user hiNself. Users
have often been known to write down passwords and post thelll in proainent
places so they will not forget thelll; reveal passwords to people who really
shouldn't know then; and, in general, wreak havoc on your logon security
syatea. SaNe Rethods have been designed to cope with this, such as the
personal profile security systetll (asking questions such as "What's your
JIIother's JIIaiden naJIIe?," "1Jhere did you go on your first date?," etc.)
described above, whose Rain advantage is that users are less likely to
reveal personal data than iRpersonal passwordsj additionally, there can be
JIIore than one personal profile password -- several of theN or a randoJIIone
can be asked at logon t ixe -- whereas the alternative is user passaord only.
However, the user is still the weakest link in the logon secur i ty systea,
and Plajor steps should be taken to avoid voluntary password disclosure by
the user. Thus, an iRportant security rule arises:

* THEUSER IS THEL1EAKESTLINK IN THELOGONSEaJRITY SYSIEM-- DISCOORAGE
HIM FROMREVEALINGPASSlJOROS(by techniques such as personal profile
security or even by repriRanding people who reveal passwords -- they
SeE!\llinnocent, but they can lose you Ri11ions).

Yet another way in which passwords are often revealed is by having job
atreaas with etIIbedded passwords. First of all, unless you take special
precautions (such as altering the job streMS so that Read access to thelll is
disallowed, and only Execute -- enough for :SIREAHing -- is perai t ted l,
anyone who can atreaa the job streM can also read it and thus see the
passwords; in any case, any listing of the job streM (of which plenty are
liable to be laying around the cOlllputer rOOR) contains this password. More
iNportantly, since changing a password lIIeane having to change every single
job streM that contains it, these passwords are virtually guaranteed never
to be changed. Fortunately, there is a siRple way to resolve this problePI:
there are plenty of progrMs, contributed and vendor-supported, that take a
job streM without abedded passwords, prOlllpt for theJII, insert thelll into the
job streM, and then streM it.

* PASSlJOROSEMBEDDEDIN JOB SIREAMSARE EASY TO SEE AND VIRTUALLY
IMPOSSIBLETOCHANGE-- AVOIDTHEM.

Another way of increasing logon security is by indirectly using another
aspect of user identification -- identification by huPlan beings. Actually,
this could be the Rain part of your logon security systa: any user who
wishes to sign on Rust first get clearance frOll a security guard or console
operator. Going quite this far is too expensive, but a little bit of this
can be obtained for free.

If SORe 15-year-old high school student walks into your data entry area and
starts using the coaputer , people are bound to notice. It is fear of being
identified as a security violator by other huJoIanbeings that causes 1II0St
v iotat ion atteRpts to coae across phone lines, usually at night or on
weekends. Thus, another useful security feature is to be able to restrict
access by access location (I.e. teninal) and access t iaa. The very fact
that aoaeone is trying to run payroll across a phone line at 11 P.M. on a

NOURUGMay 16-18

SEaJRITY

Saturday is an indication of unauthoriZed access. Thus, it is IIIorthwile to
iNpleJllent SONe fOrN of security that prohibits access to certain user id's
and accounts at certain tiNes of day, days of week, and/or frOJll certain
tera inala. Alternatively, you Plight want to force people to answer an
additional password at certain t iaes, or especially when signing on froPl
certain terNinals.

This MY seea like a poor approach indeed -- after all, if the thief hits
the tiNe of day, day of week, or terlllinal prohibition/password, this Reans
that he has successfully penetrated the rest of your security systeR, which
will never happen -- right? In reality, this is a very potent way of
frustrating would-be security violators, especially if the attetllpted
violators are proNptly investigated. Thus, another lIIaHiAappears:

* SOMEFORMSOF ACCESSAREINHERENTLYSUSPECT(ANDTHEREFOREREQUIREEXTRA
PASstJORDS)OR ARE INHERENTLYSECURITYVIOLATIONS. THUS, ACCESSTO
CERTAINUSERID'S AT CERTAINTIMESOF DAY,ONCERTAINDAYSOFTHEL1EEK,
AND/ORFROMCERTAINTERMINALS(SUCHAS DIAL-IN OR OS LINES) SHOULDBE
SPECIALLYRESTRICTED.

ASIDE-- ATIEHPTEDVIOLATIONREPORTING

Before we go any further with our discussion of various security devices, it
is worthwhile to pay particularly close attention to sOlllething which should
be present in all security devices -- violation reporting.

No security systen can cover you 100%-- given enough tille, a dete~ined (or
even relatively casual) thief can penetrate even the best systeR.
Fortunately, before this one successful penetration, chanCes are that the
thief will "ake lIIany unsuccessful attaptsj if you pay attention to these
unsuccessful at teapte , you can catch the thief (or at least iRprove the
security systE!JI by, say, tE!JIporarily sb.ltting down dial-in lines) before he
gets in.

This Ray sea obvious, but fev shops really pay attention to unsucceSSful
penetration at teap ta -- when was the last tiRe you looked at "INVALID
PASSWORD"Ressages on the systa console or in the log files? In reality,
every incorrect password entry is an indication of a possible attE!JIpted
security violation, even 'lore so if there are several such errors in a row.

HP doesn't help any either -- the INVALIDPASSIlORDlIIessages look just like
any other console JIIessage (no enhanceAents of any kind); the only place
where invalid password entries are logged are in the systePI log files
together with the rest of the console log Plessages. It would be far Rore
desirable to have the Jlessage logged to a separate log file, and Raybe even
reported to the line printer orSOJle special device. Additionaly, it lIIight
be wise for a terRinal on which an invalid password entry occurs to be shut
down for sOlIe period of tiRe so that it would take 1II0re tiRe for a would-be
thief to try Plore passwords.

But, even with the existing HP systeR1 an alert console operator can nip
Rany a potential security violation m the bud by catching the INVALID
PASSIlORDIlessages that can be a sign of an attE!JIpted violation. In fact,

NOWRUGMay 16-18

2 - 2



SECURITY

there is a way to highlight sOllIe JIIessages so they ",ill be 1II0re easily
visible. Since noat MPE lIIessages are stored in the systeJl1 file called
CATALOG.PUB.SYS,you can do the following:

1. Sign on as MANAGER.SYS.

2. In EDITOR (or TDP) , /TEXT CATALOG.PUB.SYS

3. Modify the first line in the file that starts with "65 " and the first
line that starts with "68 " to contain an escape sequence such as
"escape&dB" (inverse video) right after the blank after the nessage
nunber and to contain a "escape&d(il" (turn off anhancenent ) at the end of
the lIIessage. Alternatively, if you have a 263x ",ith expanded character
set, insert an "escape&k1S" (enter expanded set) right after the blank
after the aeasage I'l\llIIber and a "escape&kOS" (exit expanded set) at the
end of the lIIessage. SilIIilar escape sequences lIIay be put in if you have
sOllie other kind of teTlllinal or a voice output device.

4. /KEEP the file as INPUT.

5. :RUNMAKECAT.PUB.SYS,BUILD

6. Presto! 'lour "INVALID PASSWORD"and "MISSING PASSlJORD"lIIessages are now
JIIuch easier to read.

Thus:

* MAN'!SECURITYVIOLATIONSCAN BE AVERTEDBY MONITORINGTHE ldARNINGSOF
UNSUCCESSFULVIOLATIONATTEMPTSTHATOFTENPRECEDEA SUCCESSFULATTEMPT.
IF POSSIBLE, CHANGETHE USUALMPECONSOLEMESSAGESSO THE'! ldILL BE MORE
VISIBLE.

LOGOFFSECURITY

Another threat to your systelll security is, unfortunately, a rather coaaon
one. If soaeone signs on to a terninal and then walks away (perhaps for a
lunch break), a would-be thief can access your cOlllputer without even having
to log on -- he can just walk up to the teTlllinal and use it.

You JIIay think this to be a relatively rare occurrence, but consider: do your
people always sign off when they go to lunch? Haven't there been tillles when
they forgot to sign off even before they leave for the day? Leaving a
tern Ina l signed on is a very cosaon JIIis take , and one that can greatly
jeopardize the security of your systeJl1.

How can you solve this probleJl1? ldell, for one, you can tell your people to
sign off whenever they leave the teTlllinal. Alternatively, if you find that
people often leave the teTlllinal ",hen it's in sOllIe particular state (say, the
lIIain nenu of your accounts payable prograa) , set a t ineout just before
issuing the teTlllinal read (with the FCONTROLintrinsic, JIIode 4). That way,
when the user does not respond for a certain aI'Iount of tiJlle, the read will
abort, and your prograa will be able to tera inate and lIIaybe log the user
off. Even better alternative is to use a contributed or vendor-supplied

NOIlRUGMay 16-18

SECURITY

progral'l that autoJllatically aborts all teTillinals that have been inactive for
nore than a certain aaount of tiRe (such as Boeing's BOUNCERor VESOFT's
LOGOFF).

Another, lIIore dangerous, probleJII occurs ",hen a dial-in user hangs the phone
up instead of properly :B'lEing off. Then, if the dial-in line is configured
with subtype 0, the user will not be autOlllatically :B'lEd off, and the next
person to call up the cosputer will be dropped into the still-logged-in
session. Thus, relllelllber to configure all your dial-in lines with subtype 1
or tell your users under no uncertain teTllls that they MUSTalways :BYE off
when using the dial-in line.

Thus,

* LEAVINGA TERMINALLOGGEDON AND UNATTENDEDIS JUST AS MUCHOF A
SECURITYVIOLATIONAS REVEALINGTHE LOGONPASSlJORD. USE SOMEKIND OF
TIMEOUTFACILITY TO ENSURETHAT TERMINALSDON'T REMAIN INACTIVE FOR
LONG;SET UP ALLYOURDIAL-IN TERMINALSUITH SUBTYPE1.

RESTRICTEDVS. UNRESTRICTEDUSER INTERFACE

As was nent ioned before, logon security is a very iJIIportant coaponent of
your security svaten , but it is by no lIteans the only one. Many security
v io lat ions are coaa i t ted by people who are allowed to sign on to the
coaputer but who JIIanage to get at things that they are not pera it ted to
access.

There are two lIIajor ways of prohibiting authorized users frOlll doing
unauthorized things. One is by peI1ltitting the!ll to do only certain specific
things (the inclusive approach) and the other is by forbidding thelll frQlll
doing specific things (the exclusive approach). Each has its lIIerits, its
uses, and its security strategies.

THE INCLUSIVEAPPROACH

Briefly, the inclusive approach is usually ilIIpleJl1ented by having an OPTION
LOGON, NOBREAK(the NOBREAKis illlportant!) UDC that runs an application
progr3lll and then, upon exit froJII the progr3lll

1
iPll1lediately BYEs. Thus, the

user is only allowed to pert ora the runct ion or functions of this one
prograa (or, if the prograa so wishes, only a subset of these functions),
and he is forbidden frolll doing anything else -- accessing files, running
progr3llls, or executing HPE c~~~~ds.

This is, overall, a good approach. Its only real probleft is that in SORe
instances it is too restrictive -- sOJlle users (especially prograJlllllers) need
to have access to the entire pOlller of MPE. However, when the user does not
need to access MPE, it is not only Plore secure but it is also aore
convenient for the user to be autoJllatically dropped into his progr~ when he
signs on and to be autoaat icaj Iy signed off when he exits the prograJII.
However, certain technical issues lIIUSt be kept in JIIind:

NOldRUGMay 16-18

2 - 3



SECURITY

1. Don't forget to aake the UDC OPTION LOGON,NOBREAK. If you oai t the
NOBREAK,the user can hit break, type :ABORT, and get into HPE.

2. A lesser-known fact is that it is usually essential that you add a
CONTINUE line before runnil'l2 your prograR, thus 11Iaking your UDC look
sone thing like

LOGONUDC
OPTION LOGON,NOBREAK
CONTINUE
RUNACCPAY.PUB.AP
BYE

Why? Because otherwise, if the progr8Jll aborts, the entire UDCwill be
flushed and the BYEwill never be encountered. Although it 11Iight seeJll
quite ~probable that your prograR will abort, the user can actually lIIake
1II0st progra\1ls abort by typil'l2 a :EOD (or sOllletiRes just a :) ",hen
proapt.ed for input. This causes an end of file on SSIDIN and aakes lIIany
prograJIIS, includil'l2 alJtost all BASIC, COBOL, FORTRAN, and PASCAL
prograJlls, abort.

Of course, this approach need not be restricted to runnil'l2 silllple
applications prograRs. One of the best uses of this approach is to run a
prograJll that displays a JIIern of allOlled HPE COlllJllandsor constructs and asks
the user to choose one. Thus, if you want a user to access the AlP systelll,
EDITOR, or the TELLOPCORllland, you lIIight write a progr8Jll that displays these
three options to the user, asks the user for one, and then executes it (via
the'Ol1MAND or CREATEintrinsic). Even better, get a general-purpose lIIern
proces ing prograJII that perlllits you to easily set up various lIIerns by just
changing sOllIe data files. Thus,

* A USEFUL APPROACHTO SECURINGYOURSYSIflf IS TO SET UP A LOGONMENU
LlHICHALLOWSTHE USER TO CHOOSEONEOF SEVERALOPTIONS RATHERTHANTO
LET THE USERACCESSHPE ANDALL ITS POIoIERDIRECTLY.

THE EXCLUSIVEAPPROACH

SOIIIetiRes, progr_ers or other users that have to use a wide range of
progral'ls, files, and HPE CORlllands IIIUSthave access to HPE itself. This is a
far less controlled envirol'lllent than a prograR that is run at logon tillie,
but can still be secured very well.

One approach to securing the systE!lll while still a110111ing people to access
HPE is to disable certain HPE CORlllandsyou find do not fIIant to be executed.
For instance, say you do not want your people to :SIREAM jobs. You could
set up a systE!lll or account uoc

SIREAM!FI LENAHE'''SSIDIN'', !COLON'''!"
OPTIONLISI
COMMENTYOUARENOTALLOfoIEDTO :SIREAMFILES.

That way, whenever sOllleone types a :SIREAMCORllland, he gets the UDC instead.

NOfoIRUGHay 16-18

SECURITY

This approach, however, has a lIIajor flaw: although the coaaand interpreter
giVes precedence to UDCs over ordinary HPE COlllJllands (UllS allowing you to
block out :SIREAM coaaands by setting up a SIREAM UOC), the COMMAND
intrinsic does not. Thus, if the user is allowed to access FCOPY, EDITOR,
TDP, SPOOK, or even a user-written prograJII that calls the COHHANDintrinsic,
he will be able to bypass the UDC restriction. In other wordS, in the
exaaple above, all I need do to bypass the :SIREAMCORlllandrestriction is to
run FCOPY, and type the : SIREAMCOlllJllandfrOll there!

The only exceptions to the above rule are the COlllJllands that cannot be
directly executed via the COMMANDintrinsic, such as :RUN, : PREP, cORpiler
coaaands , :SETCATALOG, and :SHOLICAIALOG. But even these CO\llJllands (all
except :SETCATALOGand :SHOWCATALOG)are available through sOPle prograRs,
S\Ich as TDP and SPOOK.

Thus,

* BLOCKINGOUI HPE COMMANDSVIA UDC'S IHTH THE SAHENAHEIoIILLUSUALLYFAIL
UNLESSTHE COMMANDIS :SETCATALOGOR :SHOWCATALOGOR IF YOUALSOFORBID
ACCESSTO l1ANYHP SUBSYSIEMSANDHP-SUPPLIED PROGRAMS.THIS SEVERELY
LIMITS THE USEFULNESSOF THIS METHOD.

Again, I'd like to stress that the :SEICATALOGand :SHOfoICATALOGcan be
blocked out this way, as can (with 1II0re difficulty) the :RUN COlllJllandand
sOPIe other coaaands ; however, the set of COlllJllands still pemitted will
usually be so S\Ilall, the lIIethod involved so cOillplex, and the chance of
penetration so great, that all advantages of the exclusive approach pale in
coapar Ieon.

By far the best way, in lilYopinion, of iIIIpleRentil'l8 the exclusive approach
is by using the existing MPE file, database, and progralll security features,
which is what the next fev sections will discuss.

FILE SECURITY

File security is quite possibly the lII08t sophisticated and the least used
and understood security systelll provided by HPE. If properly handled, it can
pera it a user to use all HPE COJIIIIIandsand all of HP~'s power without
allowing hilll to go beyond the confines of his files.

Each file has a so-called "security lIIatrix," an array of Inroraat ion that
describes what classes of users can read, write, append, execute, and/or
lock a file. SiRilarly, each group has a security lIIatrix describing the
security to be set for its files, and each account also has a security
P1atrix. These security aatr Ices are what LISIDIR2 shows you when you do a
LISTSEC (or LISIF, LISIGROUP, or LISIACCT).

When a user tries to open a file, HPE checks the account security IIIlltrix,
the group security lIIatrix, and the file security lIIatrix to see if the user
is allowed to access the file. If he is allowed by all three, the file is
opened; if at least one security lIIatrix forbids access by this user, the
open fails. For instance, if we try to open TEsrFILE.JOON.DEV when logged
on to an account other than DEV and the security lIIatrb of the group
JOON.DEVforbids access by users of other accounts, the open will fail (even

NOWRUGHay 16-18

2 - 4



SECURITY

though both TESTFILE's and DEV's security Ratrices peTRit access by users of
other accounts).
Each security Platrilldescribes which of the following classes can READ,
YRITE, EXECUTE, APPEND to, and LOCK the file:
* CR - File's creator
* GU - Any user logged on to the saAe group as the file is in
* GL - User logged on to the SaRe group as the file is in and having Group

Librarian (GL) capability
* AC - Any user logged on to the SaRe account as the file is in
* AL - User logged on to the saae account as the file is in and having

Account Librarian (AL) capability
* ANY - any user
* Any cOPlbination of the above (including none of the above)
By default, whenever any account is created, access to all its files is
restricted to AC (account users only), ellcept for the SYS account, for which
Read and Execute access is allowed for ANY; and Yrite, Append, and Lock
access for AC; whenever any group is created, access to all its files is
restricted to GU (group users only), except if the group is PUB, in which
case access is Read and Execute for AC (all account users) and write,
Append, and Lock for GU (group users) and AL (account librarian); and
whenever any file is created, access to it is allowed to everyone.
Incidentally, a SystePl Manager can access (in any Plode) any file in the
systePl,and an Account Manager can access any file in his account.
TIrus, let us say that YOU, who build your files in JOHN.DEV, wish other
users to be able to read your files. To do this, you have to go to your
account aanager , get hiPl to allow Read access to the group JOHN.DEV for ANY,
and get hiPl to ask the systet1llIIanagerto allow Read access to DEV for ANY.
This, needless to say, is rather cOAplicated, and, in fact, 1II0Stusers go
the Plucheasier route of just :RELEASEing their files.
However, the problePl with :RELEASEing a file is that when you do it, ANYBODY
is allowed to do ANYTHING to the file -- this neans read it, write to it,
even purge it! And, since doing this is so easy, Plany files are :RELEASEd
and never re-:SECUREd, thus leaving theR open for easy tampering by anyone;
another contributing factor to this is that ordinary i'1PE:LISTF does not
show whether or not the file has been :RELEASEd, so Plany people don't even
know which of their files are :RELEASEd.
However, if getting the access restrictions on your group and account
loosened is so difficult, but :RELEASEing the file aakes it ",ide-open for
any kind of access, what is to be done? Unfortunately, the solution is by no
Pleanseasy.

NOYRUG May 16-18

SECURITY

The first step is to set up all your accounts with all fOTRS of access
allowed to ANY; i.e, alter theR with a cOlllRandsuch as

:ALTACCT accountname;ACCESS=(R,Y,A,L,X:ANY)
This still leaves a level of security (group security) that will by default
protect the file [except, for PUB groups, which should therefore be built
wi th Read and Execute access for AC instead of ANY), while Raking the
security Pluch easier to waive -- one would need to lift group security only
instead of group and account security.
Nellt,when building each group, consider closely the security that you would
wish to put on it. If, for instance, this group consists Rostly of files
that should be readable by anybody, build it with Read access allowed to
ANY. Files can then be protected individually by :ALTSECing thePl to a Rore
restrictive security level.
Finally, if you :RELEASE a file so that soaeone can access it, be sure to
:SECURE it iPlPlediatelyafter the other person is done (unless you don't care
about security for that file). It's even better if you have sOllIeglobal
file Planipulation utility (such as VESOFT's MPEX) with which you can :SECURE
all the files in sOlliefileset that have been :RELEASEd.
TIrus, sOllieiPlportant file security guidelines exist:
* REMEHBER THAT :RELEASE'ING A FILE LEAVES IT WIDE OPEN FOR ANY KIND OF

ACCESS; :RELEASE FILES CAUTIOUSLY, AND RE- :SECURE THEM AS SOON AS
POSSIBLE.

* TRY TO MAKE IT AS EASY AS POSSIBLE FOR PEOPLE TO MAKE THEIR FILES
ACCESSIBLE BY OTHERS YITHOUT HAVING TO :RELEASE THEM. THUS, BUILD ALL
ACCOUNTS YITH (R,Y,X,A,L:ANY) SO THAT ALLOWING ACCESS TO A GROUP WILL BE
EASIER.

* IF A GROUP IS COMPOSED MOSTLY OF FILES THAT SHOULD BE ACCESSIBLE BY ALL
USERS IN THE SYSTEM OR BY ALL ACCOUNT USERS, BUILD IT THAT YAY. THIS
WILL ALSO REDUCE :RELEASE'S,

* THE :ALTSEC COMMAND IS USEFUL FOR RESTRICTING ACCESS TO FILES IN A GROUP
TO WHICH ACCESS IS NORMALLY LESS RESTRICTED.

One Plore aspect of file security that bears Rentioning is the file lockword.
Yith it, you could conceivably restrict file access to only those users (or
prograas l ) who know the file Iocksord, even if the file's security JIIatrill
says that they have cOPlplete access to the file. However, the problePl with
locklllordsis the saae as the prob Iea with passwords -- they don't stay
secret for long. In Ply opinion, other security approaches (better use of
the security Platrices, user id checks in prograPlS being protected, etc.) are
superior.
* LOCKYORDS AREN'T ALL THEY'RE CRACKED UP TO BE. OTHER APPROACHES SHOULD

BE PREFERRED.

NOLIRUG May 16-18

2 - 5
~-- L- ------ _



SECURITY

ASIDE -- ALLOI.IINGPROGRAMSTO READ:SECURE'D FILES

Say that you want your accounts payable prograJI to ask the user for a
password and then check the user's input against a password stored in a
file. Now, you naturally can't store the password in a :RELEASEd file, for
then the password lIIould be readable by anybody; however, if it is stored in
a :SECUREd file, then the prograM won't be able to access it either, since
the prograro is run by ordinary users.

One solution is to :RELEASEa file, but put a lockillord on it. Then, the
prograJII could open the file specifYlng the Iocksord, but users would not be
able to open the file because they wouldn't know the Iockuord. This is a
relatively good solution; however, its flaw is that, like all passwords, the
lockword is likely to becoae knosn sooner or later. Then, the entire
advantage of storing the password in a file, -- namely that the password can
be easily changed -- lIIould be nullified by the fact that the file's lockword
cannot easily be changed.

A different approach uses an undOCUllented feature of the FOPEN intrinsic.
If FOPEN is called in privileaed "ode, and the 4 low-order bits of the
"aoptions" paraaater (third frOll the left) are set to 15, the file is opened
for read access IGNORINGALL SECURITY. This is not a security violation
because it requires PM capability "(see the CAPABILITIES section); however,
since PM Plust be granted to only the prograJI and the group and account in
which it resides (which could be PUB.SYS), the progrlllll will be able to
access tile file reeardless of who is runnil'l2 it, but Plost users will not
(since the file can thus be :SECUREd).

CAPABILITIES

There are SOIle MPEcapabilities that have a bearing on systE!lll security.

Of these, 8M and AMare sillple to explain and relatively well understood
they allow one to access (in any way) all files in the systeR and the
account, respectively.

SQIIleothers -- AL and GL -- allow one to establish special classes of users
(Librarial19) that are allowed to access files because they can be ellJllicitly
allowed access by the security "atrices (see FILE SECURITY).

However, the security effects of two other capabilities -- OP and PM -- are
often not properly appreciated, "uch to the detrillent of systeR security.

OP CAPABILITY

OP capability, which stands for SystER Supervisor (NOTOperator!), has one
property that has a great bearing on systeR security: a user with OP
capability can :STORE and :RESTOREany file in the systePI. This lIIight not
lIIean Pluch, but it really PleanB that

A USERldITII OP CAPABILITYCANREADAND"'RITE ANYFILE IN TIlE SYSTEM

NOldRUGMay 16-18

SECURITY

After all, all he has to do to read it is to :STORE it and then FCOPYthe
tape to the line printer; and to write to it, he can store it, Plove it to a
systen on which he has Urite access to the file's group and account, Plodify
it, store it again, and restore it on the original systen. Can you trust
your operators (who are usually given this capability) with this kind of
pOlITer?

* YOUSHOULDONLYGIVE OP CAPABILITYTO USERS","0 YOUTRUSTAS MUCHAS YOU
"'OULOA SYSTEMMANAGER,TO USERSWO HAVENOACCESSTO MAGNETICTAPESOR
SERIAL DISCS, OR TO USERS "'"0 HAVEA ~ UDCTHATDROPSTIlEMINTOA
MENUIJHICHFORBIDSTIlEMFR<If DOING:STORE'S OR :RESTORE'S

PMCAPABILITY

No capability has been feared, discussed, or "aligned quite as lIIuch as PM
capability. In this paper, I will discuss only the the security
raroifications of PM capability; for a discussion of PM and systeJII crashes,
see lilYpaper "Privileged Mode: Use and Abuse."

Uhat does PM capability give you? Quite sillply, it allows you to obtain 8M
capability as follows:

: DEBUG
?MDL-'OL-1'+2
DL-NNN MMMI1!t1:= -1
?E

Once you do this, you are (at least partially) a systea "anager until you
log off. You can access any file and even eKecute syst8111 Planagar cOlUlands
like :ALTACCTand :ALTGROOPto give yourself 8M or any. other capability
peraanent ly.

Obviously, PM capability is not sa.ething you want to give to every TOIl,
Dick, and Harry.

* YOUSHOULDONLYGIVE PH CAPABILITYTO USERSWHOYOUTRUSTAS ttJCH AS YOU
"'aULDA SYSTEMMANAGER.

However, there are other ways in which users can get PM capability.

For one, for a prograJI to have PH capability (and thus use various
privileged operating systeJII functions), the prograJII "ust reside in a group
and account which have PM capability. This is very good -- this way,
prograaa like DBUTIL and SPOOK, which use privileged "ode, can be run by
plain vanilla users llho do not have to be given PM. However, this lIIeans
that if a privileged prograJII does SOIlething to cLrcuavent IIOl1Ilal MPE
security (see the ASIDE -- ALLOWINGPROGRAMSTO READ:SECURE'D FILES), it'11
do it for anybody who runs it, unless it explicitly checks who is running
it.

More il'lportantly, this "eans that a user does not need to have PMcapability
to write privileged prograJIs -- only the ability to build files in a
privileged group (Le. S [Save] access to that group) or to overwrite a

NOI.IRUGMay 16-16

2 - 6



SECURITY

progr~ file in that group with his own file (i.e. U [Urite] access to any
progr~ file in that group) and then run theR (i.e. X access to the progr~
file being overwritten or any access if he has S access to the group -- then
he can just release the file),
For instance, say that I work out of EUGENE.DEV and the group PROG.DEV has
PM capability and Save access for all account users. I can just write a
progr~ that uses privileged ~ode to access a file that I shouldn't be able
to access or to grant lIIyselfall the capabilities (like in the :DEBUG
ex~ple above), :PREP it without CAP=PM (since :PREpping with CAP=PM
requires PM capability), then change the progr~ file to have PM capability
(a task that does not require privileged lIIode), and copy it into PROG.DEV.
Although I couldn't run this prograA while it was in EUGENE.DEV (since it is
required that the group in which the progralllresides have PM capability),
once it is in PROG.DEV, I could run it. If I don't have execute access to
PROG.DEV, I can :RELEASE the prograA before running it, since I aA the
creator of the file.
Or, say that aoaebody :RELEASEd any prograA file in PUB.S'lS, thus giving lIIe
write and execute access .to it. Then, I can write a progra» that uses
privileged 1II0deto bypass systeft security, :PREP it without CAP=PM, change
the prograJIIfile to have PM capability, and copy it on top of that prograA
file in PUB.S'lS. Then, since PUB.S'lS has PM capability and I have execute
access to the file I just overwrote, I can run the progralll.
Thus,

* IF ANY USER HAS SAVE ACCESS TO A GROUP LlITH PM CAPABILITY, OR LlRITEAND
EXECUTE ACCESS TO ANY PROGRAM FILE THAT RESIDES IN A GROUP (JIm PM
CAPABILITY, HE CAN LlRITE AND RUN PRIVILEGED CODE.

And, since :RELEASEing a file gives everyone write and execute access to it,

* *NEVER* :RELEASE A PROGRAM FILE THAT RESIDES IN A GROUP LlHICH HAS PM
CAPABILITY!

As if this wasn't enough, there are SORe other potential security violations
that can occur with privileged Rode. Consider the following circUlllstance:
Two HP 3000s, which we will call 0-lIIachine(intended for OPEN access) and
S-lIIachine (which the systeR lIIanagelllentwants SECURED) are linked via
DS/3000. A person has a user id and a group with PM capability on O-machine
and a plain vanilla user id and group with only default capabilities on
s-nacnlne. S-lIIachinemanageRent thinks that its lIIachineis secure, since
only MANAGER.S'lS and PUB.S'lS have PM capability on their machine.
Now, there are several file systeR operations that bypass systeR security
and thus require privileged ~ode; for instance:

* FOPEN with the 4 low-order bits of aoptions set to 15 (see ASIDE --
ALLOLIING PROGRAMS TO READ :SECURE'D FILES), when called frOlllwithin
privileged 1II0de,lets you read a file even when you have no access to
it.

NOlo/RUGMay 16-18

SECURITY

* FOPEN with EXECUTE access (4 low-order bits of aoptions set to 6;
doculllent in SysteJII Intrinsics lIIanual), when called frQIII within
privileged Mode, lets you read and write a file if you have only execute
access to it.

* MUSTOPEN, a procedure identical to FOPEN in all respects except that,
when called in privileged ~ode, it ignores a file's lockword.

* FOPEN of a privileged file (a file with a negative filecode, such as an
IMAGE database).

These are not inherently security violations: in fact, as the ASIDE --
ALLOLIING PROGRAMS TO READ :SECURE'D FILES section shows, they can be used to
actually INCREASE your security. However, they are not security violations
only because they require PM capability to be executed.
Now, consider our would-be security violator. He has his eyes on the
S-system file FOO.JOB.SYS, which he knows is a job streaA that contains an
elllbeddedpassword (it could just as well contain any other kind of sensitive
data). He signs on to O-systeJIIas a privileged user, and then to the
S-systeJIIvia DS as a plain vanilla user. Now, because DS allows a prograA
on one systeJIIto open a file on another systeR (by specifying the file's
device to be the dsline device followed by a "I", e.g. "601"), our user
writes a prograa on O-systeJIIthat opens file FOO.JOB.S'lS in the "ignore
security" lIIode(aoptions 4 low-order bits • 15) on S-systeJII. Since the
progr/llllis running in privileged ••ode (reReRber, our O-systeR user is
privileged), the open succeeds, and the user can read the file!
Now note that the file systeR does not check that the user on S-systeR Rust
have PM capability to use this security-bypassing JIIode;the progr8JIIneed
Merely be running in PM capability, regardless of which systeR it is on!
This is one of the few geruine flaws in MPE's security systeR, and it's
nothing to sneeze at. Llhat it Reans is that

* IF ILIO HP3000'S ARE CONNECTED VIA DS, AND A USER HAS PM CAPABILITY ON
ONE AND AN ORDINARY LOGON ON mE ODfER, HE CAN VIOLATE mE ODfER'S
SECURITY. THUS, IF ANY HP3000 IN A ns NETLIORK IS BROKEN INTO OR LEFT
OPEN, ALL ODfERS ARE IN GRAVE DANGER.

Thus, if you want to keep one systaR secure, you aust keep all systeJIIS
hooked up to it via DS secure as well.
One other issue, SOlllewhataore arcane but nonetheless relevant, arises when
using privileged mode.
If a prograa which has PM capability calls DEBUG when the user running it
does not have PM capability, even though the user will be dropped into
non-privileged DEBUG, he can use this to break systeJIIsecurity.
Briefly, the user can JIlodifysOllIedata in the progrM's stack or the
progr8lll'sP pointer (which points to the current instruction being executed)
to cause the prograa to do sOPlething other than what it is supposed to do
when it per Iorns its privileged operations. One thing that actu811y

NOIoIRUGMay 16-18

2 * 7



SECURITY

happened to one of Ny prograRs is that it called the WHOintrinsic, figured
out the logon user, account, and group, put theR into global arrays, and
then went into privileged \IIode and got the logon user, account, and group
pasSIIJords and wrote theN to a streaK file. This was perfectly kosher -- if
a user Nanaged to sign on, he already knows his logon passeorda; however,
the progr1l11l allowed the user to enter DEBUG even though he was
non-privileged. Although the prograR did not call DEBUGwhen privileged,
and the user was not put into privileged debug, the user could lIIodify the
user, account, and group id arrays in the stack to read, say,
"MANAGER","SYS", and "PUB". Then, the next streaJI the prograJI built would
contain MANAGER.SYS'spasswords!

This is, as I said, a rather arcane and relatively infrequent prob lea;
however, it is a possible security flail! nonetheless, and should not be
ignored. In fact, I'd like to ask HP to correct its DBDRIVERprograJI, which
is privileged and has a which "/D" COIIJIIandwhich drops the user into DEBUG
whether or not he is privileaed.

In the SMe vein, dynalllically loadina (via the LOADPROCintrinsic) a
procedure fron a user's group or account SL and then calling it should also
be forbidden to privileged prograRs -- the called procedure, even though it
resides in a non-privileged SL, can call GETPRIvtIlDE because the prograJI
callina it is privileged. Again, rather arcane but still worth noting.

Thus,

* PRIVILEGED PROGRAMStlJS'!' NEVER CALL DEBUGUNLESS TIlEIR USER IS
PRIVILEGED, ANDMUS'!'NEVERDYNAMICALLYLOADANDCALLPROCEDURESFROMA
USER'S GROUPORACCOONTSL UNLESSllIE USERIS PRIVILEGED.

Now, I do not intend to unfairly lIalign PH capability. It has its uses, and
in fact, sOlIe prograJIs "ust have it (such as the HP systellt utilities in
PUB.SYS or "any very useful contributed and vendor-supported prograas} ,
However -- and I cannot stress this enough -- use of PH Rust be watched very
carefully if you wish to keep your syateR secure.

IGNORANCESECURITY

Many techniques of violating systeR security described herein lIay appear
rather cOlllplicated and iIIprobable; in fact, they are. It is all too easy to
say: ""'ell, lilYusers aren't SO SIIart -- they'd never think of pulling all
those tr Icks;." Unfortunately, it is out of such cO\llplacency that insecure
systaRS are born. After all, if we could think of these trickS, why can't
s()llle SIIart guy in your shop? IoIhat if one of his friends is a sophisticated
HP user? The assets of your COIIpanyare far too precious a thing to entrust
to the preSU\lled ignorance of your users; you should rather iJIlprove the
security of your syate\ll, 80 that even a &IIart user will not be able to
penetrate it -- and if your users aren't that SIIart, all the better.

NOIoIRUGMay 16-18

SECURITY

DATABASESECURITY

IMAGE/3000's security systePl is probably one of its aost cO\llplex features
and also one of its least used. My first illpulse ",as to chastise the HP
user cOMunity for not using this wonderful security feature sore, and to
b11l11le99.44~ of all security violations on their failure to do so, but then
I realized that this is not such a wonderful facility after all.

IMAGE/3000 security perlllits the database creator to restrict access to each
individual data itelll and data set to only those users who specify a certain
password when opening the database. Adllittedly, this is a very useful
feature when you expect the database to 'be accessed via QUERY-- then you
can define exactly what a user can do by what password you give hill.
However, NOSt databases are accessed by application prograas, not through
QUERY,and nost of the t iae it is the progr3lll, not the user, that specifies
the paassord. So, unless you intend to reveal certain database pasSIIJords to
only certain prograPlRers and thus protect your database against your
prograuers, not your users, you are probably far better off iIIplePlentine
application security, i.e. having your application figure out what a certain
user is authorized or not authorized to do, rather than usil'llZ IMAGE
security.

* IMAGE/3000 DATABASESECURITYIS NOT PARTICULARLYUSEFULEXCEPT FOR
PROTECTINGDATABASESAGAINS'!'UNAUllIORIZEDQUERYACCESS. IN FACT, SOME
DEGREEOF PROTECTIONAGAINSTUNAUllIORIZEDQUERYACCESSCANBE GIVENBY
USINGDBUTIL'S "SET SUBSYS'!'EM"cntfAND TO DISALLOWANYQUERYACCESSOR
QUERYMODIFICATIONOF A DATABASE.

DATAENCRYPTION

If you want to secure your data against unauthorized reading even if sO\lle
users "anage to access it, they won't be able to understand it. This is the
principle of encryption -- change the fOrlllat of your data so that nobody but
the authorized people will be able to understand it.

Usually, encryption algoritl'ns involve the use of so-called "keys." Say
that I want to encrypt the phrase "NOIoIIS THE TIME FORALL GOODMENTO ce»m
TO THEAID OF TIlEIR COUNTRY." I could do this by choosing sOlIe IIUPlber (say,
7) and adding it to each letter of the sentence, so that A would becOllleH, B
would becoae I, C would becoae J, R (118) would becoae Z, S would becoae A,
etc. Then, the phrase would becoaa "UVDPZ AOLAPTL HVYHSS NVVKTLU AV
JVTL AVAOLHPKVMAOLPYJBVUAYF,"an unreadable juable of letters to anyone
who doesn't know that to decrypt it, one lIIust subtract 7 frOll each
charac ter • Thus, 7 is the key and the encryption algor ithlll is to add the
key to each character.

Unfortunately, things are a bit Rore cOllplicated than that, prillarily
because with sOllIework, one can realize that the letters A and V occur quite
often, the coab inat Ion AOoccurs frequently as well, and that there are only
so ~anY possible two-letter words (SOlIe of which Rust correspond to PZ, AV,
and VM). Thus] ve could find out "hat key letters correspond to, and trus
decode the entlre sentence.

NOIoIRUGMay 16-18

2 - 8



SECURITY

Forunately, there are more sophisticated encryption algorithms that are far
harder to decrypt. And, since the key need not be stored in the computer,
but only in the user's mind or SORe other safe place, encrypted data can be
decrypted only by an authorized person..,
Another less general but nevertheless useful technique for encrypting
passwords is called "one-way encryption." Say that you wish a user to enter
a password into your progralll when he is first set up, and then have your
progran ask hiJll for the password every tiJlle he subsequently logs on. You do
not need to actually decrypt the password -- just encrypt it once at user
set-up time, store it in encrypted rora, and then I every t iae the user tries
to .log on, ask hiJII for a password, encrypt h1s answer, and coapare it
agaInst the encrypted real p~~ord.

Thus, your encryption algorithm can JIIap the entire password into a single
nUMber (by, say, adding the squares of all the letters, each multiplied by
the cube of its position in the password string), thus JIlaking it iPlpossible
to decrypt; and, the encryption algorithPi is JIIuch simpler than two-way
encryption algorithms that need to have a corresponding decryption
a Igor i tha. Unfortunately, this technique is liJllited to applications in
which decryption is never necessary, such as when passwords are stored.

One-way encryption is easy to do; good two-way encryption is harder -- I
know of no HP prograJlls that do it, but hopefully that will be remedied soon.

* IN GENERAL, ENCRYPTION IS ANaIHER GOOD"'AY OF PRaIECTING SENSITIVE DATA
FROMUNAUTHORIZED READING.

CONCLUSION

It is all too easy to get involved in the iJIIpleRentation and perfection of
an application systeR, putting "little things" like security on the back
burner; unfortunately, this is precisely what accounts for the alaming
Mount of coaputer cr iae that is threatening us today. loIhat is best is that
with application of SORe siMple guidelines and a little tiJlle and effort, you
could draJllatically decrease your chances of becOPling a victiJII. No security
system will cut these chances to zero, but if you have as much valuable data
in your machine as the average HP user has in his, doing nothing can
literally cost you JIlillions.

NCXJRUGMay 16-18

APPENDIX A: SUMMARYOF USEFUL HINTS

* THE USER IS THE tJEAKEST LINK IN THE LOGONSECURITY SYSTflf -- DISCOURAGE
HIM FROM REVEALING PASStJORDS (by techniques such as personal profile
security or even by reprimanding people who reveal passwords -- they
seem innocent, but they can lose you JIlillions) •

* PASStJORDS EMBEDDED IN JOB STREAMS ARE EASY TO SEE AND VIRTUALLY
IMPOSSIBLE TO CHANGE-- AVOID THflf.

* SOME FORMS OF ACCESS ARE INHERENTLY SUSPECT (AND THUS REQUIRE EXTRA
PASStJORDS) OR ARE INHERENTLY SECURITY VIOLATIONS. THUS, ACCESS TO
CERTAIN USER ID'S AT CERTAIN TIMES OF DAY, ON CERTAIN DAYS OF THE tJEEK,
AND/OR FROM CERTAIN TERMINALS (SUCH AS DIAL-IN OR DS LINES) SHOULD BE
SPECIALLY RESTRICTED.

* MANY SECURITY VIOLATIONS CAN BE AVERTED BY !'lONITORING THE "'ARNINGS OF
UNSUCCESSFULVIOLATION ATTflfPTS THAT OFTEN PRECEDEA SUCCESSFULATTflfPT.
IF POSSIBLE, CHANGETHE USUAL MPE COOSOLEMESSAGESSO THEY I.IILL BE !'lORE
VISIBLE.

* LEAVING A TERMINAL LOGGEDON AND UNATTENDED IS JUST AS MUCH A SECURITY
VIOLATION AS REVEALING THE LOGON PASStJORD. USE SOME KIND OF TIMEOUT
FACILITY TO ENSURETHAT TERMINALS DON'T RflfAIN INACTIVE FOR LONG; SET UP
ALL YOUR DIAL-IN TERMINALS "'ITH SUBTYPE 1.

* A USEFUL APPROACH TO SECURING YOUR SYSTflf IS TO SET UP A LOGON MENU
UHICH ALLOtJS THE USER TO CHOOSEONE OF SEVERAL OPTIONS RATHER THAN TO
LET THE USER ACCESS MPE AND ALL ITS POloIERDI RECTLY.

* BLOCKING OUT MPE COMMANDSVIA UDC'S "'ITH THE SAME NAME tJILL USUALLY FAIL
UNLESS THE COl'll'JANDIS :SETCATALOG OR :SHOLICATALOGOR IF YOU ALSO FORBID
ACCESS TO MANY HP SUBSYSTflfS AND HP-SUPPLIED PROGRAMS. THIS SEVERELY
LIMITS THE USEFULNESS OF THIS METHOD.

* RflfflfBER THAT :RELEASE'ING A FILE LEAVES IT WIDE OPEN FOR ANY KIND OF
ACCESS; : RELEASE FI LES CAUTIOUSLY, AND RE- : SECURE THflf AS SOON AS
POSSIBLE.

* TRY TO MAKE IT AS EASY AS POSSIBLE FOR PEOPLE TO ALLOloI THEIR FILES TO BE
ACCESSED BY aIHERS WITHOUT HAVING TO :RELEASE THflf. THUS, BUILD ALL
ACCOUNTSWITH (R,W,X,A,L:ANY) SO THAT ALLOWING ACCESS TO A GROUPWILL BE
EASIER.

* IF A GROdp IS COMPOSEDtIlSTLY OF FILES THAT SHOULD BE ACCESSIBLE BY ALL
USERS IN THE SYSTflf OR BY ALL ACCOUNT USERS, BUILD IT THAT "'AY. THIS
WILL ALSO REDUCE : RELEASE'S.

* THE :ALTSEC COl'Jl'JANDIS USEFUL FOR RESTRICTING ACCESS TO FILES IN A GROUP
TO WHICH ACCESS IS NORMALLY LESS RESTRICTED.

* LOCKloJORDSAREN'T ALL THEY'RE CRACKEDUP TO BE. aIHER APPROACHESSHOULD
BE PREFERRED.

* YOU SHOULD ONLY GIVE OP CAPABILITY TO USERS WHOYOU TRUST AS MUCHAS YOU
",ooLD A SYSTflf MANAGER, TO USERS WHOHAVE NO ACCESS TO MAGNETIC TAPES OR

NOIdRUG!'Jay 16-16

2 -.9



APPENDIX A: SUMI1ARY OF USEFUL HINTS

SERIAL DISCS, OR TO USERS WHO HAVE A LOGON uoc THAT DROPS THEM INTO A
MENU lJHICH FORBIDS THEM FROM DOING :STORE'S OR :RESTORE'S

* YOU SHOULD GIVE PM CAPABI LITY ONLY TO USERS WHOYOO TRUST AS MUCH AS YOO
!JOULD A SYSTEM MANAGER.

* IF ANY USER HAS SAVE ACCESS TO A GROUP tJITH PM CAPABILITY, OR tJRITE AND
EXECUTE ACCESS TO ANY PROGRAM FI LE THAT RESI DES IN A GROUP !JITH PM
CAPABILITY, HE CAN WRITE AND RUN PRIVILEGED CODE.

* *NEVER* :RELEASE A PROGRAM FILE THAT RESIDES IN A GROUP WHICH HAS PM
CAPABILITY!

* IF TlJO HP3000'S ARE CONNECTED VIA OS, AND A USER HAS PM CAPABILITY ON
ONE AND AN ORDINARY LOGON 00 THE OTHER, HE CAN VIOLATE THE OTHER'S
SECURITY. THUS, IF ANY HP3000 IN A OS NETLIORK IS BROKEN INTO OR LEFT
OPEN, ALL OTHERS ARE IN GRAVE DANGER.

* PRIVILEGED PROGRAMS KIST NEVER CALL DEBUG UNLESS THEIR USER IS
PRIVILEGED, AND KIST NEVER DYNAMICALLY LOAD AND CALL PROCEDURES FROM A
USER'S GROUP OR ACCOUNT SL UNLESS THE UseR IS PRIVILEGED.

* IMAGE/3000 DATABASE SECURITY IS Nor PARTICULARLY USEFUL EXCEPT FOR
PROTECTING DATABASES AGAINST UNAUTHORIZED QUERY ACCESS. IN FACT, SOME
DEGREE OF PROTECTION AGAINST UNAUTHORIZED QUERY ACCESS CAN BE GIVEN BY
USING DBUTIL'S "SET SUBSYSTEM" CCHfAND TO DISALLOW ANY QUERY ACCESS OR
QUERY MODIFICATION OF A DATABASE.

* IN GENERAL, ENCRYPIIoo IS ANOTHER GOOD IIAY OF PROTECTING SENSITIVE DATA
FROM UNAUTHORIZED READING.

N~RUG May 16-18

2 - 10


