THE BUG STOPS HERE |

Dennis Heidner

Boeing Aerosgace Company
1833 South 268ist Place
Kent, WA 88032

-0

The Bug Stops Herel

By Dennig Helidner
Boeing Aerospace Company

E. INTRODUCTION

The cogt of software is rising, which is not a profound state-
ment to make when you congider that we have become acustomed to
the idea that software (and maintenance] will be 90% or nmore of
the total cost of a computer system. Software is labor intensive,
80 ag the cost of labor rises so does your software cost, But are
you getting your money’s worth? Software, just like hardware, hag
a life cycle: first there is the product conception, the inves-
tigation of the product and its market, then desmign, development,
product test and finally delivery, But is that it? HNo! Most
gtudies indicate that the largest cost of the software is AFIER
the product is delivered, in what iz known as the maintenance
phase. (Ever wonder why the nmonthly maintenance costs for H-P
goftware producte are so high?)

Softyare maintenance generally falls into one of several dif-
ferent categories; they include such areas as adaptive main-
tenance, perfective maintenance, and simply fining the outright
progran bugs, Adaptive maintemance is generally modifications
made to the software product so that it remains functional; for
instance, the IRS every year opends considerable time adapting
their scftware to @match the new tax laws pagsed by Congress,
Perfective asintenance means that the scoftware ie being modified
to erhance ite usability or its position in the marketplace. Both
of these types of maintenamce generally provide a return on your
time investment; however the third category, fixing bugs, simply
brings the product up to what it should be, with no additional
features, (Have you ever heard of & saleg person bragging that
they figed 57 bugs in their product last vear?)

Fortunately for most of us, less then 20% of our time is spent
fixing program bugs, but would it not be nicer if we spent less
than 5% of our time fixing bugs? [1] In mahy data-processing
shops that translates into one additional head! The purpose of
this paper is to present some ideas, which if incorporated jinto
your goftware, will help reduce the amount of time spent tracking
doun nasty problems such as program abortg. The paper uill cover
three areag, spotting the bug, trapping the bug and fimally, kill-
ing the bug!

Before we contime on, let me emphasize that the techniques [
advacate in this paper are not substitutes for structured design,
programming, code valk-throughe or testing! for those readers uho
would iike to learn more about structured design, programming or
testing, there is a iist of references at the end of this paper.

{2) (3} 4}

II. SPOTTING THE BUG

The best time to spot bugs in programs is before the product is
out to the user (similiar to cleaning house befors relatives
visit)! This can be accomplished by establishing a rigorous test
plan, which the goftware must pass before it’s released. At the
HP300O International Conference in Anaheim, Ban Uoates and Michael
McCaffrey from H-P talked about the software quality assurance
program that H-P has inplemented. The quality assurance lab has
developed owver B0O stream jobs which contain more than 10,000
separate teste! [5}

Test procedures

Locating bugs is, of course, the goal of product test for
several reasons; first the cost of fiking a bug once the product
has been released ie much higher, and second while in product test
you are in a more tontrolled erwiromment where you can generally
locate and duplicate a bug more eagily, Notice the general tone
of this paragraph: we are looking for bugs, not trying to prove
the program works. Let me digress another step and talk about the
population of buge. [f you have a program that is one thousand
lines long, and you are very optimistic, you might hope that the
progran is 99% free of bugs. Uhat this means is that someplace in
your program there may still be ten lines containing bups. If you
were out 1o prove the program uas correct, the odde are that it
will appear to you that it is, even though there are still a few
bugs there! It is jimportant to keep in mind Murphy’s law of
revelation, which is "the hidden flaw never remains hidden.”

The test procedure, really, is a program uwritten in the language
of your application program. If your program ig designed to con-
trol WIDGETS and use V/3000, then the native language of your test
procedures is WIDGETS with the V/3000 enhancement. Most univer-
sitiea and colleges offer clasees in programming in COBOL, PASCAL,
FORTRAN, etc., hut to my knowledge, there are no clagses taught in
programaing in WIDGETS! This means that when you urite your test
procedure it wilil be a learning esperience for your staff. lo not
expect to have test procedures which cover ail the possible cases.
If you mise an important test case, this ie really a bug in the
test plan! It is not uncommon for the firet test procedures to
have as many or more bugs in them as the programs themselves!

V/3000 users have one additicnal problem on their hands: how to
test the programs and screens in an sutomated mammer, The only
commercially available package of which I’% aware is called VTEST;
written by Wick Hill associates, it is marketed by TYMLABS [6].

it doesn’t work!

e must recognize that even if we have a good test plan, there
¥ill be some bugs that are not caught. This brings up the next
way that bugs are discovered: the user calls up and says, "It
does not look right!”, My initial response to such a3 genersl

statment is quite negative; however it is our job to turn arourd
the genera.l reports and get the more detailed information we need.
This is done by asking more specific questions, For instance,
when the user reports that it does not work right, I will mmaily
agk several questions such as: Wko are you? Imat were you doing
when it did not work right? Uhat Jogon name had you used? Has
this ever happened before? Is this problem preventing you from
working?

Since we do not want to always be grilling our users vhen they
believe they have gpotted a bug, we must have a documented proce-
dure for capturing as much Information as possible. My first at-
tempt at this was to beg the users to urite down the information
of{ the screen, along with the sequence of steps they were going
through when the bug occurred. THIS FAILED HORRIBLY! What I
found out mas that most ugers have the same aversion for. urstmg
that I do, and when thes' do write, they are prone to transposing
minbers, On many occasions | spent hours trying to locate a bug
in the wrong procedure, because the stack marker which was written
doun was incorrect. ‘The programs at our site are memu-driven,
with & feature which allows the experienced user to enter in ome
step the commands to drop them sgeveral merms lower, In other
words, if a user wanted selection #1 from the current meru, fol-
lowed by choice %3 in the next level down, followed by #2 In the
one below the second level, the uper could enter in: 1,3,2. This
is very handy for the users, bat a problem for anybody trying to
read the scenario that the user wrote down, which looked something
Tike: 1,3,2,4,1,0,3,M,00007635,AC,ME !!!}

There must be a better way! The good news ig that there are two
programs in the contributed library [7], PSCREEN and SCOPY which
will copy the information from a ecreen to a file or the
lineprinter, The bad news is that these programs only work with
H-P terminale and will operate improperly if the terminal was in
block mode, UWhere poseidle 1 eet up a logon UDC so when a progras
aborts, the screen is automatically copied.

Although screen copy routines are a great Iaprovesent over rely-
ing on handwritten information, they provide only enuternmal infor-
mation to the debugger. Uhen the a bug occurs, what appears on
the pcreen is almosi always an imcomplete picture, It would be
extrenely useful if, in addition to the screen copy, information
about the files open, and the values of the program variables
could also be saved. After gppending a mumber of hours reading the
MPE intrinsic and DERUG mamuals Jooking for a soluuon 1 fourd
it! The solution ig the intrinsic called STACKDUMP. Thm intrin-
wic will copy and format the program stack markers and the data
area of the stack {anvbody who Tas had a prograe abort has geen
these pesty markers). ‘The person maintaining the progran can then
uge the screen copy, the stack dump, a copy of the program PMAP, a
programmer’s calculator and a complete listing of the program to
iocate the bug accurately. Here is an emample of a STACKDME
outpul:

bl STACK DISPLAY b

S-000070 DL=17764&4 Z=002266
0=000074 P=000010 LCST= 000 STAT=U,1,1,L,0,1,CCG K=0000C0

0=000062 P=000002 LCST= 001 STAT=V,1,1,1,0,0,CCG K=000000
G=000056 P=000004 1CST= 002 STAT=U,1,1,1,0,0,CCG K=000000
Q000050 P=000033 LCST» 003 STAT=V,1,1,1,0,0,0C0 X=000000

.WBB., OCTAL ASCLL
00000 000000 000144 000000 177777 P - .
0004 000000 DC0000 000000 GOO0OO e ke s
00010 000600 000000 000000 140032 e e e s
0014 060604 000020 040000 000000 ceoes B
00620 080066 000000 000020 HC0000 B L
00024 000007 172623 031540 000040 el I
00030 073473 016010 120004 051501 ¥ Bh
00034 046520 046165 020123 052101 MPLE S TA
00040 041513 042125 046520 020040 CR U mp
00044 020040 000000 000034 060304 U
00050 000034 040140 000000 000000 R
00654 000005 060303 000006 000000 e e .
00080 000603 060302 000004 177776 vh T e e
G064 000000 000106 000000 000000 PR

*% AREA OUT OF BOUNDS *#

Once the individuals whe will maintain the code have taught
themgelves to how to read program variable waps and program PMAPs,
this method of locating btugs is very effective., However it is
gererally very difficult to teach! This was illustrated to me
whent] began to explain to amother individual in the coapany how
the program collectg all thig nice information for debugging. The
reponge was “How does it work over the phone? Yes, over the
phone! The team that would maintain the scftware was located some
digtance from the aciual computer hardware. Thug all of our neat
stack dumps and screen copies were generally usesless!

After a little more careful thought, I realized that generally
we do not wish to see the whole stack dump, ljust selected por-
tions, o why not develope a little program which would read the
stack dump from the file, and display only what you asked for?
This wag the birth of a program called ADPAN [8] {Application Dump
ANalyzer).

Bue to problems with the STACKDUMP iIntrineic, I wrote ay ouwn
etack dump facility which I call SNAPSHOT. Uhen SNAPSHOT is cal-
led it creates a dump file, then copies an exact image of the data
stack to the file, along with information on the MPE files which
were open and in use at the time, Thie snapshot of the process ie
then later analyzed by running ADPaN,

ADPAN has geven different screens of information which can be
dispiayed; they are: CODE, DUMP, FILES, FILE nn, FLUT, INFO, and
TRACE,

The TRACE screen is probably the most important of the screens,
This screen displays the procedure names, Segnent names, p-
relative addreass, Q address and the status for each of the markers
in the SNAPSHOT. This allows the user of ADPAN to locate the
cauge of a program error quickly without needing to refer to a
PHMAP or have a programmers calculator handy. The TRACE screen
looks like:

ADPAN 7/83 - Rev 1.1 (C} The Boeing Co, Seattle WA
DUMP: D1921810, PUB, GOODIDEA PROGRAM: ADEMO. PUB, GOGDIDEA

@ L SEGMENT NAME PROCEDURE NAME P’REL STATUS

Q0174 ERRORHANDLER SNAPBHOT
06122 ERROR’HANDLER OVERFLOW
00114 7 SL %0173 P'REL = %011026

001Z5 TN, XTI, TRAPS, L, CCh
00004 R4, KIN, TRAPS, L,CCG
IR, KIK, TRAPS, L, CCL

00057 HELP'HELP 00Ps 00005 LR XIN TRAPS,1,,CCL
BGOE0 ADPAN® DEMO PROCEDUREB G0G06 UM, XIN, TRAPS, L,CCL
00044 MEXT’BEST'THING PROCEDUREA 00002 UM, XIN, TRAPS,L,CCE
00040 ADPAN’DEMO SUPERPROGRAM 00035 UM,XIN,TRAPS,L,CCE
00033 5 $MORGUE TERMINATE? PM, KIN, L, CCG

In this and other ewamples of screens from ADPAN, the entire
tine of interest {normally highlighted on HP terminals) is shown
underlined.

The CODE acreen displays the decompiled code around the PCAL in-
struction currently being ewamined by ADPAN. Since not all ter-
minale are capsble of scrolling, ADPAN breaks the code down into
three regions, and simulates the scrolling programically. Here is
a code gcreen:

050004 031003 2. PCAL 3
060005 §04000 ,, DEL ,NOP
000006 021004 2, PCAL 4
000007 31400 3, EXIT O

000010 £76031 .. LRA P+31 ,I,X {PB«000041}

000013 035002 . ADDS 2 SUPERPROGRAM ¢==PROC
00012 004000 ., DEL NOP

000613 021004 v, LDI 4

000014 633406 7. LLBL 6
Q00015 031007 2. PCAL F'ARITRAP

000016 000707 ., BZRO,DZRO

0O0017 021002 v, IBL 2

000020 172003 .. LRA P+3 |1 {PB+000023)
000021 031011 2. PCAL PMTINIT?

000022 140005 .. BR P55 {PB+00002T)
000023 000014 .. NOP ,DIVL

000024 044105 HE LOAD P+10%5 X (PB+00O1II)
000025 046114 LL LOAB P+114 ,I1.X {PB+000141)
000026 447400 0. LOAD G+ 0 ,I1,X
A,
g

000027 040403 LOAD P+3 {PB+000024)
Q00030 034403 9. LDPN 3 (PB+000033}
000031 021005 . LO1 5

The BUMP screen displaye either an area around the current stack
marker or a specific region in memory., The user has a cholce of
OCTAL, HEX, DECIMAL, CHARacter and NOCHARacter formats. The DUMP
gereen ig the default screen. (Any other screen can be requested
from the DUMP screen.) For example:

ADPAN 7/83 - Rev 1,1 (C} The Boeing Co, Seattle VA, JUL 14 1583
BUMP; D1921810. PUB.GOODIDEA PROGRAM: ADEMOC.PUB., GOODIDEA
GRO00057 P=X000006 X=R000000 STAT=X060703 5=X000071 DL=X177740

ADDR DGATA

60GO36 000047 061305 000005 (00000 000003 061304 000004 ’b......
000045 00OCD0 000007 060705 000004 076400 0O0OGO 000004a...}
00054 000060 00000% 060703 000007 C0000L 010550 111401a....
000063 000065 000152 111461 000065 140001 000012 135635 .5.)...5.
000072 00G0C0 001000 00000G 000000 GOO0OS 177766 000001
000161 000002 141001 000002 GOODOCG 177747 000016 QO0LTE vere
000110 000052 000004 011027 662573 000035 000001 000115 %, .ef,
G0G117 000004 000005 062302 000006 177777 000011 116223d....

D 0-13A ral?
i 060703

»D 015 ®O60703 THUE
D a-1;H 6103

D Q-1;1 25027

»D @-1;D 1540158479

Several imporiant items should be noted. The first is that ADPaN
will locate and highlight the current stack marker. In our
example above thiz was done by underscoring., Next iz that the
DUMP screen actually has three separate windows: the header, the
data area and the command window, ADPAN upes cursor addressing
{if possible} to implement wraparoumd screlling within the com-
mand window,

The FILES screen allows the user to identify the MPE files that
the program had open at the time of the SNAPSHOT. The information
displayed includes file rnumber, file name, file options, access
options, record size, current record pointer, the mumber of logi-
eal records processed, and the file limit.

s FILENAME FOPTX ACPTZ RECSIZE RECPT
3 FINGE 060614 ©01401 -81 167
4 FINGS 000244 001400 -B0 167

5 P1921809.PUB.GOODIDEA 000000 $00001 128 3

The FILE nn screen allows a user to Z00M in on a a'pecifig file
and lock at virtually all attributes for the file. In this en-
anple we will zoom in on file mumber five.

FILE MAME IS D1621800, PUB, GOODIDEA
FOPTIONS: STD,FEQ,CCTL,F,*FORMAL* BINARY,NEU
AOPTIONS: VALTIO,BUE, DEF NOLOCK,SREC,URTTE
RECORD SIZE: 128 BLOCK SIZE: 128 (UORDS)

RECPTR: 3 RECLIMIT: 400
LOGEOUNT 3 PHYSCOUNT: 1
EQF AT: 3

FILE CODE: o # OF USER LABELS: 0
FILE SYSTEM ERROR: 4]

If the program being essmined was written in FORIRAN, the user
of ADPAN can request that the FORTRAN LOGICAL UNIT TABLE be dio-
played; this is the FLUT acreen.

UNIT F# FILENAME FOPTX AOPTX RECSIZE RECPT
8 3 FINOE 000618 001401 -81 167

5 4 FINGS 000244 001400 -80 187

The INFO screen lets the user review the general PREP
capabilities of the program. In addition the INFO screen displays
information on the way the progras was segmented, data stack
utilization information, and any run-time INFO stringe or parss,

ADPAN 7/83 - Rev 1.1 (C} The Boeing Co, Seattle WA, JUL 14 1983
DirP: D1921810, PUB, GOODIDEA PROGRAM: ADEMO. PUB GOCGDIDEA
@=%000057 P=X000005 K=2000000 STAT=X060703 S=%000071

PROGRAM CAPABILITIES=BA,I1A SHAPSHCT ID: 1

STACK INFORMATION CODE SEGMENT INFO

DL-PB: 92 7.0% 5 SEGMENT(8)
bB-QI: 21 1.6% SMALLEST: 8
ar-a: 26 2.0% LARGEST; 488
a-3: 78 5.9% AVERAGE: 118
S-Z: 1096 83.5% TOTAL WORDS: 592
MAKDATA: 77

MAX Z-DL: 1313

RUN TIME PARM VALUE: 0
INFO STRING: ** NO INFO STRING **

As you can see, ADPAN provides such more information about the
process than the STACKDIR®P intringic. A common [and very good)
practice at a rmumber of HP pites I have visited is to assign an
error rumber to each important step in their programs, Then if
there is a problem encountered in that step the program prints out
the step rumber and stops. This ig a very smiaple {but effective}
form of defensive programming. Examples of more sophisicated er-
ror handling include most of AGADER’s functions and the MPE
pperating sgystem itself, {Syatem failures are MPE’s way of
preventing further damage by contimuing with corrupted system
tables.] This process can be ennanced by calling SNAPSHUT, pass-
ing it the error number from the program. In this way we can cap-
ture the complete enviroment prior to aborting the progras, thus
guaranteeing that we alwaye have enough information to properly
diagnose the problem.

Datshases and bugs

1f your application is dependent on a database, then you have a
different et of problems. The cauge for the wrong information on
the screen may be wrong information in the database. One common
mistake made by application designers ie to assume that once the
data has been correctly entered into the database, it will always
remain gemantically correct, Uhat I mean by semantically correct
is that if the weight of a pallet may be between 0 and 30,000
pounds, then z value of -200 is semantically wrong! Another
problen ¢an occur when a value from one dataset is used to chain
{or point) into another set, but the second entry is missing.

Generally when a program runs into such cases {if not anticipated)
the results are very unpredictable.

There are three techniques which can be used to locate bugs in
our databasges baefore they appear later as buge in the programs,
The first is to write a custom program which checks for and
reports semantic errors in the database. For exanple, database
checking programs should verify that Items which are defined as
dates in the programe contain VALID dates in the database. Fields
which contain monetary values or other numeric quantities ghould
be checked to make sure that their range is LEGAL and REASONABLE,
Fielde which are names of products, companies or individuale
phould be checked for garbage cnaracters in the fields, Fields
which contain phone rumbers, addresses or postal mail codes should
be verified, Finally if the applications chain from one dataset
intn another, the test program shoeuld do the same. A you night
have already puessed, the error check program is a major svetem in
itoself. At our site, T run this highly tuned program once a
wonth; its work takes more then six hours!

The second method to locate errors in the database irmvolves ac-
tive checking for semantic errors by all the application programs,
The way this works is that after the user enters in the account
number or part mumber, the program validates all the information
related 1o that mumber BEFORE the information ie displayed. Thie
method assures that before the user is aware that a problem ex-
istg, the program has a chance to detect and correct it, This is
the method that I use on our main application for the computer,

The final methed uses a checkeum or hash total for each entry in
the database. The application programe, as & newt-to-last step
before updating the database, generate a checksum for the entity
in question. This checksum value becomes an integral part of the
item, uhen the reporting programs read the entry at a later date,
they only need tc recalculate the checksum value and compare to
make sure that they are the game. This technique is most useful
for detecting changes made in the database by unauthorized
programg or QUERY, Unfortunately if the error was made before the
checksum wag penerated the firgt time then it will not be detected
later, An example of the use of a checksum to detect unauthorized
changes is in the file labels on the HP3000,

then I first started writing programs which accessed IMAGE
databases, I would generally check the status of the IMAGE intrin-
gicg, then call DBEXPLAIN, After the first time a user tanted to
know what all the clutter about dataset so-and-g@o was, 1 made an
effort to remove the calls and replace them instead with a routine
vhich opens up an error log file, calls DBCALL [9} to get a
readable explanation of the problem, then calls DBERROR to obtain
the intrinsic name, database rame and dataset name. A final cail
iz made to DBSTATUS (10], then all the available information ie
written to the error log file. For erample:

==>ZEP |ZESTY ,DATA LDEV:43 #3881 TUE, MAY 1, 1984 8:01P
Rev 2.00-84114 PROGRAM; TESTPROG P-%014.002514 §=X015263
{PROG-ERR 2.29} Internal application or data base error

DBGET mode % on SPECIFICATION of PAZAZZ opened mode 1

END: GF CHAIN

DBSTATUS: 15 ..., %00452 1/ 405 %010076 X015032 & %004601
SET: SPECIFICATION: ITEM-NAME: MODELCODE;

CHAR, EQUIV OF ITEM: DOO3FIDDLE

DEC., EQUIV GF ITEM: 12336 12339 17993 17476 19525 8224

Remember I gald that I generally checked the atatus of IMAGE
calls? Not long after our application was up and running a mumber
of strange errors occured; apparently somebody had used QUERY teo
delete several entries that the programs always expected to be
there, Since the program did not check the status of the previcus
[MAGE call, it did not detect the problem, The end result was a
bug which migrated throughout the database and took several days
to track down! Always check the status to make sure it is
acceptable!

Uho did it?

If we have detected an error in the databape, how do we locate
the cause of the problem? Hewlett-Packard has provided database
ugers with the ability to log trarwactions made to an IMAGE
database to either a disc file or a magnetic tape. This record
can then be replayed at a later date either to recover after a
system failure, or in the case of bugs, to audit the database,
There are currently two programs available which can be uged to
audit the log, DBAUDIT and LOGLIST) [11) [12] (23] (14].

III. TRAPPING THE BUG

Some times we do not have sufficient warning to set an error
number and abort; for example & BOUNDS VIOLATION will generaily
abert the program and print out the VERY UNFRIENDLY STACK MARKER
in ‘the middle of your V/3000 form. In most cases using a screen
copy routine or having the users write the information down is in-
effective since the gtack marker is spread throughout the form.
Ye really want the computer to transfer to our error routines when
an abnormal condition occurs. There is a facility to do this} it
is called USER TRAPS.

Choosing the right trap

User traps are probably one of the least understood features of
the HP3G00 computer amd its operating eystem. Thig i unfortunste
when you congider the power they provide 1o detect and correct
program errors, Traps are provided for the follewing Items: [15]

1&

Type of error encountered Trap intrinsic
Enable hardeare arithmetic traps {ARITRAP)

Floating point divide by zero (XARITRAP}
Integer divide by zero {XARITRAP)
Ficating point underfliom (XARITRAP)
Floating point overflow {XABITRAP)
Integer overfiow (XARITRAP)
Extended precision overflow {XARITRAP)
Eutended precision underflow {KARTTRAP}
Decimal overflow [XARITRAP)
invalid ASCIT digit [XARITRAP)
Invalid decimal digit {RARTTRAP)
Invalid gource word count {XARITRAP)
Invalid decimal operand length (RARITRAP)
Decimal divide by zero (XARITRAP}
Bad stack marker {XCODETRAP)
Bounds Violation {XCODETRAP)
CST Violation {XCODETRAP}
STT Violation {XCODETRAP}
{ilegal addregy (XCODETRAR}
Non-respording module - {XCODETRAP)
Privileged Mode intruction { XCODETRAP}
Unimplemented instruction {XCODETRAP)
Compiler library errors (55 total} (XLIBTRAF}
Irvalid subsiring degignator {XLIBTRAP)
Formatter errors {FORTRAN) {XLIYTRAR)
MPE intringic errors {XSYSTRAP)

Setting the traps

Ezcept in FORTRAN programe the user iraps must be enabled by
calling the respective MPE intrinsic. Uhen emabling the trap, the
plabel for the desired error-nandling routine is checked to nmake
sure that it is valid, according to the following rules;

1. If the cal}l to enabls the trap wase made from a non-
privileged program, group SL or public SL, the trap han-
diing routine muet alze be non-privileged.

2. {f the call to enable the trap was made from a privileged
program, group SL or pudlic SL, then the trap handling
routine may be privileged or non-privileged, in either the
program, group SL or public 8L,

3, If the call to enable the trap was kade from an MPE SL seg-
rent, then the error handling routine must reside in any
non-MPE SL segment.

Aritlmetic errors

11

For example, the user may ensble a trap routine for aritimetic
errors by calling XARITRAP as shown below,

v Iv H I
RARITRAP {mask,plabel,oldmask,oldplabel}

magk - Bit mask imdicating which types of
arithmetic errorg are to be trapped
(refer to the HP intrimsic manual [16]).
pask = 0 disables the traps.

plabel - Enrternal type lzbel of the application’s trap
procedure, plabel = O disables the traps.

oldmagk - The previous bit magk for the arithmetic
trape.

oidplabel~ The previous external type label of the
application’s error procedurs (0 if not
previously enabled).

Example of an SPL routine to enable all arjthmetic traps:

PROCEDURE ARMIRAPS;
BEGIN

INTRINSIC MARITRAP;

INTEGER OLDMASK,OLDPLAREL;

NARITRAP (X3T777 , @ARITH® ERROR, OLDMASE , OLDPLABEL) ;
END,;

EXAMPLE of an SPL routine to handle traps caused by arithmetic
errors;

PROCEDURE ARITH’®ERROR;

BEGIN
ARRAY BUFF(0:40};
BYTE ARRAY STRING(*)=BUFF;
INTRINSIC PRINT,QUIT;
SNAPSHOT (0}

MOVE STRING := ("Arithmetic error! SNAPSHOT was taken*"}
PRINT (BUFF,-38,0);
GEIT{0);

< uISHNL THINKING., WE CAN NEVER RETURN THROUGH THE END! »>»

END;

Usiers of FORTRAN have the ability t6 enable traps seclectively by
uamg the "ON error condition CALL mbroutme” statenent [1‘?}
umque procedures. The trap Rechaniom in FORTRAN very flexible;
it does not come free, though. In order to separate integer over-
flows from divide by zero, the FORIRAN rum-time library plays a
few games. Using the ON statement results in a named COMION
called TRAPCON’ being established on your behalf, Uhen an integer

iz

overflow otours, the computer trarafers control not directly to
your routine, but to a library routine. This library routine then
determines the type of hardware trap that was invoked and accesses
TRAPCOM® to obtain the plabel for your routine. Once the library
has a valld plabel, it tranefers control to your error handling
routine by placing the plabel on the top of the atack and perform-
ing a PCAL 0.

A uger may enable traps for integer overflouws and integer divide
by zero by using the following FORTRAN stetements:

ON [INTEGER OVERFLOU CALL OVERFLOV ROUTINE
ON INTEGER BIV 0 CALL DIVIDEC ROUTINE

HP sites that are heavy users of COBOL have a completely dif-
ferent story on their hands, COBOL deliberately calls a routine
called C’TRAP to enable SELECTED traps. This was done because
vhen a field is MOVEd in a COBOL program, the COBOL library hand-
les any type conversion that is necessary, The traps that C'FRAP
enables are:

Integer divide by o
Integer overflow
Necimal overflow
Decimal divide by o
irwalid Decimal digit
Invalid ASCIT digit

One annoying feature of COBOL programs is that when an invalid
ASCIT character s detected while moving a character field to a
numeric field, the COBOL run-time library attempts to “firup" the
migtake {this was done to be compatible with users who read data
generated on punched carde, using overpunching). You may change
the traps that are enabled so the program will not attempt a fixup
but will instead abort, by using the following SPL routine:

PROCEDUBE ABORTBADASCII;
BEGIN
INTRINSIC XARITRAP;
INTEGER NEWPLABEL,OLDMASK,OLDPLABEL;
XARITRAP(0,0,0LDMASK, OLDPLABEL} ;
NEWPLABEL := OLDPLABEL;
XARITRAP{X22422, NEUPLABEL , OLDMASK, OLDPLABEL} ;
END;
END,

Bounds violationg

Beunde violations, bad stack markers and imvalid inetructions
may be trapped by the UNDOCUMERTED user-callable procedure
KCODETRAP. This routine, which has been around for s mumber of
vears, is used by DEBUG and, believe it or not, COBOL! The
calling sequence for this intrimsic is:

3

i v
XCODETRAP (newplabel ,oldplabel}

neuplabel - External type plabel of the application’s trap
procedure. plabel = 0 will disable
the trap.

oldplabel - Previous external type plabel of the
appiication’s trap procedure, 1f the trap was
digabled, 0 is returned.

NCTE: HCODETRAP is not in the intrinsic SPLINTR file,
therefore do not try to declare it as an Intrineic
or your programs will not compile,

FORTRAN users may enable this routine by using the following code;

EXTERNAL BOUNDS ROUTYNE
CALL XCODETRAP{BOUNIX ROUTINE,YOLDPLABEL)

Currently users of other languages such as COBGL must use an SPL
routine to enable the trap, such ag the following:

<¢ Since we can not declare YCODETRAP as an intrinsic
we must declare it here so the SPL compiler knows
that it exists, >3

PROCEDURE XCODETRAP (NEWLABEL, OLDLABEL};

VALUE NEWLABEL;

INTEGER NEWLABEL,OLDILABEL;

OPTION ENTERNAL;

PROCEDURE ARMTRAP;
BEGIN
INTEGER OLDMASK,OLDPLABEL;
¥CODETRAP{®BOUNDSVIOLATION OLDPLIABEL};
END;

Example of the bounds vioclation trap routine:

PROCEDURE BOUNDSVIOLATION;
BEGIN
ARRAY BUFF(0:40);
BYTE ARRAY STRING(*)=BUFF;
INTRINSIC PRINT,QUIT;
SHAPSHOT (0]
MOVE STRING ;= {“BOUNDS VIOLATION! SNAPSHOT was taken!");
PRINT {BUFF,~40,0);
Quit{o);
<< UISHFUL THINKING, WE CAN NEVER RETURN THROUGH THE END! >>
END;

14

Run-time library errors

with the exception of SPL, all of the languages on the HP300D
uge run-time libraries. If an error is detected while in the
library the uger has the option 1o request transfer to a trap han-
dling rom.ima rather than to abort the program., The calling se-
quence for this routine is:

v H
KLIBTRAP{newplabel,oldplabel}

newplabel - External type plabel of the application’s trap
procedure. plabel = 0 will digable
the trap,

oldplabel - Previous external type plabel
that was in effect. [f the trap vas
digabled, 0 is returned.

FORTRAN users may enable this trap by using the statements:

ON INTERNAL ERROR CALL LIBRARY ROUTINE
ON FORMAT ERRGR CALL LIBRARY ROUTINE

Currently users of other languages such as COBOL must use an SPL
routine, such as the following, to enable the trap.

PROCEDURE ARMLIBTRAP;
BEGIN
INTRINSIC XLIBTRAP;
INTEGER OLDMASK,OLDPLABEL;
XLEBTRAP{@LIBRARYROUTINE, OLDPLABEL} ;
ERD;

An example of a library trap routine:

PROCEIURE LIBRARYROUTINE,

BEGIN
ARRAY BUFF{0:40};
BYTE ARRAY STRING(®)#BUTF;
INTRINSIC PRINT,QUIT;
SHAPSHOTL(0) ; :
MOVE STRING := {"LIBRARY error! SNAPSHOT was takeni"};
PRINT {BUFF,-36,0);
WwIT(0}y;

<¢ UISHFUL THINKING. WE CAN NEVER RETURM THROUGH THE END! »

END;

MPE imtrinesic errorg

Almost any abnormal condition which occurs within the MPE in-
trinsics can be detected by using syetem traps (XSYSIRAP]. The
calling sequence for this intrinsic is:

15

v I
XSYSTRAP { newplabel,oldplabel}

newplabel - External type plabel of the application’s trap
procedure. plabel = 0 will disable
the trap.

oldplabel -~ Previcus external type plabel
that was in effect. If the trap was
digabled, ¢ is returned,

FORTREAN users may enable this trap by using the gtatement:
(N SYSTEM ERROR CaLL SYSTEM ROUTINE

Currently users of other languages such as C0OBOL must use an SPL
:"outim to enable the trap, An example of an SPL enabling routine
is:

PROCEDURE ~ ARMSYSTRAP;
BEGIN

INTRINGIC XSVSTRAP;

INTEGER OLIMASK OLDPLABEL;

HSYSTRAP (@SYSTEMROUTINE, OLDPLABEL) ;
END;

An esample of syptem trap routine;

PROCEDURE SYSTEMROUTINE;

BEGIN
ARRAY BUFF(0:40};
BYTE ARRAY STRING{*)=BUFF;
INTRINSIC PRINT,QUIT;
SNAPSHOT (0}
MOVE STRING ;= {“SYSTEM error! SNAPSHOT wae taken!"};
PRINT (BUFF,-36,0}; ' :
QIT(0);

<< UISHFUL THINKING. WE CAN NEVER RETURN THROUGH THE ENB! »

END;

A bug! Catch iul

Yhen an error cccurs, the hardware tranefers control to the cor-
rect trap, if it wag enabled, othersise the computar enters stan-
dard H-P abort routines. The user-writien error handling routine
may be in the program, the group 5L, or the public SL. User trape
are usable from all languages currently available for the HP3000;
however there are some specisl considerations for COBOL and RPG
programs [181.

The error handling routines can be uritten. g0 that they either
attempt to correct the prodlem (COBOL does this with Invalid ASCII

16

digits} or abort the program, Regardiess of shich is done, be
sure that as such information as possible about the cause of the
error is written to A separate grror log, so that the bug can be
eagily corrected.

I¥. KILLING THE BUG

Once the process Information has been saved or printed, we can
abort the program (if desired) in a manner I call STRUCIURED
PROGRAM FAILURES. This neans that we abort the program in a
clearly defined and orderly nmanner. For instarnce our abort
routine switches the terminal back to character mode, prints a
standard abort message on the user’s terminal, displays the proce-
dure name in which the dug was detected, then prints an abort mes-
sage on the operator congcle (so epecial program recovery steps
can be taken if necessary)l. A message i8 sent to any user whe is
logged on to the programming account, the JCU CIERROR is set to
976 (program abort), JCU is set to FATAL, and finally the program
¢alls QUIT to abort the whole process tree (if any),

17

Here is
the abow

$CONTROL

agaaoamnaoaamaoaoaooooQannOOooaaan

e Ny el

[y}

100

[eXeRy]

an exanple of a FORTRAN abort procedure, which illustrates
=H

MAP, LOCATION, LABEL , STAT

T SUDDEN DEATH: The purpose of thie routine iz to provide
a means of a structured program failure
gimiliar to HP’s SUDDEN DEATH intrinsic.

Thig routine DOES NOT halt the machine or
cause SF's, it does abort the process
tree!

There are two pagsed variables for this
routine, IERR and PROCEDURE,

The IERR containg the programmer-
asgigned step number, which is included
in the SNAPSHOT and printed out when the
program aborts,

The value of PROCEDURE is a character
string which is printed on the user’s
gereen, and the operator console,

A corresponding JOU name is checked and
docremented. If the resulting JCU is
greater then zero, this routine will
return to the calling process.

In addition, this procedure checks for a
JCW called DEBUG; if it exists, and » 0,
the the procedure calla, the H-P
program debugger.
written by Dennie Heidner

SUBROUTINE F SUDDEN DEATH(IERR,PROCEDURE)
CHARACTER PROCEDURE*16 ,COMIMAGE*80 , JCUNAMEX 16
INTEGER IERR,JCUVALUE

LOGICAL LTEXT{(40),MUST STOP,LICUVALUE

EQUIVALENCE (LTEXT(1},COMIMAGE} , (JCUVALUE,LICUVALUE)
SYSTEM INTRINSIC COMMAND,PRINT,PUTJCW,FINDJCW, DEBUG
SYSTEM INTRINSIC STACKDUMP,QUITPROG

Take a picture of the data stack...,

CALL SNAPSHOT{IERR)

Do 100 LENGIH OF STRING=1,16

IF{PROCEDURE[LENGTH OF STRING:1].EQ.";") GOTG 200
1¥ (PROCEDURE[LENGIH OF STRING:1]1.EQ.” ") &0TQ 200
CONTTNUE

LENGEH OF STRING = 16

CHECK THE JOW, WHICH CORRESPONDS TO THE PROCEDURE NAME.

b4

200

gnnn aon Dﬂﬁgﬂ

e Re K]

[+ R Ey]

aooa

IF(LENGTH OF STIRING .GT, 1) GOTO 300
PROCEDURE = “NULL"
LENGTH OF SIRING = &

JCUNAME - PROCEDURE{1:LENGIH OF STRING ~ 1}
DOES THE JCU EX1ST?

MUST STOP = .TRUE.
CALL FINDICW(JCUNAME, LICUVALUE, ISTATUS)
IF(ISTATUS.NE, 0} GOTO 500

DECREMENT THE JCU VALUE

JCU VALUE = JCW VALUE - 1
CALL PUTICU (JCUNAME, LICUVALUE, ISTATUS)
IF{ JoU VALUE .GT. 0} "wisT STOP * JFALSE.

DISPLAY THE ABORT MESSAGE

COMIMAGE="Program error in procedure: "
COMIMAGE([30; LENGTH OF STRING] =

& PROCEDURE[1:LENGTH OF STRING}

CALL PRINT{LTEXT,-50,%0)

NOTIFY THE SYSTEM OPERATOR....

COMIMAGE="TELLOP Program aborting in procedure:
COMIMAGE[40;: LENGIH OF STRING] »

& PROCEDURE[1: LENGTH oF STRING]

COMIMAGE{40+LENGIH OF STRING+1:1]}=X15C

CALL COMMAND{ COMIMAGE, ICOMERR,IPARM)

DG WE DROP INTO DEBUG FIRST?

JCUNAME=" DEBUG"

CALL FINDICU{JCUNAME, LJCUVALUE, ISTATUS)

IF{{ ISTATUS.NE.®} .OR. {Jcsmwe LLE. 0)) OOTO 1000
CALL DEBUG

SET THE JOW’S CIERROR TO $76 AND JCU TO FATAL

JCUNAME="CIERROR"
CALL PUTICUW{JCUNAME,%1720L,ISTATUS)

JCUNAME =" JCU"
CALL PUTJICU{JCUNAME,Z1C0001L, ISTATUS)

SAY YOUR PRAYERS,....
IF { MUST STOP)} CALL QUITPROG{IERR)

RETURN
END

19

After the bug has been detected or reported nake sure that you
use sound software maintenance practices and keep a log of the
bugy, the vork-arcurds, and the fixes, This will enable vou to
provide better estimates of your future software mainenance coste,
egtimate rmumber of bugs mmammg, provide an indispensible diary
for others who might later maintain the goftware and perhaps most
important, provide an experience base o that future softsare
products can be clean and free of similiar bugse,

V. EPITAPH

Although it is impossible to eliminate all bugs from software
it is possible 1o design the software so that it is easy to main-
tain and self-diagnosing. This paper hag covered several tech-
niques, which if incorporated will help reduce the cost of soft-
ware maintenance,

10

VI,

{1}

{2]

(3]

(4]

(5]

[8]

{7

-

(8]
f9l

f10]

[11]

{12}

{13}

(141

REFERENCES

Martin, James and McClure, Carma, “Software Maintenance: The
Problem and 1ts Solutions” {Englewocod Ciiffs, NJ:
Prentice-Hall, Inc., 1983}. p. 4.

Martin, James and McClure, Carma, "Software Maintenance: The
Problem and Its Solutions” (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1983}.

Glass, Robert L. and Noiseur, Ronald A. “Software Maintenace
Guidebook” (Englewoed Cliffs, NI: Prentice-Hall, Inc., 1879).

Myers, Glenford J., "Software Reliability: Principles and
Practices" (New York, NY: John Wiley & Sons, Inc., 1977}

Coats, Dan and McCaffrey,Michael, "Customer Satiefaction
through Quality Software", Anaheim PROCEEDINGS, HPIUG 1984,
p. 7.

VTEST available f{rom: TYMLAES
211 East 7th Streei
Austin, Tesas 78701
{512} 4780611

Contributed Library Tape, Available from:
HP3000 International Ueers Group
{ INTEREX}
2570 El Camino Real West
4th Floor
Mountain View, CA 94040

ADPAN, 1984 Anaheim Swap Tape, Available from INTEREX.

Green, Robert M. "The IMAGE/3000 Handbook”, {Seattle, WA:
UORDUARE, 1984), p. 283,

ibid, p. 293

Green, Robert M,, "Auditing with IMAGE Tranmaction Logging”,
San antonio PROCEEDINGS, HPIUG, 1982 ‘

Heidner, Dennis L., “Transaction Logging and Its Uges”
San Antonio PROCEEDINGS, HPIUG, 1982

Green, Robert M. and Heidner, Bennis L., “Transaction Logging
Tips", Montreal PROCEEDINGS, HPIUG 1983

DBAUDIT, 4vailable from: Robelle Consulting itd,
8648 Armstrong Road, RR#6
Langley, B.C. ¥3a 4P9
Canada (604)-856-3838

21

LOGLIST, Available from:

INTEREX (HPIUG)

{15] Hewlett=Packard, “Intrinaice Reference Manual®, Part rumber

30000-90010

{18] ibid. p. 2-199.

[17} Hewlett-Packard, "FORTRAN Reference Manual™, Part
number: 30000-90040, p. 4-21 thru p. 4-26,

{18] Hewlett-Packard, “COBOL I Reference Marual", Part

mmber: 32233-90001,

22

