
THE BUG S TOP S HER E

Dennis Heidner

Boeing Aerospace Company1833 South 261st PlaceKent, WA 98032

71 - 0

II. SPOTTING THE BUG
The BuS Stops Here!

The best tiroeto spot buss in prograRS is before the product is
out to the user (siroiliar to cleaning house before relatives
visit)! This can be accORplished by establishing a rigorous test
plan, which the software Rust pass before it's released. At the
HP3000 International Conference in Anaheiro, Dan Coates and Michael
McCaffrey frOlllH-P talked about the software quality assurance
prograJllthat H-P has iropleRented. The quality assurance lab has
developed over 800 streaJI jobs which contain JIIorethan 10,000
separate tests! [5]

By Dennis Heidner
Boeins Aerospace COIIIpany

1 2

I. INTRODUCTION
The cost of software is risins, which is not a profound state-

Plent to Plake when you consider that we have becoae acuatoaed to
the idea that software (and Raintenance) will be 90% or aore of
the total cost of a coaputer systeJII. Software is labor intensive,
so as the cost of labor rises so does your software cost. But are
you getting your Ploney's worth? Software, just like hardware, has
a life cycle: first there is the product conception, the inves-
tigation of the product and its lIIarket,then design, developJllent,
product test and finally delivery. But is that it? No! Host
studies indicate that the largest cost of the software is AITER
the product is delivered, in what is known as the aa intenance
phase. (Ever wonder why the Ronthly lIIaintenancecosts for H-P
software products are so high?)

Test procedures

Software JIIaintenancegenerally falls into one of several dif-
ferent categories; they include such areas as adaptive aain-
tenance, perfective l'Iaintenance, and siroply fiKing the outright
prograa bugs. Adaptive l'Iaintenance is generally aod iricatIons
nade to the software product, so that it reaains functional; for
instance, the IRS every year spends considerable t ine adapting
their software to aatch the new tax lcws passed by Congress.
Perfective JIIaintenanceReans that the software is being JIIodified
to enhance its usability or its position in the JIIarketplace. Both
of these types of Plaintenance generally provide a return on your
tiroe investPlent; however the third category, fixing bugs, siroply
brings the product up to what it should be, with no additional
features. (Have you ever heard of a sales person bragging that
they fixed 57 bugs in.their product last year?)

Locat ing bugs is, of course, the QOal of product test for
several reasons; first the cost of fixing a buS once the product
has been released is JIIuchhigher, and second while in product test
you are in a 1II0recontrolled environRent where you can generally
locate and duplicate a bug Rore easily. Notice the general tone
of this paragraph: we are looking for bugs, not trying to prove
the prograJllworks. Let lIIedigress another step and talk about the
population of bugs. If you have a progrM that is one thousand
lines long, and you are very optiRistic, you lIIighthope that the
prograa is 99% free of bugs. What this Keane is that soaep lace in
your prograa there Ray still be ten lines containing bugs. If you
were out to prove the prograR was correct, the odds are that it
will appear to you that it is, even though there are still a few
bugs there! It is Iaportant to keep in Rind ttJrphy's lcw of
revelation, which is "The hidden flaw never raains hidden."

Fortunately for JIIostof us, less then 20% of our tillleis spent
fixing prograa bugs, but would it not be nicer if we spent less
than 5% of our t iae fixing bugs? [1] In P1any data-processing
shops that translates into one additional head! The purpose of
this paper is to present soae ideas, which if incorporated into
your SOftware, will help reduce the aMOUnt of tiroespent tracking
down nasty problePls such as prograJIIaborts. The paper will cover
three areas, spotting the bug, trapping the bug and finally, kill-
ing the bug!

The test procedure, really, is a progrM written in the language
of your application prograM. If your prograM is designed to con-
trol WIDGETS and use V/3000, then the native language of your test
procedures is WIDGETS with the V/3000 enhancaent. Most univer-
sities and colleges offer classes in prograJllJllingin COBOL, PASCAL,
FORTRAN, etc., but to Plyknowledge, there are no classes taught in
prograJllJllingin WIDGETS! This P1eans that when you write your test
procedure it will be a learning experience for your staff. Do not
expect to have test procedures which cover all the possible cases.
If you lIIissan iIIIportanttest case, this is really a bug in the
test plan! It is not uncOPlPlonfor the first test procedures to
have as Plany or JIIorebugs in theftas the prograJIIsthePIselves!

V/3000 users have one additional problePI on their hands: how to
test the prograas and screens in an autoaated Planner. The only
cOPlAercially available package of which I'R aware is called VTEST;
written by Uick Hill Associates, it is P1arketed by IYHLABS [6].

Before we continue on, let PIe eJIIphasizethat the techniques I
advocate in this paper are not SUbstitutes for structured design,
prograAAing, code walk-throughs or testing! For those readers who
would like to learn Aore about structured design, prograAAing or
testing, there is a list of references at the end of this paper.
[2] [3] [4]

It doesn't work!
We Plust recognize that even if we have a good test plan, there

will be soae bugs that are not caught. This brings up the next
way that bugs are discovered: the user calls up and says, "It
does not look right!". My initial response to such a general

7 - 1

statAent is quite negative; hoWever it is our job to turn around
the general reports and get the Aore detailed information we need.
This is done by asking aore specific questions. For instance,
when the user reports that it does not work right, I will normally
ask several questions such as: Whoare you? lJhat were you doing
when it did not work right? What logon naIIIe had you used? Has
this ever happened before? Is this probleJII preventing you frO\ll
working?

4

*** STACK DISPLAY ***
S=000070 DL=177644 Z'002266

Q=000074 P=000010 LCST- 000 SIAT=U,1,1,L,0,1,CCG X=OOOOOO

Q=000062 P'000002 Lest= 001 SIAT=U,1,1,L,0,0,CCG X=OOOOOO
Q=000056 P=000004 LCSI= 002 SIAT=U,1,1,L,O,0,CCG X=OOOOOO
Q=000050 P=000033 Lest= 003 SIAT=U,1,1,L,0,0,CCG X=OOOOOO

Once the individuals who will Raintain the code have taught
theRselves to how to read proiraR variable Raps and proiraR PMAPs,
this lIIethod of locatine bullS is very effective. However it is
generally very difficult to teach! This was illustrated to JIIe
when I began to explain to another individual in the cOlllpanyhow
the prognllll collects all this nice inforRation for debuggine. The
reponse was "How does it work over the phone?" Yes, over the
phone I The teM that would lIIaintain the software was located SOllIe
distance froR the actual cOlllputer hardware. Tb.Is all of our neat
stack dUJllpsand screen copies were eenerally useless!

After a little 1II0re careful thoueht, I realized that generally
we do not wish to see the whole stack dUJllp, just selected por-
tions, so why not develope a little proeraR which would read the
stack dUJllp frOA the file, and display only what you asked for?
This was the birth of a proeraR called ADPAN[8] (Application DuJIIP
ANalyzer) •

Due to problss with the SIACKOOMPintrinsic, I wrote lilY own
stack dUJllpfacility which I call SNAPSHUf. When SNAPSHOTis cal-
led it creates a dUJllpfile, then copies an exact iIIIage of the data
stack to the file, alone with inforRation on the MPE files which
were open and in use at the tiPle. This snapshot of the process is
then later analyzed by runnine ADPAN.

ADPANhas seven different screens of Inforaat ion which can be
dispiayed; they are: CODE,DUMP,FILES, FILE nn, FLU!, INFO, and
TRACE.

Since we do not want to always be grilling our users when they
believe they have spotted a bui, we IIIUSthave a documented proce-
dure for capturing as lIIuch infofJllation as possible. My first at-
teApt at this was to beg the users to write down the inforJllation
off the screen, along with the sequence of steps they were going
through when the bug occurred. THIS FAILEDHORRIBLY! What I
found out was that JIIost users have the SaRe aversion for writing
that I do, and when they do write, they are prone to transposing
nuJIIbers. On JIIany occasions I spent hours trying to locate a bug
in the wrong procedure, because the stack lIIarker which was written
down was incorrect. The prograRs at our site are JIIenu-driven,
with a feature which &llOllls the experienced user to enter in one
step the. COJllPlandsto drop theill several lIIenus lower. In other
words, if a user wanted selection 11 frOll! the current lIIenut fol-
lowed by choice 13 in the next level down, followed by 12 m the
one below the second level, the user could enter in: 1,3,2. This
is very handy for the users, but a probleJII for anybody tryine to
read the scenario that the user wrote down, which looked SOIIIethine
like: 1,3,2,4,1,0,3,M,00007635,AC,ME l!l

There lIIust be a better way! The eood news is that there are two
prograJlls in the contributed library [7], PSCREENand SCOPYwhich
will copy the inforRation frOft a screen to a file or the
lineprinter. The bad news is that these prograRs only work with
H-P terRinals and will operate iJIIproperly if the terRinal was in
block 1II0de. Where possible I set up a 10ion UDCso when a proiraR
aborts, the screen is autOlllatically copied.

Althouih screen copy routines are a ireat iIIIproveRent over rely-
ing on handwritten inforRation, they provide only external infor-
Illation to the debufier. When the a bui occurs, "hat appears on
the screen is amest always an iIIIcOAplete picture. I t would be
extreJIIely useful if, in addition to the screen copy, inforlllation
about the files open, and the values of the prOiraR variables
could also be saved. After spendine a nulllber of hours reading the
MPE intrinsic and DEBUGJlaruals lookine for a solution, I found
i tl The SOlution is the intrinsic called SIACKDUMP.This intrin-
sic will copy and fOrRat the prograR stack lIIarkers and the data
area of the stack (anybody who has had a progralll abort has seen
these pesty lIIarkers). The person lIIaintainine the prograJll can then
use the screen cOPY, the stack dUJllp,a copy of the prograJll PMAP,a
progr~er's calCUlator and a cOJllplete listine of the proiraJll to
locate the bug accurately. Here is an eXaRple of a STACKDUMP
output:

•• DB.. OCTAL
00000 000000 000144 000000 177777
00004 000000 000000 000000 000000
00010 000000 000000 000000 140032
00014 000004 000020 040000 000000
00020 000066 000000 000020 000000
00024 000007 172623 031540 000040
00030 073473 010010 120004 051501
00034 046520 046105 020123 052101
00040 041513 042125 046520 020040
00044 020040 000000 000034 060304
00050 000034 040140 000000 000000
00054 000005 060303 000006 000000
00060 000003 060302 000004 177776
00064 000000 000106 000000 000000
** AREAOUTOF BOUNDS**

3

ASCII
.d ••

~.
.6

3'
w; •••• SA
MPLE STA
CKDUMP

(f

.F

7 - 2

Q L SEGMENT NAME PROCEDURE NAME P'REL STATUS

000004 031003 2. PCAL 3
000005 004000 .. DEL ,NOP
000006 031004 2. PCAL 4
000007 031400 3. EXIT 0
000010 176031 .. LRA P+31 ,I,X (PB+000041)
000011 035002 .. ADDS 2 SUPERPROGRAM (••PROC
000012 004000 .. DEL ,NOP
000013 021004 .. LDI 4
000014 033406 7. LLBL 6
000015 031007 2. PeAL F'ARITRAP
000016 000707 .. DZRO,DZ.RO
000017 021002 .. LDI 2
000020 172003 .. LRA P+3 ,I (PB+000023)
000021 031011 2. PCAL FmINIT'
000022 140005 .. BR P+5 (PB+000027)
000023 000014 .. NOP ,DIVL
000024 044105 HE LOAD P+I05 ,X (PB+000131)
000025 046114 LL LOAD P+114 ,I,X (PB+000141)
000026 047400 O. LOAD Q+ 0 ,I,X
000027 040403 A. LOAD P+3 (PB+000024)
000030 034403 9. LDPN 3 (PB+000033)
000031 021005 .. LDI 5

The TRACE screen is probably the Rost iRportant of the screens.
This screen displays the procedure naaea, segl1lentnaJIIes,p-
relative address, Q address and the status for each of the ~arkers
in the SNAPSHOT. This allows the user of ADPAN to locate the
cause of a progrlUl error quickly without needing to refer to a
PMAP or have a prograllllllerscalculator handy. The TRACE screen
looks like:

ADPAN 7/83 - Rev 1.1 (C) The Boeing Co, Seattle YA
DUMP: D1921810.PUB.GOODIDEA PROGRAM: ADEMO.PUB.GOODIDEA

00174 ERRORHANDLER SNAPSHOT 00123 UM,XIN,TRAPS,L,CCG
00122 ERROR 'HANDLER OVERFLOY 00004 UM,XIN,TRAPS,L,CCG
00114 ? SL %0173 P'REL = ~011026 UM,XIN,TRAPS,L,CCL
00057 HELP'HELP OOPS 00005 UM,XIN,TRAPS,L,CCL
00050 ADPAN'DEMO PROCEDUREB 00006 UM,XIN,TRAPS,L,CCL
00044 NEXT'BEST'THING PROCEDUREA 00002 UM,XIN,TRAPS,L,CCE
00040 ADPAN'DEMO SUPERPROGRAM 00035 UM,XIN,TRAPS,L,CCE
00033 S $MORGUE TERMINATE' PM,XIN,L,CCG

.*.... e{.
•••• d ••••

The CODE screen displays the decORpiled code around the PCAL in-
struction currently being examined by ADPAN. since not all ter-
minals are capable of scrolling, ADPAN breaks the code down into
three regions, and siRulates the scrolling programically. Here is
a code screen:

The DUMP screen displays either an area around the current stack
~arker or a specific region in rneRory. The user has a choice of
OCTAL, HEX, DECIMAL, CHARacter and NQCHARacter fot'Jllats.The DUMP
screen is the default screen. (Any other screen can be requested
frornthe DUMP screen.) For example:

In this and other examples of screens frOR ADPAN, the entire
line of interest (not'Jllallyhiahlighted on HP tet'Jllinals)is shown
underlined.

ADPAN 7/83 - Rev 1.1 (C) The Boeing Co, Seattle WA, JUL 14 1983
DUMP: D1921810.PUB.GOODIDEA PROGRAM: ADEMO.PUB.GOODIDEA
0%000057 P=%000006 X=%OOOOOO STAT'~060703 S=~000071 DL=%177740
ADDR DATA
000036 000047 061305 000005 000000 000003 061304 000004
000045 000000 000007 060705 000004 076400 000000 000004
000054 000000 000006 060703 000007 000001 010550 111401
000063 000065 000152 111401 000065 140001 000012 135635
000072 000000 001000 000000 000000 000005 177766 000001
000101 000002 141001 000002 000000 177747 000016 000173
000110 000052 000004 011027 062573 000035 000001 000115
000117 000004 000005 062302 000006 177777 000011 110223

.'b••

.... a ..• }

.... a .

.5.j 5.

>D Q-1;A
>0 Q-1
>D Q-1;L
>0 Q-1;H
>D Q-1;I
>D Q-1;D

'aC'
%060703

%060703 TRUE
61C3
25027
1640169479

5 6

7 - 3

UNIT Ft
6 3 FIN06
5 4 FIN05

FOPT% AOPT% RECSIZE RECPT
000614 001401 -81 167
000244 001400 -80 167

The INFO screen lets the user review the general PREP
capabilities of the prograA. In addition the INFO screen displays
Inroraat ion on the way the prograA was segl1lented, data stack
utilization inforNation, and any run-tiRe INFO strings or parRS.

Several iJlportant itePIs should be noted. The first is that ADPAN
will locate and highlight the current stack Rarker. In our
eKaJIlple above this was done by underscoring. NeKt is that the
DUMPscreen actually has three separate windows: the header, the
data area and the CORRand window. ADPANuses cursor addressing
(if possible) to i.ftplelllent wraparound scrolling within the coa-
nand '" Indou.

The FILES screen allows the user to identify the MPE files that
the prograJll had open at the tiRe of the SNAPSHOT. The Inforaat.Ion
d isp layed inc ludes fHe ruJIlber, file naae , f He opt ions, access
options, record size, current record pointer, the nuAber of logi-
cal records processed, and the file liAit.

ADPAN7/83 - Rev 1.1 (C) The Boeing Co, seattle VA, JUL 14 1983
DUMP:D1921810.PUB.GOODIDEA PROGRAM:ADEMO.PUB.GOODIDEA
Q=%000057 P=%000005 X=%OOOOOOSTAT=X060703S=%000071
PROGRAMCAPABILITIES=BA:U- --SNAPSHOT 10: 1

STACKINFORMATION CODESECi1ENTINFO

F. FILENAME
3 Fl'N06
4 Fl'N05
5 D1921809.PUB.GOODIDEA

FOPT% AOPT% RECSIZE RECPT
000614 001401 -81 167
000244 001400 -80 167
000000 000001 128 3

DL-DB:
DB-QI:
QI-Q:
Q-S:
S-Z:

92 7.0%
21 1.6%
26 2.0%
78 5.9%

109683.5%

5 SEGMENT(S)
SMALLEST: 8
LARGEST: 488
AVERAGE: 118

TarAL VOROS: 592

The FILE nn screen allows a user to ZOOMin on a specific file
and look at virtually all attributes for the file. In this ex-
aJIlple we will ZOOI'lin on file nuAber five.

MAXDATA: n
MAXZ-DL: 1313

RUNTIME PARMVALUE: 0
INFO STRING: ** NO INFO STRING**

FILE NAMEIS D1921809.PUB.GOODIDEA
FOPTIONS: STD,FEQ,CCTL,F,*FORMAL*,BINARY,NEU
AOPTIONS:YAITIO,BUF,DEF,NOLOCX,SREC,YRITE
RECORDSIZE: 128 BLOCKSIZE: 128 (WOROS)
RECPTR: 3 RECLIHIT: 400
LOGCOUNT: 3 PHYSCOUNT: 1
EOFAT: 3
FILE CODE: 0 • OF USERLABELS: 0
FILE SYSTEMERROR: 0

FILENAME

As you can see, ADPANprovides Ruch Rore inforaation about the
process than the STACKOOHPintrinsic. A coaacn (and very QOOd)
practice at a ruPlber of HP sites I have visited is to assign an
error l1UJIIber to each Uotportant step in their prograJlls. Then if
there is a probleR encountered in that step the prograJll prints out
the step ruJIIber and stops. This is a very sUotple (but effective)
fOrN of defensive prograRAing. EKaRples of Rore sophisicated er-
ror handling include JII08t of AGADER's functions and the MPE
operating systeR itself. (Systea failures are MPE's way of
preventing further daJllage by contiruing with corrupted systea
tables. J This process can be enhanced by callina SNAPSHOI, pass-
ing it the error nuJllber frOR the prograR. In this way we can cap-
ture the cOl'lplete environRent prior to aborting the prograJll, thus
guaranteeing that we always have enoualh inforaation to properly
diagnose the probleR.

If the prograJll being eKaRined was written in FORTRAN,the user
of ADPANcan request that the FORTRANLOGICALUNIT TABLEbe dis-
played; this is the FLU! screen.

Databases and bugs

If your application is dependent on a database, then you have a
different set of probl8Rs. The cause for the wrong infoI1llation on
the screen Ray be wrong Inforaat icn in the database. One cORJIIon
JIIistake JIIade by application designers is to asSURe that once the
data has been correctly entered into the database, it will always
reRain seRantically correct. Uhat I Rean by seRantically correct
is that if the weight of a pallet Ray be between 0 and 30,000
pounds, then a value of -200 is seaantically wrong! Another
probleR can occur when a value frOR one dataset is used to chain
(or point) into another set, but the second entry is Rissing.

7 8

7 - 4

9

==>ZEP .ZESTY ,DATA LDEV:43 lsa1 TUE, MAY 1, 1984 8:01P
Rev 2.00-84114 PROGRAM: TESTPROG P=%014.002514 Q=%015263
(PROGrERR 2.29) Internal application or data base error
DBGET ~ode 5 on SPECIFICATION of PAZAZZ opened Rode 1
END OF CHAIN
DBSTATUS: 15 ..•..
SET: SPECIFICATION:
CHAR. EQUIV OF ITEM:
DEC. EQUIV OF ITEM:

%00452 11 405 %010076 %015032 5 %004601
ITEM-NAME: MODELCODEj

0003FIDDLE
12336 12339 17993 17476 19525 8224

Generally "'hena prograa runs into such cases (if not anticipated)
the results are very unpredictable.

There are three techniques ",hich can be used to locate bugs in
our databases before they appear later as bugs in the prograas,
The first is to ",rite a custoa progr~ ",hich checks for and
reports seIllanticerrors in the database. For exaap le, database
checking prograas should verify that iteIlls",hich are defined as
dates in the progr~s contain VALID dates in the database. Fields
",hich contain ~onetary values or other numeric quantities should
be checked to Rake sure that their range is LEGAL and REASONABLE.
Fields ",hich are naaes of products, conpanies or individuals
should be checked for garbage cnaracters in the fields. Fields
",hichcontain phone nuMbers, addresses or postal Rail codes should
be verified. Finally if the applications chain frOR one dataset
into another, the test prograM should do the SMe. As you lIIight
have already guessed, the error check progr~ is a lIIajorsyst9lllin
itself. At our site, I run this highly tuned progra\llonce a
1II0nthjits ",ork takes 1II0rethen siK hours!

The second lIIethodto locate errors in the database involves ac-
tive checking for s9lllanticerrors by all the application prograllls.
The way this works is that after the user enters in the account
nulllberor part nu~ber, the prograR validates all the info~ation
related to that nulIIberBEFORE the inforlllationis displayed. This
nethod assures that before the user is aaare that a prob len ex-
ists, the progr~ has a chance to detect and correct it. This is
the lIIethodthat I use on our ~ain application for the cOAputer.

The final lIIethoduses a cheCkSUR or hash total for each entry in
the database. The application progr~s, as a neKt-to-last step
before updating the database, generate a checkSUlllfor the entity
in question. This checkSUlllvalue becORes an integral part of the
itelll.Uhen the reporting prograRS read the entry at a later date,
they only need to recalculate the checkSUlllvalue and coapare to
~ake sure that they are the sallie. This technique is ~ost useful
for detecting changes Rade in the database by unauthorized
prograRS or QUERY. Unfortunately if the error was lIIadebefore the
checksua ",as generated the first tillethen it will not be detected
later. An eKalllpleof the use of a checksua to detect unauthorized
changes is in the file labels on the HP3000.

When I r Irst started writing prograas which accessed IMAGE
databases, I ",ould generally check the status of the IMAGE intrin-
sics, then call DBEXPLAIN. After the first tiJIea user ",anted to
knoa ",hat all the clutter about dataset so-and-so ",as, I nade an
effort to re~ove the calls and replace th9lllinstead "'itha routine
",hich opens up an error log file, calls DBCALL [9) to get a
readable eKPlanation of the prob19lll,then calls DBERROR to obtain
the intrinsic nalIIe,database nalIIeand dataset nalIIe.A final call
is aade to DBSTATUS [10], then all the available Inroraat Ion is
",ritten to the error log file. For eKalIIple:

R9lIIelllberI said that I i/enerally checked the status of IMAGE
calls? Not long after our application ",asup and running a nulIIber
of strange errors occuredj apparently sOAebody had used QUERY to
delete several entries that the prograPIs always expected to be
there. Since the prograa did not check the status of the previous
IMAGE call, it did not detect the prob Iea. The end result was a
bug which ~igrated throughout the database and took several days
to track down! Al",ays check the status to lIIakesure it is
acceptable!
Who did it?

If we have detected an error in the database, how do ",e locate
the cause of the prob lea? Hewlett-Packard has provided database
users with the ability to log transactions Rade to an IMAGE
database to either a disc file or a Ragnetic tape. This record
can then be replayed at a later date either to recover after a
syst9111failure, or in the case of bugs, to audit the database.
There are currently two prograRS available which can be used to
audit the 10g"D~AUDI:; and ~ [11) [12] [13] [14].
III. TRAPPING THE BUG

SORe t ines "'e do not have sufficient ",arning to set an error
nulIIberand abor t ; for eKMple a BOUNDS VIOLATION ",ill generally
abort the prograllland print out the VERY UNFRIENDLY STACK MARKER
in 'the Riddle of your V/3000 fOrR. In Rost cases using a screen
copy routine or having the users write the inforlllationdo"'n is in-
effective since the stack Rarker is spread throughout the rora,
We really ",ant the cOAputer to transfer to our error routines when
an abnOrMal condition occurs. There is a facility to do thisj it
is called USER TRAPS.
Choosing the right trap

User traps are probably one of the least understood features of
the HP3000 coaputer and its operating systE!lll.This is unfortunate
when you consider the power they provide to detect and correct
progr~ errors. Traps are provided for the following it9llls:[15]

10

7 - 5

(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARlTRAP)
(XARlTRAP)
(XARlTRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)
(XARITRAP)

(XCODETRAP)
(XCODETRAP)
(XCODETRAP)
(XCODETRAP)
(XCODETRAP)
(XCODETRAP)
(XCODETRAP)
(XCODETRAP)

(XLIBTRAP)
(XLIBTRAP)
(XLIBTRAP)

(XSYSTRAP)

12

Type of error encountered Trap intrinsic
Enable hardware arithftetic traps (ARITRAP)

Floating polnt divide by zero
Integer divide by zero
Floating point underflow
Floating point overflow
Integer overflow
Extended precision overflow
Extended precision underflow
DeclRal overflow
Invalid ASCII digit
Invalid deciRal digit
Invalid source word count
Invalid deci~al operand length
DeciJIal divide by zero

Bad stack aarker
Bounds Violation
CST Violation
SIT Violation
111eli/a1 address
Non-respondinli/ Rodule
Privileged Mode intruction
UniJIpleftented instruction

COftpiler library errors (55 total)
Invalid substrinli/ desili/nator
Formatter errors (FORTRAN)

HPE intrinsic errors

Setting the traps

For eXMple, the user l'Iay enable a trap routine for aritmetic
errors by calling XARITRAPas shown below.

IV IV I I
XARITRAP(Rask,Plabel,oldRask,oldplabel)

lIIask - Bit JIIask indicating which types of
arithmetic errors are to be trapped
(refer to the HP intrinsic Ranual [16]).
JIIask • 0 disables the traps.

plabel - External type label of the application's trap
procedure. plabel a 0 disables the traps.

oldJllask - The previous bit JIIask for the aritllletic
traps.

oldplabel- The previous external type label of the
application's error procedure (0 if not
previously enabled).

EXMple of an SPL routine to enable all aritl'lIetic traps:

PROCEDURE ARMrRAPSj
BEGIN

INTRINSIC XARITRAP;
INTEGER OLDMASK,OLDPLABEL;
XARITRAP(X37777,@ARITH'ERROR,OLDHASK,OLDPLABEL)j

END;

EXAMPLEof an SPL routine to handle traps caused by aritmetic
errors:

PROCEDUREARITH'ERROR;
BEGIN

ARRAYBUFF(0:40);
BYTE ARRAYSTRING(*)aBUFFj
INTRINSIC PRINT, QUIT;
SNAPSHaf (0) ;

MOVESTRING :: ("Aritlwletic error! SNAPSHaf was taken!");
PRINT (BUFF,-38,O)j
QUIT(O)j

« IJISHFUL THINKING. WECANNEVER RETURNTHROUCJiTHE END! »
END;

Except in FORTRANprOli/raRs the user traps Rust be enabled by
calling the respective HPE intrinsic. When enabling the trap, the
plabel for the desired error-handlina routine is checked to JIIake
sure that it is valid, accordil'li to the followina .rules:

1. If the call to enable the trap was Rade frOl'l a non-
privileli/ed prograR, group SL or public SL, the trap' han-
dlina routine Rust also be non-privil~d.

2. If the call to enable the trap was RMe frOR a privileged
progrsa, group SL or public SL, then the trap handlinli/
routine JIIay be privileli/ed or non-privileged, in either the
prograJII, group SL or public SL.

3. I f the call to enable the trap was JIIade frOJll an HPE SL seg-
JIIent, then the error handlina routine Rust reside in any
non-MPE SL se2l'lent.

Users of FORTRAN rave tr~ ability to er.bla traps selectively by
using the "ON error condition CALL subroutine" stateRent [17].
unique procedures. The trap JIIechanisa in FORTRANvery flexible;
it does not cOllie free, thouli/h. In order to separate inteli/er over-
flows frolll divide by zero, the FORTRANrun-tiJlle library plays a
few games. Using the ON atateaent results in a naRed COIt1ON
called TRAPCOt1'being established on your behalf. When an inteeerArithRetic errors

11

7 - 6

13

I IV
XCODETRAP {newplabel, oldplabel)

overflow occurs, the coaputer transfers control not directly to
your routine, but to a library routine. This library routine then
de ternines the type of hardware trap that was invoked and accesses
TRAPCQM' to obtain the plabel for your routine. Once the library
has a valid plabel, it transfers control to your error handling
routine by placing the plabel on the top of the stack and per rora-
ing a PCAL O.

newplabel - EHternal type plabel of the application's trap
procedure. plabel = 0 will disable
the trap.

A user Ray enable traps for integer overflows and integer divide
by zero by using the following FORTRAN steteNents:

oldplabel - Previous eHternal type plabel of the
application's trap procedure. If the trap was
disabled, 0 is returned.

ON INTEGER OVERFLOW CALL OVERFLOW ROUTINE
ON INTEGER DIV 0 CALL DIVIDEO ROUTINE NOTE: XCODETRAP is not in the intrinsic SPLINTR file,

therefore do not try to declare it as an intrinsic
or your prograMS ",ill not cOApile.

HP sites that are heavy users of COBOL have a cOApletely dif-
ferent story on their hands. COBOL deliberately calls a routine
called C'TRAP to enable SELECTED traps. This was done because
when a field is MOVEd in a COBOL program, the COBOL library hand-
les any type conversion that is necessary. The traps that C'TRAP
enables are:

FORTRAN users Ray enable this routine by using the following code:
EXTERNAL BOUNDS ROUTINE
CALL XCODETRAP(BOUNDS ROUTINE,IOLDPLABEL)

Integer divide by 0
Integer overflow
DeciRal overflow
DeciRal divide by °
Invalid DeciRal digit
Invalid ASCII digit

Currently users of other languages such as COBOL Rust use an SPL
routine to enable the trap, such as the following:

INTRINSIC XARITRAP;
INTEGER NEYPLABEL,OLDNASK,OLDPLABEL;
XARITRAP(O,O,OLDMASK,OLDPLABEL);
NEYPLABEL := OLDPLABEL;
XARITRAP(X22422,NEYPLABEL,OLDNASK,OLDPLABEL);

« Since we can not declare XCODETRAP as an intrinsic
we Rust declare it here so the SPL coap iIer knows
that it eHists. »

PROCEDURE XCODETRAP(NEWLABEL,OLDLABEL);
VALUE NEYLABELj
INTEGER NEYLABEL,OLDLABEL;
OPTION EXTERNAL;
PROCEDURE ARMIRAP;
BEGIN

INTEGER OLDMASK,OLDPLABEL;
XCODETRAP(~BOUNDSVIOLATION,OLDPLABEL)j

END;
EHaMple of the bounds violation trap routine:

One annoying feature of COBOL prograMs is that "'hen an invalid
ASCII character is detected while Roving a character field to a
nulllericfield, the COBOL run-tiRe library at teapta to "f Ixup" the
lIIistake(this was done to be cOlllpatiblewith users who read data
generated on punched cards, using overpunching). You lIIaychange
the traps that are enabled so the prograM will not at teapt a fiKUP
but will instead abort, by using the following SPL routine:

PROCEDURE ABORTBADASCIIj
BEGIN

END;
END.

PROCEDURE BOUNDSVIOLATION;
BEGIN

ARRAY BUFF(O:40);
BYTE ARRAY STRING(*)=BUFF;
INTRINSIC PRINT,QUIT;
SNAPSHOT (0);

MOVE STRING := ("BOUNDS VIOLATION! SNAPSHOT "'as taken!");
PRINT (BUFF,-40,O);
QUIT(O);

« tJISHFUL THINKING. WE CAN NEVER RETURN THROUCJf THE END! »
END;

Bounds violations
Bounds violations, bad stack aarkera and invalid instructions

lIIay be trapped by the UNDOCUMENTED user-callable procedure
XCODETRAP. This routine, which has been around for a ruJllberof
years, is used by DEBUG and! believe it or not, COBOL! The
calling sequence for this intrInsic is:

14

7 - 7

15

IV I
XSYSTRAP(newplabel, oldplabel)

newplabel - External type plabel of the application's trap
procedure. plabel z 0 will disable
the trap.

oldplabel - Previous external type plabel
that was in effect. If the trap was
disabled, 0 is returned.

Run-t~e library errors

LlI th the exception of SPL, all of the languages on the HP3000
use run-t~e libraries. If an error is detected while in the
library the user has the option to request transfer to a trap han-
dling routine! rather than to abort the prograM. The calling se-
quence for thlS routine is:

IV I
XLIBTRAP(newplabel, oldplabel)

newplabel - External type plabel of the application's trap
procedure. plabel' 0 will disable
the trap.

oldplabel - Previous external type plabel
that was in effect. If the trap lias
disabled, 0 is returned.

FORTRANusers ~ay enable this trap by usine the stateRents:

FORTRANusers ~ay enable this trap by usine the statERent:

ON SYSTEMERRORCALL SYSTEMROOTINE

CUrrently users of other laJ'I2U8ges such as COBOLRust use an SPL
routine to enable the trap. An eXa\llple of an SPL enabling routine
is:

ON INTERNALERRORCALL LIBRARYROUTINE
ON FORMATERROR CALL LIBRARYROUTINE

PROCEDURE
BEGIN

ARMSYSTRAPj

CUrrently users of other laJ'I2UlIIZes such as COBOLPlust use an SPL
routine, such as the followine, to enable the trap.

INTRINSIC XSYs!~4Pj
INTEGER OLDMASK,OLDPLABEL;
XSYSTRAP(@SYSTEHROUIINE,OLDPLABEL);

END;

An eXaJllple of SystER trap routine:
PROCEDURE ARMLIBTRAPj
BEGIN

INTRINSIC XLIBTRAP;
INTEGEROLDMASK,OLDPLABEL;
XLIBTRAP(~LIBRARYROUTINE,OLDPLABEL);

END;

An eKaJllple of a library trap routine:

PROCEDURESYSTEHROOTINE;
BEGIN

ARRAYBUFF(O:40);
BYTE ARRAYSTRING(*laBUFF;
INTRINSIC PRINT,QUIT;
SNAPSHOT(OI;
MOVESTRING : a ("SYSTEM error! SNAPSHOTwas taken!" 1;
PRINT (BUFF,-36,01;
OOIT(OI;

c c LlISHFULTHINKING. LIECANNEVERRETURNTHROUGITHE END! »
END;

A bug! Catch it!

PROCEDURELIBRARYROOTINE;
BEGIN

ARRAYBUFF(0:401;
BYTEARRAYSTRING(*) aBUFF;
INTRINSIC PRINT, QUIT;
SNAPSHOT(0 1;
MOVESTRING : a ("LIBRARY error! SNAPSHOTwas taken!" I;
PRINT (BUFF,-36,O)j
OOIT(OI;

c e LlISHFULTHINKING. LIE CANNEVERRETURNTHROUGITHE END! »
END;

MPE intrinsic errors

Uhen an error occurs, the hardware transfers control to the cor-
rect trap, if it was enabled, otherwise the cOlllputer enters stan-
dard H-P abort routines. The user-written error handline routine
Ray be in the proir8lll, the iroup SL, or the public SL. User traps
are usable frOR all laJ'I2Uages currently available for the HP3000;
however there are SOllIe special considerations for COBOL and RPG
progr8llls [18].

The error handline routines can be written so that they either
attePlpt to correct the probleR (COBOLdoes this with Invalid ASCII

AIPlost any abnoraa'l condition which occurs within the MPE in-
trinsics can be detected by usine SystER traps (XSYSTRAPI. The
calling sequence for this intrinsic is:

16

7 - 8

Here is an ex~ple of a FORTRAN abort procedure, which illustrates
the above:
$CONTROL MAP, LOCATION, LABEL, STAT

C
C F SUDDEN DEATH:
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE F SUDDEN DEATH(IERR,PROCEDURE)
CHARACTER PROCEDURE*16,COMlMAGE*80,JCUNAME*16
INTEGER IERR,JCWVALUE
LOGICAL LTEXT(40),MUST STOP,LJCUVALUE
EQUIVALENCE (LTEXT(l),COMlMAGE),(JCWVALUE,LJCWVALUE)
SYSTEM INTRINSIC COMMAND, PRINT, PUTJCIl,FINDJCIl,DEBUG
SYSTEM INTRINSIC STACKDUMP, QUITPROO

C
C Take a picture of the data stack .•••
C

CALL SNAPSHOT(IERR)
DO 100 LENGTH OF STRING-l,16
IF(PROCEDURE[LENGTH OF STRING:l].EQ.";U) GOTO 200
IF(PROCEDURE[LENGTH OF STRING:l].EQ." U) GOTO 200

100 CONTINUE
LENGTH OF STRING' 16

digits) or abort the progr~. Regardless of which is done, be
sure that as auch Inroraat ion as possible about the cause of the
error is written to a separate error log, so that the bug can be
easily corrected.

C
C
C

CHECK THE JCI.I,WHICH CORRESPOODS TO THE PROCEDURE NAME.

IV. KILLING THE BUG
Once the process inforll\ationhas been saved or printed, we can

abort the progr~ (if desired) in a Planner I call STRUCTURED
PROGRAM FAILURES. This neans that lie abort the prograa in a
clearly defined and orderly Planner. For instance our abort
routine switches the tel'1llinalback to character node, prints a
standard abort lIlessageon the user's terll\inal,displays the proce-
dure naMe in which the bug lias detected, then prints an abort l1les-
sage on the operator console (so spec iat prograa recovery steps
can be taken if necessary). A l1lessageis sent to any user who is
logged on to the prograJ1Ullingaccount, the JCI.ICIERROR is set to
976 (progr~ abort), JCU is set to FATAL, and finally the progr~
calls QUIT to abort the whole process tree (if any).

C

17

The purpose of this routine is to provide
a lIleansof a structured prograa failure
sil1liliarto HP's SUDDEN DEATH intrinsic.
This routine DOES NOT halt the lIlachineor
cause SF's, it does abort the process
tree!
There are tllO passed variables for this
routine, IERR and PROCEDURE.
The IERR contains the progr~er-
assigned step nuftber, which is included
in the SNAPSHOT and printed out when the
progrM aborts.
The value of PROCEDURE is a character
string which is printed on the user's
screen, and the operator console.
A corresponding JCW l'l8IIIeis checked and

decreaented, If the resulting JCW is
greater then zero, this routine will
return to the calling process.
In addition, this procedure checks for a
JCI.Icalled DEBUG; if it exists, and > 0,

the the procedure calls, the H-P
progrM debugger.

written by Dennis Heidner

18

7 - 9

19

After the bug has been detected or reported, JIIake sure that you
use sound software maintenance practices and keep a log of the
bugs, the uork-arounds, and the fixes. This will enable you to
provide better estiJllates of your future software JIIainenance costs,
estiPIate llUJIIber of bugs reIIIaining, provide an indispensible diary
for others who JIIight later JIIaintain the software and perhaps JIIost
iJllportant, provide an experience base so that future software
products can be clean and free of siJIIiliar bugs.

200 IF(LENGIH OF STRING .or. 1) GOTO300
PROCEDURE= "NULL"
LENGIH OF STRING = 5

C
300 JCVNAME= PROCEDURE[l:LENGIHOF STRING - 1]
c
C DOESTItE JCY EXIST?
C

C
C
C

HUSTSTOP = •TRUE.
CALL FINDJCIoI(JCVNAME,LJCVVAWE, I STAtuS)
IF(ISTAtuS.NE.O) GOTO500

DECREMENTTItE JCY VAWE

JCIoIVAWE z JCIoIVALUE - 1
CALL PutJCItI (JCVNAME,LJCltlVAWE, I STAtuS)
IF(JCY VAWE .or. 0) tlJST STOP= • FALSE.

V. EPITAPH

Although it is iPlpossible to eliainate all bugs frOJll SOftware,
it is possible to design the software so that it is easy to JIIain-
tain and self-diagnosing. This paper has covered several tech-
niques, which if incorporated will help reduce the cost of soft-
ware JIIaintenance.

c
C DISPLAY TItE ABORTMESSAGE
C
500 CIJfIMAGE="PrQirlJJll error in procedure: "

ClJflMAGE[30:LENGIH OF STRING] •
& PROCEDURE[l:LENGTHOF STRING]
CALL PRINI(LTEXT,-5O,~0)

C
C NOTIFY TItE SYSTEKOPERATOR••••
C

ClJfIMAGE."TELLOP PrQirlJJll abortil'l8 in procedure: "
COHIMAGE[40:LENGTHOF STRING] •
& PROCEDURE[l:LENGTHOF STRING]
CIJfIMAGE[40+LENGIH OF STRING+1:1]·~15C
CALL CtHtAND(ClJfIMAGE, IClJfERR,IPARtf)

C
C 00 WEDROPINTO DEBUGFIRST?
C

JCUNAHE·"DEBUG"
CALL F1NDJCW(JCUNAHE,LJCUVAWE, I STAtuS)
IF« ISTAtuS. NE.0) .OR. (JCUVAWE .LE. 0» GOIO 1000
CALL DEBUG

C
C SET TItE JCW'S CIERRORTO 976 AND JCW TO FATAL
C
1000 JCUNAHE·"CI ERROR"

CALL PUTJCW(JCUNAHE,~1720L,ISTAtuS)
C

JCVNAHE·"JCY"
CALL PUTJCY(JCUNAHE,~100001L,ISTAtuS)

C
C SAY YOURPRAYERS•••••
C

IF (tlJST STOP) CALL OOITPROG(IERR)
REtuRN
END

20

7 - 10

21

LOGLIST, AvailablefrOR: INTEREX (HPIUG)
[15] Hewlett=Packard, "Intrinsics Reference Manual", Part I'lUJIlber

30000-90010
[16] ibid. p. 2-199.

VI. REFERENCES

[1] Hartin, JaJ1Iesand McClure, Cama, "Software Maintenance: The
Prob Iea and Its Solutions" (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1983). p. 4.

[2] Martin, JaJ1Iesand McClure, Cama, "Software Maintenance: The
ProbleJIIand Its Solutions" (Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1983).

[3] Glass, Robert L. and Noiseux, Ronald A. "Software l1aintenace
Guidebook" (Englewood Cliffs, NJ: Prentice-Hall, Inc., 1979).

[4] Hyers, Glenford J., "Software Reliability: Principles and
Practices" (New York, NY: John Lliley 8. Sons, Inc., 197?)

[5] Coats, Dan and HcCaffrey,Hichael, "Customer Satisfaction
through Quality Software", AnaheiA PROCEEDINGS, HPIUG 1984,
p. 7.

[6] VTEST available frOP!: TYHLABS
211 East 7th Street
Austin, Texas 78701
(512) 478-0611

[17] Hewlett-Packard, "FORTRAN Reference Manual", Part
number: 30000-90040, p. 4-21 thru p. 4-26.

[18) Hewlett-Packard, "COBOL II Reference Manual", Part
I'lUJIlber:32233-90001

22

(7) Contributed Library Tape, Available frOR:
HP3000 International Users Group
(INTEREX)
2570 El CaRino Real Llest
4th Floor
Mountain View, CA 94040

[8) ADPAN, 1984 AnaheiA Swap Tape, Available froft INTEREX.
[9) Green, Robert M. "The IMAGE/3000 Handbook", (Seattle, LlA:

LlORDLIARE, 1984). p. 283.
[10] ibid, p. 283
[11] Green, Robert H., "Auditing with IMAGE Transaction Logging",

San Antonio PROCEEDINGS, HPIUG, 1982
[12) Heidner, Dennis L., "Transaction Logging and Its Uses"

San Antonio PROCEEDINGS, HPIUG, 1982
[13] Green, Robert H. and Heidner, Dennis L., "Transaction Logging

Tips", Montreal PROCEEDINGS, HPlUG 1983
[14] DBAUDIT, Available frOR: Robelle Consulting Ltd.

8648 Arftstrong Road, RRt6
Langley, B.C. V3A 4P9
Canada (604)-856-3838

7 - 11

