
POL ISH I N G THE TAR N ISH E D I MAG E
A brief study of the effects of some user available options

Brian Duncombe

Carolian Systems, Inc.Richmond, Ontario

5 - 0

Keven
Rectangle

POLISHING THE TARNISHED IMAGE

A brief study of the effects of some user available options

NOWRUG'84

Seattle, WA

May 16,1984

Brian Duneombe

Carolian Systems Inc:.

Ri~hmond Hill, Ontario

(416) 498-1515

In my capacity as a consultant in the effective use of the HP3000 computer system, I
often observe that users are not making the most effective use of the tools
available to them.

A case in point is the use of various processing options that are available to the
IMAGE/3000 user. W" often hear U5HS comm"nting on the lack of f e e t u res av erLab Ie
within IMAGEj3000 (notably t he lack of multi-thr"ading acce ss) yet J seldom see all
of the features that ar" th"re being used to the greatest advantage.

What I am pr"senting h"re is th" results of some simple experiments that I conducted
to show the relative benefits of the various techniques available with the
IMAGE/3000 "nvironm"nt.

The things that J tri"d are as follows:

- varying buffer specifications for the data base

- using the output def"rred processing mode

- pre-sorting transactions prior to updating the database

- enabling disc caching

WARNING

The results presented here are for a very Simple database with very simple updating
(additions only) and the processing was done on a stand-alone computer system. While
I believe that the results are not representative, I do believe that the relative
effects are valid. My expe ri ence s in the past have yielded very similar results
with actual application systems but not necessarily quite so dramatic improvements.

5 - 1

HARDWARE ENVIRONMENT
HP3000 S~ries 44
1024 fB main memory
2 HP7925~ disc drives on 1GIC
stan~-alone system in all cases

SOFTW ARE ENVIRONMENT
MPES 'P' (pre-release version)
SPL (test programs)
It1RGE/3000
NO transaction logging

NO intrlnsic level recovery (IlR)

Dl!!S-1

DATABASE USED

BEGIN DRTR BASE OBTEST;
PRSSWOROS:
ITEMS:

KEVl, X 4;
KH2, X 4;
rEV3, X 4;
X02R, X 2;
X02B, X 2;
FILLOI, XlOO
FIlL02, XIOO
FILlO3, XIOO
FILL04, XIOO

SETS:
NAME: M-PROD, RUTOMRTIC
ENTRY: KEYl (!) ;
CAPACITY: 2001;
NAME: R-2, AUTOMRTIC
ENTPY: Y.EV2 (l) ;
CAPACITY: 201;
NRME: A-3, RUTOMRTIC
ENTRY: KEV3 (I) ;
CAPACITV: 101;
NAME: O-INVENT. DETAIL
ENTRV: Y.EYI (!M-PROD),

X02A,
KEV2 (A-2),
X02B,
KEV3 (R-3),
FILlOI,
FILL02,
FILL03,
FILL04 ;

CAPRCITV: 12000;
END.

Dl!!!~

2

OVERVIEW AND INTRODUCTORY COMMENTS

As you can see from Figure 2, the database is very elementary. Since the master
data sets are all automatics, the media record size is very short and makes it
easier than normal for the IMAGE software to manage additions and references to
these data. I did attempt to fill out the detail somewhat but even this is not
r e or e s e n t at ave of most data b a se designs. The structure does; however I make it
fairly simple to test the effects of various techniques and thus see generalized
trends.

To control the experiments, I built a system on a set of packs to be used
ex-clusively for this testing. Once I had the data files created, I simply erased
them between tests to eliminate any effects of file placement. I did not me ke any
effort to po s r t i o n the files optimally but rather let MPE distribute extents with
default assignments.

Throughout the testing, all reported times are elapsed times rather than processor
(CPU) times. Since this is the case, it is possible that par t s of the results have
been skewed by the processor being fully utilized and that with a faster processor,
the relationships between the results might be slightly distorted. As an as ade , I
did try to watch for this and there were no major portions of the proceSSing where
the processor was saturated except during the caching tests when the caching
software tends to utilize most idle processor cycles.

The transaction file was generated USing a random number generator to produce the
three key values per transaction. In doing this, I get what is probably the worst
case transaction sequence since in normal application systems, there is usually some
'clumping' of the key values for an order, invoice, customer, etc.

Rlthough the facilities were available to me, I chose not to enable either
transaction logging Or intrinsic level recovery (ILR) for the tests. This was
initially done to reduce the number of permutations and combinations for the testing
and reporting. I did; however, repeat several of the tests to see what the effect
of enabling these facilities would be. Running with these facilities enabled showed
a slight increase in elapsed times but the increase was very slight and not worth
reporting in detail.

3

5 - 2

iI. ~ ~

THE EFFECT OF 'BUFFSPECS'

The most obvious technique that is available to IMAGE/3000 users is that of
over-riding the default buffer specification for the database. It seems that the
people who maintain IMAGE/3000 have either never thought about choosing a gCtod
default specification or e Lse they thought about it years ago when a 320KB system
was a monster. The nice thing about this parameter is that it is easy to change and
requires no program changes. The only thing you must do is to sign on to the system
as the creator of the database (or have and know the maintenance word) and get
exc Ius rve control of the database u5ing DBUTlL.PUB.SYS to respecify the BUFFSPECS
parameter.

The following chart (Figure 3) shows the effect of varying the buffer specification
throughout a wide range of values. Subsequent charts will always show the effect of
varying this BUFFSPECS parameter in addition to whatever else is under
c o ns ide r a t ion.

Conc:loliool:

• By simply Over-riding the default buffer specifications, you can gain about
22% in the run time of the job.

• The gain is most noticable in the lower range of values.

* Assuming that you are not already short of main memory, you will almost
always enjoy some gains.

Warning

• For batch processing, this will almost always be a good idea but for
environments where many databases are being used by a few people each you
should not go overboard with the BUFFSPECS. If you increase the
specifications to the pOint where the size of the Global Control Block starts
t o cause main memory resource shortages, the effect of having a big buffer
pool is outweighed by the occurence of the control block being swapped out of
memory. If this is the type of database use during the daytime only, you
might consider modifying the speCifications at the beginning of the evening
batch processing and resetting them for the next daytime period.

4

r;; _ 1

INCREASING BUFFSPECS

Random Sequence

~.~~~n~n~m~e~~~~n~dS~)--_,

1800

-
1200

600

O~O••••~•••••~8••~~~~••~~~••~~~••·2~•••••~~••·~~••~~~••~~~••·.~•••••~~"·~~"~~~"~60~"0!1~

Eklffspecs-n(V120)

EilPD-.J

5

THE EFFECT OF USING OUTPUT-DEFERRED

A f~ature of IMAGE/3000 that is overlooke~ by many users is that of telling IMAGE to
def~r physical ~isc writes until absolutely necessary. This feature in effect turns
off the feature in IMAGE that ensures that the copy of the da t abase on disc is
upds t ec almost inrnediately upon a USer program issuing an intrinsic that modifies
t ne data. Because of the nature of this facility, there are several conditions
which must b~ met. In the first place, you must be the only one currently accessing
t ne database and to ensure this, IMAGE forces you to open the oatebase in MODE=3.
In the second place, you would be well advised to be backed up prior to conrnencing
prl)(~ssin9 in this mod~ since in the event of an operating system failure. you are
almost guaranteed of having a corrupt database. The easiest way of doing this is to
schedule your daily backup to a period between the end of daily multi-user access
and the be9inning of nightly batch processing. Once this is done, you know you are
well tacked up and you can then enjoy the benefits of this technique for your batch
pro(essing. Because of the nature of the proceSSing, you should turn off
transaction logging and intrinsic level recovery (ILR). Once these conditions have
been me'. it is a simple matter of calling OBCONTROL with a mode of 'I' to set the
deferred output mode. Of courSe, in order to use this technique, you must make some
changes to your application code. These changes may be very simple or they might be
so complex as to not warran1 the effort .

The following chart (Figure 4) shows the effects of utilizing this facility compared
to the results without it. As you can see, the gains are quite attractive. In
addition, notice that the improvements are more significant as the number of buffers
provided is increased. This seems logical since the more space you provide, the more
ll'elya record is to be still in a buffer when it is required for another request.
My experience is that most users will cut their run times in half when they can
combine increased buffers with deferred output.

6

5 - 4

USING OUTPUT DEFERRED

Random SeCI.
NotDeferred

Random SeCI.
Delerred

2~,~Ru~n~T~im~e~~~~nd~S~) -,

1&00

1~

500

""',
,'-'--------------

O~O••••+••••• ~8••~a~ ••~~~••~20~••~2.~••~~••~32~••~~~••·~~••~«~••~~~••~~~••~~~••~60~~~~

[jU.I!~

Eklff.pec.-nU/120)

7

THE EFFECT OF SORTING T~:ETRANSACTIONS

The techniques that many of uS learned in the earlier days of batch-only processing
seem to have been discarded with the dawn of 'modern' data processing. One thing
thai most of us were forced to do was to sort transaction files into sequence by a
key and then process those records agains1 the 'master' file. r nr s was ne c e s s a t e t e d
by a lack of any (or at least an adequate) random access facility to our data. If we
were to go back to the good old days and re-Iearn some of these lessons, many of us
would be much better off.

The theory behind this technique is that if you have several transactions thaI must
be processed against the same master record, it will be better to get the master
record once and then do all the processing rather than pay the price of accessing
the master individually for each transaction as it comes along.

In order to impliment this sorting, I modified the original program to rnc j ude an
'internal' sort which was included in the run times. If the sort were done as a
seperate step, the gains would be somewhat reduced.

Of course, this technique will likely mod i t y the logic of your current applications
and as such may be difficult or totally impractical to rm••liment. Even if you
c anno r use it r e t r o ac t rve l y , the following results should 5tH you to keep r t i n
mind for future design/development projects.

The ne x t chart (Figure 5) shows the possible be ne r i t s of this seemingly simple r de a .
Rs you can see, the benefits are worth having if the COSI of rmp Lame n t at ron is not
100 great. Notice that the benefits are most no t rc eb Ie when combined with low
buffer specifications and that fairly early in the chart, the effect of buffers is
almost negligible. This is of course because in presorting the transactions, you
have greatly increased the chances of a needed record being present from some
previous transaction (the last one l) . Because of this, we can conclude that the
default buffer specification is less harmful when you have sorted the data (HP gives
you credit again?). If the database deSign and application were more complex, this
paint of no additional improvement would move out to the right as it should if
multipl~ users were sharing the database simultaneously.

Note:

In an investigation for a client, I replaced the sort on the key value with
a pre-calculation of the hashed key value and sorted on this hash key. The
theory was that by doing this, I could reduce the movement of the disc arm
mechanism by requesting addresses that were as close as possible. In fact,
with the transactions used in this test, I could not detect any significant
difference in the run times although I have seen other applications of
pre-calculation of hash keys that yielded very favourable improvments.

8

SORTING THE TRANSACTIONS

Random Seq.
NotDef.rr~

Sort~ Seq.
Not Deferr~

~'rRu~n~Ti~lm~e~~~~~nd~S~) ,

1800

~

- ---- ---- ---- ---- ---- ----------1200

600

O~O.a••-•••••~B~~~~~ ••·~~••~20~••·2~.~..~~..~~~•.~~~..·~~..·.~••...~~~~~~..~~~..~60~••~~·
Eklffepece-nCV120)

EiU.!!2

9

h

THE EFFECT OF COMBINING BUFFERS, DEFERRED AND SORTING

Th~ next logical experiment is to combine the variables examined so far.
shows the results of this combined effort.

Figure 6

A, you can clearly see, if you are able to apply all three ideas, the improvment in
run times is about five fold. My experience to date is that this is optimistic but
~·'en a three fold improvment would extend the life of your system greatly, allow
mor e applications to be run on the same system or reduce the need for additional
s n r t t s of operators. In some cases, it can mean the ability to be finished
y~~t~rdays wort by the time you arrive today.

t1051 installations are not able to combine all three changes and so to some extent
t n i s chart shows an un-attainable goal. It also shows that IMRGE/3000 is not
~eser'ing o f much of the criticism it has been receiving lately. If we were to
empl<.y some fairly simple principles in our system design and implimentation, we
wou l d be repaid hanscme Ly . Of course, it would be nice if we could buy our way out
of our difficulties but currently that is not an alternative for many of the larger
installations.

10

COMBINING SORTING WITH OUTPUT DEFERRED

Random SeQ.
NotDeferred

Sor1ed SeQ.
NotDeferred

Sorted SeQ.
Deterred

~r~~n~TI~m~e~~~~n~dS=) ~

o •
o

1800

i2CO

600

E!u.!!~

<,

'- ------.........--.~-----------
------- -- ------ ----.... '--.., --

.~--.,."'--

/~.---.---.---.---.---.---.--.---.--.---.-- ,

/-8 " .,
"" •• <8 s.< .,; Ml 44 oil 52 56 i 6'

filffapecs-nM20>
!

11

5 - 6

THE EFFECT OF BUFFSPECS COMBINED WITH CACHING

The re~ult5 pre5ented here have been determined by running the 5ame 5et of te51 s a5
reported earlier but on a system with disc caching enabled. In fact, the tests were
all conducted on the same system with the same version of operating system (MPESP).
The previously reported results were those obtained with cachIng turned off (not
turned on).

The following results are those obtained after caching was turned on. One corrrnent
on these t e s t s is that MPE5P is probably the optimal version since it enjoys the
be ne t i t s of disc caching without the performance degradation of the new operating
system (MPE5E) and it '5 logic for extended table s i z e s . A look back at Figure 1
will Show you that the main memory size (1 MB) was not up to the recommended
spec i r ic a t ions . The application that I was running made very low demands on main
memory r e so ur ce s itself although the results reported here should be able to be
improved upon somewhat with additional memory.

Due to a lack of hardware r e sour ce s (disappearance), the t e s t rnq with caching was
only carried out with buffer spec r f ac a t i.ons up to 27 buffers. Some of the c h a r t s
will lead you to wonder how the extended caching re5ult5 might have compared but we
will probably never know.

Figure 7 shows the baseline test plus the same test with caching. These initial
r e s u l t s are much better than either those advertised or my own expe r ie nce s , A5 I
5aid earlier, these results should be used to compare relative effects and 5hould in
general be considered optimistiC. As you can see, increasing buffer specification5
has much le~s effect when caching i~ turned on since caching effectively extends the
available buffer space through the caching mechanism. What is not reported here and
something that i5 5ignificant i5 the CPU re50urce con5umption data for the te5t5. In
g"neral, the se r re s 44 pr oce s so r wa~ fully utilized for most of the caching t e s t s .
If the t r ans ac t rons had been more CPU intensive t hemse Ive s , the caching r e s u l t s
might not have been nearly as appealing. My personal experiences with caching are
that if you can get the same effect by some other t ec nn ique (buffering, b I oc ki nq ,
s or t i nq , etc.) you will always be better off than incurring the caching overhead
although where this cannot be done, caching i5 an extremely worthwhile facility.

EFFECT OF CACHING

INCREASING BL.FFSFECS
Random SeQ.
No Caching

Random SeQ.
CacHng

~rRU~n~T~im~e~~~~n~d~S~) ,

1800

1200

600

O~O""~4~"~8""~~~"~~~"~ro~"~2~4"~~~"·~~"~~~"~~~"~"~"·~~"~~~"·~~"~60~"~~
&Jffepece-n(V120)

Eil!l.!:!...1

12 I 13

5 - 7

THE EFFECT OF COMBINING DEFERRED OUTPUT WITH CACHING
EFFECT OF CACHING
UStIG OUTPUT IlEfERRfDFlgure 8 repeats the results shown earlier (Figure 4) and in addition repeats those

two tests wlth dlSC caching enabled. Rs you might expect, caching again shows its
best results wlth low buffer 5pecifications. The addition of output deferred to the
caching still yields significant savings although not nearly as much as when caching
lS not present. ThlS appears to be logical since both deferring output and caching
are attempting to reduce the loading on the disc subsystem and their effects overlap
one anoth~r.

Rand.Set! Not ~I
No Caching

Rlncl.SeQ. Del.
No Caching

Rand.SeQ. Not Del
Cacl1ng

Rand.5eQ. Del
Caching

Run TIme (seconds)
24CO

If we can attempt to extrapolate the caching data, it would appear as if the test
resuLts for deferred output with large buffer specifications might very well be
r-et t er than caching without output deferred. In effect, a user who takes advantage
of current tools may very likely get better performance than one who relies on dlSC
caching as his/her salvation. The results when all three techniques are employed
,tlll appears to be an improvment over any other combination seen so far. 1800

",
..•.•.•.... -.....

-.....,---------------'-'-'-'
12110

'-'-,---eeo

O~O••••~4••••~B••••~~••~~~••~OO~••~24~••~~~••32~••·~~••·~~••·4~4••~4~ ••~~~••~~~••~60~••-!'~·

IiIffspecs-nM2Q)

riu.!!...!

1514

5 - 8

THE EFFECT OF COMBINING SORTING WITH CACHING

As Figure 9 shows, the improvments see when disc caching is introduced appear to be
as significant as those obtained by sorting alone. In combination, the results are
very attractive.

Thinking about this case, it would seem logical that many of the advantages
attributed to the increased size of main memory used to store disc data that disc
caching offers are of no use when the transactions are being sorted prior to
processing against the database. Caching will still yield run time reductions due to
th~ 'instantaneous' completion of disc writes rather than the waits that are imposed
by IMAGE usually.

If the database were being shared by multiple users, one would expect that sorting
would be less effective by itself since other users would cause the buffers to be
reused even when the test transactions referenced the same data repeatedly. In this
case, the extended main memory that caching provides for buffering space might very
well be more Significant. In the same vein, what appears to be no improvement when
buffspecs are increased will probably become a noticable improvement when the
database is accessed by multiple concurrent users and will be more effective than
leaving the task to caching,

16

Rand.Seq. NotDel
NoCacHng

EFFECT OF CACHING

SOFmNG THE ~TIONS
Sort.5eQ. NotDel

NoCaching
Sort.Seq NotDel

Caching

~pRu~n~Ti~lm~e~~~~n~d~S~) ~

1800

5 - 9

1200 ---- ---- ---- -~ ---- ---- ---- ---- ---- ---- ---- ---- ----

-,-.-,--_.-
1500

0~O""~4""~8""~~~"·~~"~ro~"·2~4""~~"·~~"·36~"~~~"·4~4""~~"~~~"·~~"~60~"~~·
a.ffepece-n(V120)

fil!luJ

17

I
1

I THE EFFECT OF COMBINING ALL TECHNIQUES

Rs we have been going along, we have b~~n seeing a steady improvment in run times as
each technique was employed. Figure 10 compar~s some of the previous tests with the
final one that use s sorted transactions, increased buffer specifications, deferred
output and disc caching. The chart clearly shows that t he utilization of all four
t e c nn Lque s together will yield t ne be s t elapsed time for this particular run
e nv i r o nme n t , What is also no t ab Ie is that t he second best r e su l t is obtained by
turning caching off. When the o t he r t nr ee tools are utilized, the addition of
cacr,ln3 is not nearly as significant as the addition of most any other technique in
tM other tests. This seems reasonable since caching is attempting to do with
ado i t ao na l overhead many of the same things that the already available tools have
been capabl~ of providing all along.

EFFECT OF CACHING
COMBINING SORTING WITH OUTPUT DEFERRED

Rand.5oq. Not~f
NoCAching

Sort.SeQ. Not ~I
NoCAchng

SortSeQ. Def
NoCaching

Sort.Seq. Not~f
CAching

~~_n__n_m_e_~n_dS_) ~
2~r

1800

1200 ---- ---- ---- -~ ----- ~ ------- ---- ---

600 ~.-.-.-.-.-.-.-.-.----.-.-----------_.

O~O•••• ~4•••• 8~ ••~~~ ••~~~ ••~OO~••~24~••~~••~32~••~36~••·~~ ••·4~4••~~~ ••~~~ ••~~~ ••~tiO~m.~~·

9Jffspec:s-n(V120)

Eil!lD.J!

18 I 19

Sort.Sea. Del
Caching

5 - 10

SUMMARY

Unless main memory is at a premium on a system, it is always advantageous to
over-ride the default buffer specifications for a database. This should of course
be tempered with common sense. It is not advisable to run off and change the
specifications of 20 or 30 database. if there is a good chance that they will all be
opened at the same time for normal processing. The addition of this increased main
memory requirement can be significant even to a system with a very large main memory
configuration.

Where possible, modifying programs and job schedules where necessary to include
processing the data base with deferred output to disc will always produce
significant improvements in run times. In addition, by reducing the number of times
phYSical disc i/o must be requested you reduce the CPU usage marginally since the
code to hand 1e this function is e xecuted Ie s s often. This is; of cours e , always
weighed against the effort to impliment it and th e effect that the restrictions
imposed by this facility will have on your processing in general.

The pre-sorting of transactions has a clear po s s ib i Li t y of improving overall run
times. Of course, there are many times when the effort expended in going back to
ct,an9" exiSting applications exceeds the benefit. Fh i s is; however, a very use ru l
technique to keep in mind for future applications where it can be designed in. The
c ho rce of what to sort on requires thought on your part and quite possibly some
testing.

While disc caching always appears to improve the situation in the results reported
here, my e~perience has shown me that ther •• are many cases where the CPU doe5 not
have the excess processing capability to absorb the overhead of caching and that
many applications will run slower with caching. I would recommend that you aquire
the services of a consultant with considerable experience in disc caching (HP or
third party) if you are in doubt as to whether your system would benefit from disc
caching.

20

5 - 11

