DATABASE REFLECTIONS

Alfredo Rego and Stan Sieler

Adager
Apartado 2438
Antigua
Guatemala

Keven
Rectangle

Keven
Rectangle

Alfredo Rego and Stan Sieler

Adager
Apartado 248
Antigua
(iatemala

Leslie Keffer de Rego, Editor

Special thanks to Bob Green and Elizabeth Hanckel,

DATABASE: The word iteelf originatee fierce battles; How do we SPELL it?
How do we PRONOUNCE it? Uhat does it MEAN?

Wrether we like it or net, we all use databapes in one way or another {or
nave gome of our private data squirreled away in somebody else's databases).
. «wvitably, then, we are interested in understanding the current state of
at-sirg

Az a irst step, let us enjoy the rare pleasure of admiring a conceptual
THEORETICAL 1DEAL. AS a second and ecbering step, let ue analyze the more
pedestrian matiers asscciated with IMPLEMENTATIONS OF DATABASE MANAGEMENT
SYSTEMS. and, as a third step, let us review some of the PRACTICAL
CONSIDERATIONS that we face in our dealings with ANY database,

To illustrate our discussion, we use a concrete database management systen
as our frame of referernce, The bulk of our experience as members of the
world-wide HP300C family has been with Hewlett- Packard’s IMAGE/3000
databases, Therefore, it seems reasonable to use IMAGE as our {frame of
reference and the HP3000 series of computers as our universe, IMAGE has
been used for more than 3 decade in thousands of HP3000 computers throughout
the worid. It combines a solid design with a solid implementation. Many
influential peopie realize its potential and IMAGE continues to be the
subject of major investments in research and development. Ue can certainly
learn a lot about database systems in general by carefully studying IMAGE in
particuiar,

Az a corvenience, we will use "DBMS® instead of “"Database management
gystem. "

NOURUG May 16-18

R RN AREN AT SR NAETCSSFRSSIMRTRESSS AR TS SAGSERSSSXPSSSINSTrETIMS®ISSW

THEORETICAL EDFAL: A database is a computerized model of reality.

An EFFECTIVE model should be, at least:
~ Faithful,

- Degcriptive,

- Predictive,

- Reliable,

- Efficlent,

~ Flenible, while being stable,
- Corwvenient,

- Economically justifiable.

- Secure.

- Eagy to use,

To qualify as an effective model, a database usually consists of two
complementary parts, suppiied by a DBMS: the internal STRUCIURE and the
USER INTERFACE. The structure is for PERFORMANCE’s sake, The user interface
is for SANITY’s sake.

The structure ag well ag the user Iinterface of a DBMS are no better than the
operating system that supports them. fortunately, Hewlett-Packard has
managed to provide us with a stable operating system with more than 10 vears
of constant growth and congtant preservation of compatibility. A user
program that runs om any HP3000 computer hardware (large or small, old or
new} will run on any newer HP3000 computer; and most user programs that run
on newer HP3000 computers will also run on older HP300D computers, The
required changes, if any, are trivial to make, The HP3000’s range of age,
gize, price and processing power is unprecedented in the computer industry,
This is quite nice to knouw, gsince we are interested in a solid foyndation
for our DBMS.

Structure

The structure of a database s not "sirictly” necessary, but it has dramatic
effects on the performance of certain funciions, such as FINDING anQ
REPORTING.

Dif ferent people have different preferences when it comes to structures,

Just witness the variety of tastes regarding buildings, airplanes,
girlfriends, boyfrienda, automobiles, etc, Database structures for lack

NOWRUG May 16-18

thereof} are not an exception, of course. Some people are satisfied with
piles of junk while other pecple delight in crystal-like organizations where
everything is disciplined to the utmost degree. Let us see some examples
that will give us an idea of the RANGE OF STRUCTURAL POSSIBILITIES.

At one extreme, we see that a garbage dump (& "heap"} does not have any
internal organization or discipline whatsoever. Ue can sasily and quickly
add anything to it, However, we may spend an eternity to locate the specific
item that interests us. Most likely, we will have to esamine EVERYTHING.
At the other extreme, we see that an ideal library would have a very large
collection of books, a very sophisticated indexing system that would allow
us to find any book by means of any attribute, and a very efficient staff
that would WEVER place any book in the wrong shelf.

The same is true with databases, A system with great responge time during
data entry usually has an unacceptable response time during ad-hoc
inquiries. Corversely, a system with great resporme time during inquires
will probably have a slower response time during data entry, due to all the
maintenance effort required by the underlying structure, And even the best
possiblie implementation of a DBMS #ill eventually misplace some vital piece
of informationt

A DBEMS without any internal organization whatsoever aeems like a
conitradiction in terna. Even the "purest”™ of theoretical flat-table gystoms
has some MINIMAL structure. Otherwise, we must do a full gerial search
through EVERY single bit of the database just to find one or two pieces of
information, If we have intelligent peripherals that can do these serial
searches blazingly fast, we can get away with a few thousand or a few
million entries, but there is a limit to how many entries we can search
perially in an effective way, A SEARCH WITHOUT INTERNAL STRUCTURE MEANS A
SERIaL SCAK, This is unacceptable for on-line types of applications,

Regardless of our preference for structure {or lack thersof}, the baslc
atonic entity in any digital computer systes is the BIT. The word “big
comes from collapsing the words "binary digit" and means “"something which
can be in one of iwo stable states”, The "something” and the "twc stable
gtateg” c¢an be practically ANYTHING. These are just some of the many
posgibilities; on/off, right/left, up/down, positive/negative,
foruwards/backvarde, dur choice depends more on convenience than on
necesoity. The abesence or presence of a hole in an IBM punched card is an
example of a bit, The direction of & micropcopic magnetic field ineide the
HP3000’s Intelligent Network Processor (INP) is another esample of a bit,
Despite their obviocus differences in sophistication and technology, both
types of bite are sathematically equivalent.

in general, we parcel out contiguous groupe of bits and we call them
mbblee;, bytas, words, sectors, tracks, disc packs, nemory banks, records,
files, tape reels, diskettes, casseties, punched carde, punched paper tape,
rows, tables, columns, vectors, matrices, cylinders, segnents trees, lists,
heaps, aagnetic carde, drums, stacke, or whatever, The parceling, gmuping
and naming of these bunchea of bits have been the result of arbitrary
choices takem in the last few vears by subline scientists and mercenary
promoters alike. It is VERY important to be aware of this, since some

NOWRUG May 16-18

people may think that these entities are sacred and worthy of our
unguestioning acceptance.

These bunches-of-bits (uhether we like them or not} cover a wide spectrum
that ranges from the VERY inconvenient to the SOMEUHAT convenient., In
general, we may consider them as different classes of computer memory, Uhat
is amazing iz that we have been able tc use these rudimentary
computer-memory elements to model and represent practically everything known
to humanity!

There are various ways to implement structures uging these different
hierarchies of computer memory. In general, faster memory is more ewpensive
and more volatile. The trick is to try to optinize our cost/benefit ratios.
CPU registers are the fastest, but a computer [(ANY computer) has only a
handful of them. Central memory is much slower, but a computer like the
HP3000 can afford to have a few million central-memory locations {usually
measured in terms of megabytes), Disc memory is crders of magnitude slower,
but & conputer 1like the HP3000 can have a few billion disc locations
{usually measured in terms of gigabytes]. Tape memory is dramatically
plower but allows access {0 an unlisited amount of data, given enough time
and human-operator patience, Since tape is the least experisive and the
leagt volatile, it is mostly used for backing up databases (which generally
reside on diescs ard are moved back and forth from discs to central memory
for updating and inquiries},

Regardless of their physical location in the memory hierarchy, these
computer-memory parcels contain information which is of interest to ug., The
challenge is to relate, somehow, thoee parcels that contain “related” pieces
of information even though they may be physically gquite apart from each
other,

At this moment, let us take & small detour regarding fashion.

A casual cruising through the literature of the times might leave ug with
the impression that only the so-called “relational” eystems can relate,
Nothing could be more unrelated to the truth. Relating IS the whole idea
behind ANY DBMS. This strange twisting of the language m analogous to shat
happened to the tern “America”.

America is the name of a CONTINENT that “beging” with Alaska and Canada in
the north and "ends” with Argentina and Chile in the south, America IS NOT
the name of a country. As a matter of fact, all kinds of countries, like
Guatemala, Colombia, the United States of Brazil, the United States of
Venezuela, the United States of Mexico and the United States of America, are
scatiered throughout this large continent, If you were born in Peru, then
you are a Peruvian AND also an American; gimilarly, you are a Costa Rican
AND an American, a Canadian AND an American, a U.S.A.’ian AND an American,
and so on for every country in the American continent,

To eay that ONLY natives of the U.8.A. are Americans is as auch of a
sacrilege as 1o eay that OMLY “relational” systems relate, Every native of
any of the twenty-odd countries of the American continent is an american,
Every DBMS relates, Period,

NOURUG May 16-18

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle

Let us now return from our small detour regarding fashion.

Ue were saying that, regardless of their phyeical location in the memory
hierarchy, these CORpuUter-memory parcele contain information which is of
interest to us. The challenge is to relate, somehouw, thoge parcels that
contain "related” pieces of mfomatmn euen though tMy ray be physically
quite apart from each other.

e may relate at the time when we enter the information, or at the time when
we report the information, or at any time in between. Ue may use techniques
such ag hashing and indering to go {more or legs directly} to the locations
of parcels that contain master or key pieces of information. Ue may use
techniques based on pointers to link certain parcels to other far-away or
close-by parcels, usually based on common values for keys or search fields,
Ant we can do the linking in a hierarchical way, in a networking way, or in
any other way that we happen to like, (It is imteresting to note that a
hierarchy lg only a special case of a network]}, Regardless of the
structure, the linking may be in one direction (singly-linked lists), or in
two directions (doublywlmked lista}, or whatever, based on tradeoffa
dictated by our pricrities: space? perfomance" relmbiiuy'? We can also
choose NOY to do any linking whatsoever,

The issue of structure {or lack of structure) becomes important when we have
to face reality. It is one thing to deal with academic examples that
congider only a few hundred (if that many} entries. It is another ball
game, altogether, to deal with operatiomal gystems that deal with billlons
of related pieces of information. Ue must remember that IMAGE currently
supports up to 99 datasets per database with up to 127 fields (simpie or
compound} per dataset and up to 2,139,094,785 entrise per dataset, for a
marimum databage field count of ..., oops .., our HP c¢alculator has just
overflowed and has gone into sclentific powers-of-ten notation! HNot to
mention that IMAGE and MPE allow us to have many databases per computer and
many computers per network, linked via satellites hovering high above the
gurface of the Earth!

Does anybody still claim 1o be able to manage all this without the benefit
of giructure?

Uger Interface

The USER INTERFACE of a database system 18 responsibie for helping
authorized hunan beings perform (a) addition, modification, deletion and
reporting of information stored by means of the database STRUCIURE, as well
ag {b) general maintenance of the siructure itself.

A DBMS must have, al the very least, a set of Intrinsics (fundamental
pmcedures, routines or functiona) that allow basic operations on the
database’s structure and data. We can then write programs that call, in
turn, these intrinsics. In the specific case of the HP3000 computer, we can
access IMAGE/3000 databases by means of intrimsice such as DBOPEN, DBGET,
DBUPDATE, and so on, which we can call {rom programe written in 1angnage$
such as BAS!C, COBOL, FORTRAN, PASCAL, RPG and SPL,

NOURUG May 16-18

The user interface consists of the set of programs that call the intrinsice,
Some of these programe will be specially tailored for certain applications
and some will be generalized. Some of the generalized ones may, in twrn, be
interpretive in nature, Some will provide only data entry, others will
provide only reporting or browsing, still others nay provide every kind of
access to 3 database. Some of the interface programs may have rigid syntax
rules and szome may have oxtrepely friendly approaches, Some may guide the
user by means of examples and some may take examples from the user as
mufficient "commands" to do database operations., Some may allow a limited
number of relations and others may allow a large number of relations and
operations,

The user interface drives the database structure just as a concert pianist
plays a concert grand piano., The artist and the instrument nugt be
perfectly matched and balanced. Otherwise, everybody suffers through a
painful performance!

Theoretical conclugion:

1f we imagine "data” and "information” as members of a "population”, we can
define a DBMS by analogy with a nation: “"A protected territory uith
well-guarded borders and well-disciplined citizens whe live in a clinate of
stability, mutual respect and cooperation”, In IMAGE’s terms, we get "4
gtructured collection of protected (privileged} files which interact with
the operating system in sich a way that our separate pleces of information
are safely kept and meaningfully related when we agsk for them,"

Uow! This sounds nice {or terrifying, according to your beliefs on hou
society should -- or should not -- be organized}, Regardiess of your
reaction, the fact is that pieces of information, just like peocple, are
unpredictable, Any attempt to organize them neatly into “perfect countries®
iz doomed to fail. We must be aware, then, that we are dealing with
structuree created and maintained by humans and, like every human thing,
these structures will be full of errors, omissions, sins, blind alleys,
blatant loopholes, wasteful use of scarce resources, injustices, and so on,
Quite normal, we think, if we consider that there are infinite
inplementation choices, with each of these choices being followed, in turn,
by an infinite amount of other sets of infinite choices! Too much, really,
for the human mind.

Our theorstical conclusion then is: "The different DBMS’s are only
different in terme of the implementation choices made by their designers,
Deep down inside, all DBM$S’s are the same: They are just frail human
attenpts to organize unruly pleces of information.”

This theoretical conclusion serves as our guiding light as we begin our
gtudy of practical realitieg: The implementations of DBMS's,

NOURUG May 16-18

NN C R Y N ISR RS N T I R FR TS A PR FE AT RSN eSSy N g R
PRACTICAL REALITY: A database is a frail human attempt to organize unruly
pieces of information,

FEET T R g prarpngnpragug-gryrprargg . F S I LI T I T L S

frail or not, databases should put up a minimum battle to be considered
worthy contenders. Let us examine some tricks of the trade that we consider
standard for such battles,

availability of 3 minimum set of access possibilities

e deal with a databage for two main reasons: to do general maintenance work
on the STRUCTURE and to do general maintenance work on the DATA. Ue access
the atructure by means of the DBMS’s utilities {like DBUTIL and ADAGER}. We
access the data by means of the DBMS’s intrinsics (like DBUPDATE).

e can access a database’s data in an updating or a browging mode. In
updating mode, we can add, delete and modify entries. In browsing mode, we
can only look at existing entries, In either mode, we are restricted by the
database’s gecurity layout, as epecified by the database’s design and
maintenarice staff, For instance, in a payroll database some people may not
be allowed to modify or browse the salary fields.

e have the following possible kinds of access to a database’s data:

1

Evclugive update, o that nobody else accesses the database when we update
it. This is not very sociable and we should only use this access mode
under extreme circumetances,

Non-exclusive update. In this mode, we can still choose whether or not we
allow concurrent updating or concurrent browsing or a mixture of both,

Exclusive browsing, so nobody else accesges the database while we read its
entries,

- Non-exclusive browsing. In this mode, we can choose whether or not we
allow concurrent updating or concurrent browsing or a mizture of both
vhile we read the databage’s entries.

IMAGE allows several access methods, including:

- SERIAL {forwards or backwards), according to the phyeical location of the
entries regardless of their search-field values, Ue access the HEXT or
the PREVIQUS phywmical entry.

- CHAINED DETAIL {forwards or backwarde}, according to & chain of common
detail entries with the same search-field values even though the imvolved
entries may be quite apart physically. Ue access the NEXT or the PREVIOUS
logical entry {(uwhich may be located close by or thousands of PHYSICAL
entries away from the current entry).

CHAINED MASTER (forwards or backwards), according to a chain of common
master entries with the came search-field hash-value even though the

NOWRUG May 16-18

involved entries may be quite apart physically. Ue access the NEXT or the
PREVIOUS logical entry [which may be located close by or thousands of
PHYSICAL entries away from the current entry).

~ HASHED, according to the value of a master search-field. With hashed
access, wuwe specify "give me the entry that corresponds to (onzalez"
{without any mention of the LOCATION of Gonzalez’s entry; ag a matier of
fact, such an entry could very well be the most active migrating secondary
in our database!}

- DIRECTED, according to the entry rumber. Ue access entry rumber 1541, or
entry mumber 178, or entry number 780903, regardless of its contents,

IMAGE glves us “location-addressing” mechanioms {gerial and directed access
methods) as well as "contente-addressing” wmwechanisme (hashed and chained
access methods),

Thege are the individual access modes INTO the database. To orchestrate
them, IMAGE and MPE {the operating eystem for the HPIOUO family of
computers} allow us:

- Concurrent access by different processes within the same time frame. Some
processes may be updating, some adding, some deleting, soxe simply
browsing, some doing everything.

- Access by the same process throughout various time frames, even as the
database’s structure évolves, This requires data-independent programming,
which is slower and more painstaking but more flexible than hard-wired
programming,

- hccess by a mix of online and batch processes.
- Access by a mix of local and remote procesges,

~ User-defined gramularity of access {i.e., the ability to zoom in on what
interests us: no more and no less),. Shall we exanine one or more
databases? one or more datasetg? one or more entries? one or more
fields? Shall we deal exclusively with real entries or shall ®e congtruct
virtual entries that project certain filelds from certain datasets in
certain databases and then join certain smubsets in s Boolean nightmare?
The topic of gramnularity is very important for intelligent tradeoff{s among
criteria such as access, privacy, security, concurrency, locking, and
performance,

All these mind-boggling combinations of access modes have one ultimate pgoal:
G allow us, eventually, the ability to report the information contained by
the data that we naint.ain in the database, This eventual reportirg must, in
turn, be efficient and convenient,

Reporting, of course, does not have to be limited to the boring kind, Piles
of computer printouts listed on 132-column paper are not the only category

NOWRUG May 16-18

of “allowed" reporting, With the existence of plotters, lager printera,
graphice terminals, voice devices for input and output of information, etc.,
the range of reporting capabilities for IMAGE and the HP3000 computer i3
practically uniimited,

The function of REPORTING may very well be the most interesting one, from a
uger’'s viewpoint. Ue may actually assemble totally new, "virtual" entries
by shuffling, joining, projecting, including or ewcluding actual "physical”
entries that we have stored in the database’s structure, Unfortunately, if
we want better performance during the reporting function, we may have to pay
a high price and we may be forced to suffer an unacceptable level of
performance during other functions like addition or deletion of entries,
When interested parties tell ug about their wonderful reporting
capabilities, we may want to ask them “How long does this jewel take if we
have 95 different files with 2 billion entries each that have to be joined,
projected and then massaged through some arithmetical number crunching?”

There is no such thing as a free report!

Fiexibility, in the face of ptability

Ag circumgtances change quickly and urpredictably, we nust be able to adapt
our database (both lis structure and its user interface} to keep up with the
reality it is supposed to model, However, lust as we want to be adaptable
and flexible, we algo want to have gtadbility. This means that we MJST
preserve the meaning of the information we already have in our database.

If we design our databases and procedures with data independence in mind, we
may very well discover that a change in our database requires only minor
changes (if any} to our existing procedures, More importantly, we will be
able 1o develop new procedures without having to do any maintenance work
UHATSOEVER on current ones. In IMAGE, for instance, we declare our
independence by means of field lists and calls to BBINFO for the resolution
of run-time definitions.

Some DBMS’s require us to determine the logical structure of our database
ONCE, at the beginning and forever., This is hopelessly impractical, since
God only knows what wiil happen in the futyre. With [MAGE ands its
utilities {especially ADAGER}, we are able to change the practical
implementations of our designs and we do not have to pay outrageous prices
just because we were human and could not foresee abgolutely everything when
we began our database projects,

NOWRUG May 16-18

Optimization of Performance

Performance is a relative term, For instance, raw performance in the
addition of new entries is totally meaningleass if the performance of finding
those entries, later on, is pitiful. Even a system with excellent overall
performance in storage and retrieval may still be unacceptable if the human
effort required to learn to use it turhe out to be of heroic proportions.
For a DBMS, we must be aware of the tradeoffs in performance for these
functions:

~ Entering data,

- ¥inding entries that meet a certain pet of criteria.

~ Reporting the entries found,

- Beleting entries.

- Modifying entriss.

- Adding entries,

- Storage requirements for data and structural inforsation,

- Recovering in case of computer, media or gite failure,

~ Reorganizing the database structure.

- Backing up and restoring to/from offline media {like tapes}.

- Logging and auditing.

- Designing the database.

- Implementing the database,

- Revising the database structure,

- Concurrency control.

- Pegple’s interaction with the database {gruesome or friendly?)

- Security & privacy of data.

- Training.

- General baby-sitting required by the database.

NOWRUG May 16-18

Minimization of expenditures

& DEMS should consume a minimum of resources to produce a masisum of
legitimate access to its data.

{MAGE and MPE use central memory for run-time control blocks, tables,
buffers and execute-only code segments., IMAGE and MPE use disc memory for
long-term tables and structures. MPE uses disc memory for “virtual memory”
{temporary storage of run-time data vhich needs to be suwapped out of central
menoryl.

It is interesting to note that & database may have a simple structure but a
lot of data entries, thereby oCtupying little central memory for run-time
control blocks but huge areas of dise for data. Also, a databa.ssé way have a
very complex structure but few data ent.nea, thereby oucupying large areas
of central memory for run-time control blocks but small amounts of disc for
data,

Ve can think of other computers, linked 10 a given computer through a local
or remote network like Hewlett-Packard's Pistributed Systems {DS}, as
another kind of “"memory”, since we can send data to remote computers and
request data from thes,

It ip fascinating to see how the most economical solution to a problem can
algo be the most elegant and fruitful. JIn the specific case of the HP300O
and IMAGE, the minimization of central-memory ewpenditure turns out to ald
tremendously in na.umlzing performance, concurrency, security and
consietency. By oharing central-memory buffer pools in the database control
block, [MAGE centmhm all data traneferg between central memory and disc,
bemeen central semories in the case of networked computers, and within a
given central memory in the case of local processes vhich actess the same
database concurrently, This centralization of control allicws IMAGE to
guarantee the correctnees of important functioms such as logging, recovery,
auditing, locking, etc,

Protection, Security, & Privacy

Privileged protection

In the good old days of vacuun tubes, every location accessible to the
computer was accessible to anybody. Yith the advent of higher-level
architectures, operating eystems and languages, some locations in main
remory as well as in auxiliary gtorage swere taken away from the standard
user, Theee areas were reserved for the operating system and were baptized
“privileged”,

The enforcement of privileged protection je a MANAGEMENT CHOICE. Some
"higher up” human decides which accounts, groups and users are given the
privileged-mode capability., Since the internal tablee of an operating
systen or a DBMS are so complex and eensitive, standard users should not be
allowed to accese them directly. In the HP3000 computer, both goftware and
hardware mechanisme make sure that a user-mode process accesses privileged

NOMRUG May 16-18

areas only by means of a management-approved intermediary, In the case of
IMAGE, these approved intermediaries are the IMAGE intrinsics and the IMAGE
utilities f(1like DBUTIL and ADAGER).

Passuords

Pagswords are the minimum acceptable kind of filter to control access to
sensitive information. IMAGE uses table-driven passwords. 7To mske them
more tamper-proof, IMAGE allows combinations of upper and Jlower case
1ettera, gpecial characters, eacape sequences, and a host of non-printing
ASCIT DIt patterns.

Logging {for both recovery and auditing purposes)

IMAGE controls logging globally, by database and not by user. ¥e can use
IMAGE utilities {standard MPE as well as BBAUDIT} to analyze the log files
on disc, tape, or other serial media. We can detect suspicious activity,
both in terms of specific accesses to cur databases and in terme of gpecific
accesges by given users by means of given terminals {local or remote) or of
given batch jobs., The HP3000 operating system aleo keeps track of sessions
and jobe, together with their logon hardware devices and any mounting or
dismounting of tapes for backup purposes, By combining these checks with
ptrict diecipline in the computer room, ®e May prevent the loss of database
privacy by meansz of unauthorized copying to removable media or by means of
unauthorized sigration to remote computers through the distributed-systems
netsork,

Intimate cooperation with the operating systen

There are literally thousands of cooperating protocols between a DEMS and
the computer's operating system., Some of these protocols are little, some
are big; some are obvious and some are extremely subtle, Some are
documented in the user maruals and goRe are undocumented and uncallable by
non-privileged processes, Let ug examine a couple of mch protocols just to
taste the general flavor,

Uhenever an IMAGE intrinsic operates, it marks the calling process as
CRITILAL, A critical MPE process cannot be aborted externally {(through the
:ABORT or :ABORTJOB commands) and if the process itself initiates an abort
due to ite oun errore, MPE causes a pystem failure. IMAGE uses this feature
to protect the integrity of the database, since any IMAGE intrinsic will be
able to proceed uninterrupted until itp logical conclusion ‘unless it
happens to be bioun up by an “independent” system failure or by a failure in
the intrineic’s cwn code or in the databape’s tables).

To serialize sensitive operations, IMAGE issues a request for the IMAGE SIR
before it opens or closes a database on behalf of a given process, e can
think of a SIR ag an operating-eyetes-wide lock upon 2 certain resource. In
the case of the IMAGE SIR, this certsin resource is the ability to cpen or
clope IMAGE databases. WUhen it obtaina the lock, [MAGE knous that no other
procesges are in the midst of opening or closing a database ANYWHERE in the

NOURUG May 15-18

gysten, Hence, IMAGE can proceed with the business at hamd, safe from
confusion by other processges,

RBeliabijity

A DBMS iB welcome 10 have all the bells and whistles that ite creators
desire. However, If it is not reliable, it is not worth using at all,
Reliability, for us, means AVAILABILITY and, in the event of unavailability,
effective RECOVERABILITY,

Availability

Avaiiability {the percentage and contiguity of UP time} must be very high,
The percentage and contiguity of DOUN time must be very low, The HP3000
computer in general, and the IMAGE DEMS in particular, may very well hold
the world’s record in the availability category.

Recoverability

Any of the components of a working database systen may fail:

- CPY,

?

Memory,

1/0 channels,
- Mass storage devices,

- 0ffline fbackup)} media,

Site {fire, flood, etc.)

~ Communications lines {for remote access to a centralized database or for
remcte accegs among various databases in the case of a computer network},

- Operating gyatenm.

- DBMS software, hardvare, or firmuare,

~ Applications goftware.

- Malicious (or innocent but equally catasirophic) misuse of QUERY
languages,

A robugt DBMS must be able to recover from any and all of these kirds of
failures. UWebster’s Dictionary defines “ROBUST" ag "Having or exhibiting
strength or vigorous health: POUERFUL, MUSCULAR, VIGOROUS, Firm and
assured in purpose, opinion, Oor outlook. Ewxceptionally sound. Strongly
formed or constructed: $IURDY. Requiring sirength or vigor, FULL-BODIED,
STRONG. Synonym: pee HEALTHY.®

NOWRUG May 16-18

IMAGE is certainiy a robust DBMS: it is able to function even after having
suffered ccnsiderable structural dasage and it offers ceveral alternatives
{some gtandard and some optional) for recovering back to a conaistent state,
including:

- Intrinsic Level Recovery {ILR).

- Transaction logging & DERECCV,

- DBSTGRE A& DBRESTOR.

~ DBUNLOAD & DBLCAB (both chained and seriall. . oo
- On-line reconstruction (ADAGER).

As with everything else in life, there is no such thing as a free lunch,
The price you pay for robustnesg includes certain degradation of performance
and periodic lack of availability while you do your robustness-oriented
tagks, But it all becomes worthwhile the day when you really need to
recover from a bad catastrophe,

Concurrency

The challenge of allowing concurrent access 1o a database imcludes these
criterias

- Giving access to ag many ueers and processes as possible, in & mir of
batch/online, local/remote, update/browse.

- Minimizing the waiting time for each accessor.

- Maximizing the protection of the database {from malicious users, from
bona-fide users that enter incorrect data or transform/delete valuable
data, etc,}

- Minimizing the total impact on other users and procesges, not asgociated
with the comﬂrrently—accessed database.

- Scheduling database-maintenance activities in such a way that their impact
on concurrent userg is minimal,

- Eliminating or minimizing deadlock eituations, when two processes wait
forever for each other.

In the specific case of the HP3000 computer, MPE and IMAGE implement
concurrency in several ways, some controlled by user procesges and stme
controlled by the database and operating-system processes,

The most obvicuz way is the mechanism of LOCKING, IMAGE allows temporary
locks at the database, dataset and data entry levels. Theee locks are based
on predicates kept in the single database control block, resident in memory
and shared by all accessors of a given database. Simnce predicate locking is
LOGICAL an¢ not PHYSICAL in mature, it is extremely efficient, Remember

NOURUG May 16-18

that IMAGE provides only the locking aeclmusne It is yp to the user to
take advantage of these locking mechanisms in an mtelhgent way to reach an
acceptable level of performance, The operating systea will guarantee
deadlock-free opera.tmn for users without multiple-rin (MR) capability,
However, the operating system will let users with MR capability lock as many
databages in as many waye ae they wish, with the understanding that
dgeadlocks may arise and the ugser, then, uill pe responsivle for restarting
the whole systiem,

A more subtle way to Implement concurrency ig to share some of the internal
rescurces of the computer, of the operating system and of the DEMS, both in
hardware and in software. Let ug look at a couple of exanples to get an
idea of these techniques, as implemented in the HP3000.

The HP3000 computer defines all executable code ag ghared and re-entrant,
Only one copy of the IMAGE code exigte in the computer, regardless of the
rumber of databases accessed or the rumber of database accessors. When the
memory-resident epace occupied by a part of the IMAGE code needs to be used
by some other code segment, the memory manager simply overwrites the IMAGE
code. UWhen the operating system needs that “destroyed” part of the IMAGE
code, the memory manager simply copies it back from disc, usually recycling
the memory space that is no longer used by some other code segment. Note
that code segments NEVER need to be written to disc, oince they are not
modified at all. Uhat is true for the IMAGE code ie true for any other code
{gystemg or applications) in the computer,

The data segmentg assigned 1o a procese by the HP3000 [run-time stack plus
extra data segments) are nommally private and controlled by each individual
procesg, Certain extra data sepments can be defined ag sharable among
menbere of the same proceas family or among completely urrelated processes,
as is the case with IMAGE’e run-time control blockse, The fact that IMAGE's
control blocke are ehared by all accessors to the same database turns out to
be wvery convenient for concurrency, since hierarchical locking and
enqueus/dequeue logic handle conflicting requests,

if getting all the previous benefite means getting through a maze of
incomprebenaible gibberish, nobody is going to use (willingly) any DBMS,

IMAGE is implemented by nmeans of data structures that are smple,
well-defined and easy-to-understand. [te atomic user mterfam {upon which
all kinds of friendly user interfaces can bhe built) is also sisple and
conaiste of 3 handful of intrinsice. These Intrinsics have standard calling
sequences that make them acceseidle to ANY language in the HP3000. When
things go wrong {either in the database itself or in the calling sequence),
these intrinsics return meaningful nmessages and status flage that
distinguish unexpected corditions from erroneous conditions. IMAGE has
straight-forvard utilities to cover all aspects of database maintenance and
tuning,

Ok, So far, so good, Database nanagement systems certainly look like very
coat-ef fective methods to manage information, But how about our PARTTCULAR
reality? How do we model it using a DEMS?

NOMBRUG May 16-18

R@gardless of the gpecific DBMS that we may have chosen to model our
reatity, we have to o certain standard tasks to design and mplemem a
database., Let’s review some of these tasks and some of their posaible
pitfalls,

~ ldentify those aspects of reality that will be modeled by the database,
Remember that only a small part of reality can be mirrored by a database,
It turns out that defining UHAT to model, HOU to model it and UMY we want
tc model it are more difficult than we think, Therefore, we must be
prepared to REVIEZ and CHANGE our opinions (and inplememtations)
throughout the life of our databage,

- Make some notes of the relationships that enist among the entities to be
modeled. Different folks bave different forms, Some are norsal foras and
some are abrormal forms. It does not matter. DMost likely, what we want
to model does not fit into somsbody else’s pet theories anyway! The
important question iae: “Can we define, redefine or {ancel these
relationships at any time during the life of the database?" For
performance reasons, we way want to specify that some OBVIOUS
relationships be “hard—nred" in the database's structure {for instance,
by means of PATHS in IMAGE). But we do not want to be stuck for lifel

-~ Tranzlate thege informal notes into mome kind of formal language that we
understand and that the computer understande toc, Ue want to be able to
tranglate our INITIAL notes ag well as the notes that we develop DURING
the life of our database. WUe do not want thig to be a one-time affairi

~ Parcel out the computer storage required to duild the databage’s
structures. Some DBMS's require the uger to gpecify the areas of storage
in sickening detail, down to the cylinder, track and sector level, thereby
ensuring the survival of operating system gurus, This was 0K in the
1950°s but we are adults now! The modern combination of IMAGE and ADAGER
reserves and formats ALL disc space at Jdatabase-creation time,
automatically and in a fool-proof manner. At any time during the life of
an IMAGE database, we can physically move gpecific datasets from one disc
to another for performance fine-tuning, Af we ao despire, and we can
easily change the capacities of the datasets to keep up with reality.

- Add, delete, wmodify and report entries. Fine tune things in such a way
that we reach a reasonable compromise between the RESPONSE TIME for any of
these functions and the global THROUGHPUT for the whole trarwaction load.

- Baby-sit the database through its daily (and nightly!} maintenance needs,
Scoie DEMS’s assume that only the DATA will change and make no provigions
for dynamic changes to the STRUCIURE, IMAGE and ADAGER allow ug to do all
kinds of changes to the data AND to the structure while preserving the
noaning of the information, at any time during the life of the database.

None of these taske is easy, and each task is eesential if we want to
waintain the mutual reflections of REALITY and DATABASE. 1t is the DEMS’g

NGURUG May 16-18

rasponsibility, as our tool, to make sure that these tasks are PRACTICAL
IMPLEMENTATIONS of SOUND THEORETICAL IDEALS,

Gur reflections have considered IMAGE/3000 as our frame of reference. We

look foruard to hearing from you regarding your reflsctions and your frames
of reference. Tharnk you,

NOWRUG May 16-18

