
DATABASE REF LEe T ION S

Alfredo Rego and Stan Sieler

Adage rApartado 248AntiguaGuatemala

1 - a

Keven
Rectangle

Keven
Rectangle



D a tab a s e ref 1 e c t ion B

Alfredo Rego and Stan Sieler

Adager
Apartado 248

Antigua
GuateJllala

Leslie Keffer de Rego, Editor

Special thanks to ,Bob Green and Elizabeth Hanckel.

DATABASE!The word itself originates fierce battles: How do we SPELL it?
Howdo we PRONOUNCEit? Uhat does it MEAN?

Yhether we like it or not, we all use databases in one way or another (or
hi'i"t- soae of our private data squirreled away in soaebody else's databases).
, ,O,'V; r ab l y, then, we are interested in understanding the current state of
at- 1..;.rs

As a irst step, let us enjoy the rare pleasure of adPIiring a conceptual
THEORETICALIDEAL. As a second and sobering step, let us analyze the Plore
pedestrian Platters associated with IMPLEMENTATIONSOF DATABASEMANAGEMENT
SYSTEMS. And, as a third step, let us review sOllIe of the PRACTICAL
CONSIDERATIONSthat we face in our dealings with ANYdatabase.

To illustrate our discussion, we use a concrete database PlanageJllent systeJII
as our rraae of reference. The bulk of our experience as l'IeJ11bersof the
world-wide HP3000 faJllily has been with Hewlett- Packard's IMAGE/3000
databases. Therefore, it seellls reasonable to use IMAGEas our fraJlle of
reference and the HP3000 series of coaputera as our universe. IMAGEhas
been used for Plore than a decade in thousands Of HP3000 cOl'lputers throughout
the world. It conb ines a solid design with a solid iPlplelllentation, Many
influential people realize its potential and IMAGEcontinues to be the
subject of l'Iajor investPlents in research and developPlent. Me ca~ certainly
learn a lot about database systeJlls in general by carefully studying IMAGEin
particular,

As a convenience, we win use "DBMS" instead of "Database Planagetllent
systea."

THEORETICALIDEAL:A database is a cOPlputerized Rodel of reality.

An EFFECTIVElIIodel should be, at least:

- Faithful.

- Descriptive.

- Predictive.

- Reliable.

- Eff icient.

- FleHible, while being stable.

- Convenient.

- EconOJllically justifiable.

- Secure.

- Easy to use,

To qualify as an effective Rodel, a database usually consists of two
conp Ienentary parts, supplied by a DBMS: the internal STRUCTUREand the
USERINTERFACE. The structure is for PERFORMANCE'ssake. The user interface
is for SANITY's sake.

The structure as well as the user interface of a DBMSare no better than the
operating systeJII that supports thea, Fortunately, Hewlett-Packard has
l'Ianaged to provide us with a stable operating syst~ with Plore than 10 years
of constant growth and constant preservation of coapat ib.i Li ty, A "ser
prograa that runs on any HP3000 coaputer hardware (large or SIIIall, old or
new) will run on any newer HP3000 coapu ter ; and ROSt user prograas that run
on newer HP3000 coaputers will also run on older HP3000 conputers. The
required changes, if any, are trivial to Rake. The HP3000's range of age,
size, price and processing power is unprecedented in the cOPlputer industry.
This is quite nice to know, since we are interested in a solid foundation
for our DBMS.

Structure

The structure of a database is not "strictly" necessary, but it has draaat Ic
effects on the per roraance of certain functions, such as FINDING and
REPORTING.

Different people have different preferences when it COPIes to structures.
Just witness the variety of tastes regarding buildings, airplanes,
girlfriends, boyfriends, autoaoo.i Ies, etc. Database structures (or lack

NOMRUGMay 16-18 I NOMRUGMay 16-18

1 - 1



thereof) are not an except Ion, of course. SoRe people are satisfied with
piles of junk while other people delight in crystal-like organizations where
everything is disciplined to the utnost degree. Let us see sose exaap lea
that will give us an idea of the RANGEOF STRUCTURALPOSSIBILITIES.

At one extrellle, we see that a garbage dUPIp(a "heap") does not have any
internal organization or discipline whatsoever. We can easily and quickly
add anything to it. However, we Play spend an eternity to locate the specific
itelll that interests us. Most likely, we will have to exaa ine EVERYTHING.
At the other eKtreme, we see that an ideal library would have a very large
collection of books, a very sophisticated indeKing systeft that would allow
us to find any book by P1eans of any attribute, and a very efficient staff
that would NEVERplace any book in the wrolli shelf.

The same is true with databases. A systeR with areat response t iae during
data entry usually has an. unacceptable response t iae during ad-hoc
inquiries. Conversely, a systelll with great response tillle during inquires
will probably have a slower response tiPIe during data entry, due to all the
P1aintenance effort required by the underlying structure. And even the best
possible iPlpleRentation of a DBMSwill eventually P1isplace sOllIevital piece
of inforPlation! .

II DBMS without any internal oraanization whatsoever seeftS like a
contradiction in tens. Even the "purest" of theoretical flat-table systellls
has sOllie MINIMALstructure. Otherwise, we P1ust do a full serial search
through EVERYsingle bit of the database just to find one or two pieces of
infornation. If we have intelligent peripherals that can do these serial
searches blazingly fast, we can get away with a few thousand or a few
P1iUion entries, but there is a liPIit to how P1anyentries we can search
serially in an effective way. A SEARCHWITHOUTINTERNALSTRUCTUREMEANSA
SERIALSCAN. This is unacceptable for on-line types of applications.

I

Regardless of our preference for structure (or lack thereof), the basic
aton ic entity in any digital cOPIputer systelll is the BIT. The word "bit"
coses frOlll collapsing the words "binary digit" and P1eans "sOlllething which
can be in one of two stable states". The "sOlllething" and the "two stable
states" can be practically ANYTHING.These are just SOllIe of the P1any
possibilities: on/off, right/left, up/down, positive/negative,
forwards/backwards. Our choice depends aore on convenience than on
necessity. The absence or presence oi a hole in an IBMpunched card is an
eKaPlple of a bit. The direction of a \IIicroscopic P1agnetic field inside the
HP3000's Intelligent Network Processor (INP) is another eKMple of a bit.
Despite their obvious differences in sophistication and technology, both
types of bits are \IIathelllatically equivalent.

I I

In general, we parcel out contiguous groups of bits and we call thePI
nibbles, bytes, words, sectors, tracks, disc packs, Pleftory banks, records,
files, tape reels, diskettes, cassettes, punched cards, punched paper tape,
rows, tables, colUPIns, vectors, P1atrices, cylinders, segPIents, trees, lists,
heaps, Plagnetic cards,druPls, stacks, or whatever. The parceling, grouping
and naPling of these bunches of bits have been the result of arbitrary
choices taken in the last fev years by subliPIe scientists and \IIercenary
prOPIoters alike. It is VERYiPlportant to be aware of this, since sOllIe

NOWRUGMay 16-18

people Play think that these entities are sacred and worthy of our
unquestioning acceptance.

These bunches-of-bits (whether we like theJII or not) cover a wide spectrua
that ranges froi1l the VERYinconvenient to the SOMEWHATconvenient. In
general, we i1Iayconsider theft as different classes of cOlllputer P1eP1ory.What
is aJIlazing is that we have been able to use these rudIAentary
cOi1lputer-~ePIoryelePIents to \IIodel and represent practically everything known
to hUPlanity!

There are various ways to IAplePIent structures using these different
hierarchies of cOi1lputerP1eP1ory. In general, faster \IIe\IIoryis ~ore expensive
and Rore volatile. The trick is to try to optilllize our cost/benefit ratios.
CPU registers are the fastest, but a coaputer (ANYcoaputer ) has only a
handful of then. Central ~e\IIory is auch slower, but a conputer like the
HP3000 can afford to have a few IIIill ion centrat-aeaorv locations (usually
lIIeasured in ter~s of P1egabytes). Disc RePlory is orders of lIIagnitude slower,
but a coaputer like the HP3000 can have Ii few billion disc locations
(usually Pleasured in teI1llsof gigabytes). Tape P1e111oryis draaat ica l Iy
slower but allows access to an unliPIited Mount of data, given enough tillle
and OO\IIan-operator patience. Since tape is the least expensive and the
least volatile, it is P10stly used for backing up databases (which generally
reside on discs and are \IIovedback and forth frOPl discs to central lIIeP10ry
for updatilli and inquiries).

Regardless of their physical location in the \IIe\IIory hierarchy, these
c01llputer-IIIeP1oryparcels contain inforPIation which is of interest to us. Thl}-
challenge is to relate, SOPIehow,those parcels that contain "related" pieces
of Inrcraat Ion even though they \IIay be physically quite apart frOPl each
other.

At this ~OPIent, let us take a SIIall detour regarding fashion.

A casual cruising throu.gh the literature of the tIAes Right leave us Wit}.
the llIpression that only the so-called "relational" systePIS can relate.
Nothing could be Rore unrelated to the truth. Relating IS the whole idea
behind ANYDBMS. This strange twisting of the language is analogous to what
happened to the tern "AJllerica". .

AIIIerica is the naJIleof a COf.iTiNENTthat "begins" vi th Alaska and Canada in
the north and "ends" with Argentina and Chile in the south. AJIIerica IS NOT
the nII\IIeof a country. As a \IIatter of fact, all kinds of countries, like
Guatemala, Colol'lbia, the United States of Brazil, the United States of
Venezuela, the United States of MeKicoand the United States of APIerica, are
scattered throughout this large continent. If you were born in Peru, then
you are a Peruvian ANDalso an AJIIericanj siPIilarly, you are a Costa Rican
ANDan APIerican, a Canadian ANDan AJIIerican, a U.S.A.' ian ANDan AJIIerican,
and so on for every country in the AJIIerican continent.

To say that ONLYnatives of the U.S.A. are AJIIericans is as P1uch of a
sacrilege as to say that ONLY"relational" syste\llS relate. Every native of
any of the twenty-odd countries of the oerican continent is an AJIIerican.
Every DBMSrelates. Period.

NOWRUGMay 16-18

1 - 2

Keven
Rectangle

Keven
Rectangle

Keven
Rectangle



Let us now return frOlll our 9JIIall detour regarding f?Bhion.

LIe were saying that, regardless of their physical location in the lItelltory
hierarchy, these cOlllputer-lIIelltoryparcels contain Inrornat ion which is of
interest to us. The challenge is to relate, soaehoe , those parcels that
contain "related" pieces of Intoraat ion even though they JIlaybe physically
quite apart frOlll each other.

LJelIIay relate at the tillle when we enter the inforlllation, or at the tillle when
we report the inforlllation, or at any tillle in between. LJelIIayuse techniques
such as hashing and indexing to go (lIIore or less directly) to the locations
of parcels that contain lIIaster or key pieces of inforlllation. LIe lIIay use
techniques based on pointers to link certain parcels to other far-away or
close-by parcels, usually based on cOlllJllonvalues for keys or search fields.
And we can do the linking in a hierarchical way, in a networking way, or in
any other way that we happen to like. (It is interesting to note that a
hierarchy is only a special case of a network). Regardless of the
structure, the linking lIIaybe in one direction (singly-linked lists), or in
two directions (doubly-linked lists), or whatever, based on tradeoffs
dictated by our priorities: space? perfonlance? reliability? LIe can also
choose NOTto do any linking whatsoever.

The issue of structure (or lack of structure) becOllles ilIIportant when we have
to face reality. It is one thing to deal with acaden lc examples that
consider only a few hundred (if that JIIany) entries. I t is another ball
game, altogether, to deal with operational syste\lls that deal with billions
of related pieces of Infornat Ion, LIe IIIUStrellteJllber that IMAGEcurrently
supports up to 99 datasets per database with up to 127 fields (siJllple or
coapound) per dataset and up to 2,139,094,785 entries per dataset, for a
lIIaxilllU\lldatabase field count of •.. oops •.. our HP calculator has just
overflowed and has gone into scientific powers-of-ten notat ion! Not to
lItention that IMAGEand MPEallow us to have litany databases per cOlltputer and
litany coaputers per network, linked via satellites hovering high above the
surface of the Ear tht

Does anybody still clailll to be able to lIIanage all this without the benefit
of structure?

User Interface

The USER INTERFACEof a database syste\ll is responsible for helping
authorized hulllan beings per rom (a) addition, nodi f Lcat ion, deletion and
reporting of Inrornat.ion stored by means of the database STRUCTURE,as well
as (b) general maintenance of the structure itself.

A DBMSIIIUSt have, at the very least, a set of intrinsics (fundamental
procedures, routines or functions) that allow basic operations on the
database's structure and data. LIe can then write prograas that call, in
turn, these intrinsics. In the specific case of the HP3000 cOlllputer, we can
access IMAGE/3000databases by means of intrinsics such as DBOPEN,DBGEr,
DBUPDATE,and so on, which we can call frollt programs written in languages
such as BASIC, COBOL,FORTRAN,PASCAL,RPGand SPL.

NOfJRUGMay 16-18

The user interface consists of the set of progr3\lls that call the intrinsics.
Some of these programs will be specially tailored for certain applications
and sOlliewill be generalized. Someof the generalized ones lIIay, in turn, be
interpretive in nature. SOlliewill provide only data entry, others will
provide only reporting or browsing, still others lIIayprovide every kind of
access to a database. SOllieof the interface programs lIIayhave rigid syntax
rules and sOPlelIIayhave extrelllely friendly approaches. SOllielIIay guide the
user by lIIeans of examples and soae lIIay take examples frolll the user as
sufficient "conaands" to do database operations. SOllielIIay allow a lilllited
nuJIlber of relations and others lIIay allow a large nuJIlber of relations and
operations.

The user interface drives the database structure just as a concert pianist
plays a concert grand piano. The artist and the Ins truaent nuat be
perfectly aatched and balanced. Otherwise, everybody suffers through a
painful per forlllance!

Theoretical conclusion:

If we ilIIagine "data" and" Inrornat Ion'' as lIIe111bersof a "population", we can
define a DBMSby analogy with a nation: "A protected territory with
well-guarded borders and well-disciplined citizens who live in a clilllate of
stability, autua l respect and cooperation". In IMAGE's teras, we get "A
structured collection of protected (privileged) files which interact with
the operating syste\ll in such a way that our separate pieces of inforlllation
are safely kept and lIIeaningfully related when we ask for theJII."

LlOw! This sounds nice (or terrifying, according to your beliefs on how
society should -- or should not -- be organized). Regardless of your
reaction, the fact is that pieces of inroraat Ion, just like people, are
unpredictable. Any at teapt to organize the\ll neatly into "perfect countries"
is dooaed to fail. LIe IIIUSt.be aware, then, that we are dealing with
structures created and aa inte ined by huJIlans and, like every huJIlan thing,
these structures will be full of errors, 0lIlissions , sins} blind alleys,
blatant loopholes, wasteful use of scarce resources, injustIces, and so on.
Quite nornal , we think, if we consider that there are infinite
iPlple\llentation choices, TlIith each of these choices being 'followed, in turn,
by an infinite a\IIount of other sets of infinite choices! Too much, really,
for the huJIlanlIIind.

Our theoretical conclusion then is: "The different DBMS's are only
different in terns of the iPlplelllentation choices lIIade by their designers.
Deep down inside, all DBMS's are the s3\lle: They are just frail huJIlan
atte!llpts to organize unruly pieces of inforlllation."

This theoretical conclusion serves as our guiding light as we begin our
study of practical realities: The iPlple!llentations of DBMS's.

NOijRUGHay 16-18

1 - 3



=========================================================
PRACfICALREALITY:A database is a frail huPlan at tenpt to organize unruly
pieces of inforNation.=========================================================
Frail or not, databases should put up a lIIinmUJllbattle to be considered
worthy contenders. Let us eXallline SOllIetricks of the trade that we consider
standard for such battles.

Availability of a lIIinmUJllset of access possibilities

Ye deal with a database for two Rain reasons: to do general lIIaintenance work
on the STRUCTUREand to do general Raintenance work on the DATA. Ye access
the structure by lIIeans of the DBMS'sutilities (like DBUTILand ADAGER).Ye
access the data by lIIeans of the DBMS'sintrinsics (like DBUPDATE).

IoIecan access a database's data in an updating or a browsing aode, In
updating lIIode, we can add, delete and lIIodify entries. In browsing 1II0de,we
can only look at existing entries. In either lIIode, we are restricted by the
database's security layout, as specified by the database's design and
lIIaintenance staff. For instance, in a payroll database sOlliepeople lIIaynot
be allowed to lIIodify or browse the salary fields.

IoIehave the following possible kinds of access to a database's data:

- EHclusive update, so that nobody else accesses the database when we update
it. This is not very sociable and we should only use this access lIIode
under extrellle cirCUlllstances.

- Non-eHclusive update. In this lIIode, we can still choose whether or not we
allow concurrent updating or concurrent browsing or a lIIixture of both.

- EHclusive browsing, so nobody else accesses the database while we read its
entries.

- Non-exclusive browsing. In this lIIode, we can choose whether or not we
allow concurrent updating or concurrent browsing or a Rixture of both
while we read the database's entries.

IMAGEallows several access lIIethods, including:

- SERIAL (forwards or backwards), according to the physical location of the
entries regardless of their search-field values. IoIeaccess the NEXTor
the PREVIOUSphysical entry.

- CHAINEDDETAIL(forwards or backwards), according to a chain of coanon
detail entries with the sallie search-field values even though the involved
entries Play be quite apart physically. IoIeaccess the NEXTor the PREVIOUS
logical entry (which JIIay be located close by or thousands of PHYSICAL
entries away frOR the current entry).

- CHAINEDMASTER(forwards or backwards), according to a chain of cQllUllon
Plaster entries with the sallie search-field hash-value even though the

NOWRUGMay 16-18

involved entries !'lay be quite apart physically. "'e access the NEXTor the
PREVIOUSlogical entry (which lIIay be located close by or thousands of
PHYSICALentries away frOlll the current entry).

- HASHED,according to the value of a lIIaster search-field. lJith hashed
access, we specify "give lIIe the entry that corresponds to Gonzalez"
(without any lIIention of the LOCATIONof Gonzalez's entry; as a lIIatter of
fact, such an entry could very well be the 1II0st active Rigrating secondary
in our database!)

- DIRECfED,according to the entry nuaber. We access entry nuJIIber 1541, or
entry nul'Iber 1978, or entry nuaber 780903, reaardless Of its contents.

IMAGEgives us "location-addressing" P1echaniSllls (serial and directed access
!'Iethods) as well as "contenta-addresaing'' P1echaniSl'ls (hashed and chained
access Rethods).

These are the individual access P10des INTO the database. To orchestrate
thel'l, IMAGEand MPE (the operating systelll for the HP3000 fMily of
cOlllputers) allow us:

- Concurrent access by different processes within the SaRe tiNe frMe. SOllIe
processes lIIay be updating, SOllIe addiJ1Q, SOllIe deleting, sOllIe smply
browsing, sOlliedoing everything.

- Access by the SaRe process throughout various tiNe frallles, even as the
database's structure evolves. This requires data-independent prograJlUlling,
which is slower and 1II0re painstaking but 1II0re flexible than hard-wired
prograJlUlling.

- Access by a Rix of online and batch processes.

- Access by a lIIix of local and rePIote processes.

- User-defined granularity of access (i.e., the ability to ZOOIIIin on what
interests us: no 1II0re and no less). Shall we eRMine one or 1II0re
databases? one or Plore datasets? one or 1II0re entries? one or JIIore
fields? Shall we deal exclusively with real entries or shall we construct
vi.r tual, entries that project certain fields frOJll certain datasets in
certain databases and then join certain subsets in a Boolean nightJllare?
!he topic of granularity is very il'lportant for intelligent tradeoffs aRong
criteria such as access, privacy, security, concurrency, locking, and
per foraance.

Reporting

All these P1ind-boggling cOlllbinations of access lIIodes have one ultiPIate goal:
to allow us, eventuallYl the ability to report the infor1llation contained by
the data that we lIIaintaln in the database. This eventual reporting Plust, in
turn, be efficient and convenient.

Reporting, of course, does not have to be lil'lited to the boring kind. Piles
of cOlllputer printouts listed on 132-colUllln paper are not the only category

NOURUGHay 16-18

1 - 4



of "allowed" reporting. IoIiththe existence of plotters/ laser printers,
graphics terNinals, voice devices for input and output of InforNation, etc.,
the range of reporting capabilities for IHAGE and the HP3000 coaputer is
practically unliIllited.
The function of REPORTING Playvery well be the Plost interesting one, froPla
user's viewpoint. lJe Play actually asseillbletotally neld, "virtual" entries
by shuffling, joining, projecting, including or excluding actual "physical"
entries that Idehave stored in the database's structure. Unfortunately, if
we Idant better perforNance during the reporting function, IdePlayhave to pay
a high price and Ide Play be forced to suffer an unacceptable level of
per rornanca during other functions like addition or deletion of entries.
lJhen interested parties tell us about their Idonderful reporting
capabilities, IdePlay uant to ask theill"How long does this jeldel take if Ide
have 95 different files Idith 2 billion entries each that have to be joined,
projected and then l'lassagedthrough sose arltbaet ical, l1UJIIbercrunching?"
There is no such thing as a free report!

Flexibility, in the face of stability

As circUillstanceschange quickly and unpredictably, we Plust be able to adapt
our database (both its structure and its user interface) to keep up Idith the
reality it is supposed to Plodel. However, just as IdeIdant to be adaptable
and flexible, Ide also want to have stability. This Pleans that we MUST
preserve the Pleaning of the inforillationwe already have in our database.
If Idedesign our databases and procedures Idithdata independence in Plind, Ide
Play very well discover that a change in our database requires only Rinor
changes (if any) to our existing procedures. More iIIIportantly,Ide will be
able to develop neld procedures without having to do any aai.ntenance work
LlHATSOEVER on current ones. In IHAGE, for instance, Ide declare our
independence by Pleans of field lists and calls to DBINFO for the resolution
of run-tiIlledefinitions.
SOPle DBMS's require us to deterNine the logical structure of our database
ONCE, at the beginning and forever. This is hopelessly iIIIpractical,since
God only knous Idhat Idill happen in the future. lJith IMAGE ands its
utilities (especially ADAGER), Ide are able to change the practical
iPlplel'lentationsof our designs and Ide do not have to pay outrageous prices
just because Idewere hUIIIanand could not foresee absolutely everything when
Idebegan our database projects.

NOlJRUG May 16-18

OptiIllizationof Perforillance

PerIoraance is a relative tarn. For instance, raIoJper foraance in the
addition of neldentries is totally Pleaningless if the perforPIance of finding
those entries, later on, is pitiful. Even a systeillwith excellent overall
perforillancein storage and retrieval Play still be unacceptable if the hUIIIan
effort required to learn to use it turns out to be of heroic proportions.
For a DBMS, we nuat be aeare of the tradeoffs in psrforaance for these
functions:
- Entering data.
- Finding entries that Pleeta certain set of criteria.
- Reporting the entries found.
- Deleting entries.
- Modifying entries.
- Adding entries.
- Storage requireillentsfor data and structural inforPIation.
- Recovering in case of COl'lputer,Redia or site failure.
- Reorganizing the database structure.
- Backing up and restoring to/froR offline Pledia (like tapes).
- Logging and auditing.
- Designing the database.
- IIIIpleillentingthe database.
- Revising the database structure.
- Concurrency control.
- People's interaction with the database (grue~e or friendly?)
- Security & privacy of data.
- Training.
- General baby-sitting required by the database.

NOlJRUG May 16-18

1 ... 5



Minimization of eKPenditures

A DBMSshould consuae a lIIinaUJII of resources to produce a RaximUIIIof
legitimate access to its data.

IMAGEand HPE use central lIIeltory for run-t iae control blocks, tables,
buffers and eHecute-only code segRents. IMAGEand HPEuse disc meltory for
long-terlll tables and structures. HPEuses disc RE!IIloryfor "virtual meJllory"
(telllporary storage of run-tae data which needs to be swapped out of central
mellloryl.

It is interesting to note that a database Ray have a simple structure but a
lot of data entries, thereby occupyiOi little central melllory for run-time
control blocks but huge areas of disc for data. Also, a database lIIayhave a
very cOJllpleHstructure but few data entries, thereby occupying large areas
of central IIIE!IIloryfor run-t iae control blocks but SIIIall aIIIounts of disc for
data.

Ve can think of other cOlllPllters, linked to a given ccaputer through a local
or remote network like Hewlett-Packard's Distributed SysteJIIS (DS), as
another kind of "!IIE!IIlory",since we can send data to rE!lllotecomputers and
request data frOlll thE!lll.

I t is fascinating to see how the IIIOBtecol'lOllical solution to a problE!lllcan
also be the most elegant and fruitful. In the specific case of the HP3000
and IMAGE,the lIIinilllization of central-lIIalllory eKPenditure turns out to aid
treltendously in Raximizing perfonance, concurrency, security and
consistency. By sharing central-lIIalllory buffer pools in the database control
block, IMAGEcentralizes all data transfers between central Rellloryand disc,
between central RePlOries in the case of networked coaputera, and within a
given central lIIallloryin the case of local processes which access the sallie
database concurrently. This centralization of control allOllls IMAGEto
guarantee the correctness of aportant functions such as logging, recovery,
audit ing, locking, etc.

Protection, Security, & Privacy

Privileged protection

In the good old days of vacuUJIItubes, every location accessible to the
coaputer ",as accessible to anybody. Vith the advent of higher-level
archi tectures, operating systellls and languages, sOllIe locations in lIIain
!llellloryas well as in auxiliary storage were taken away frOlll the standard
user. These areas were reserved for the operating systalll and were baptized
"pr Iv ileged" .

The enroroeaent of privileged protection is a HANAGEHElITCHOICE. SollIe
"higher up" huIIIandecides which accounts, groups and users are given the
privileged-Rode capability. since the internal tables of an operating
systelt or a DBMSare so cOPlplex and sensitive, standard users should not be
allowed to access thE!llldirectly. In the HP3000 cosputer , both software and
hardware lIIechaniSlllSlIIake sure that a user-Rode process accesses privileged

NCXo/RUGHay 16-18

areas only by means of a lIIanagament-approved Interaed iary. In the case of
IMAGE,these approved Interaediar ies are the IMAGEintrinsics and the IMAGE
utilities (like DBUTILand ADAGER).

Passwords

Passwords are the minimum acceptable kind of filter to control access to
sensitive Inforaat ion. IMAGEuses table-driven passwords. To JIIake them
1II0re taaper-proor , IMAGEal10111s coabinat Ions of upper and lower case
letters, special characters, escape sequences, and a host of non-pr int ing
ASCII bit patterns.

Logging (for both recovery and auditil1i purposes)

IMAGEcontrols logging globally, by database and not by user. loIecan use
IMAGEutilities (standard HPEas well as DBAUDIT)to analyze the log files
on disc, tape, or other serial media. Ve can detect suspicious activity,
both in teras of specific accesses to our databases and in tens of specific
accesses by given users by lIIeane of given terwinals (local or rePIote) or of
given batch jobs. The HP3000operating systalll also keeps track of sessions
and jobs, together with their logon hardware devices and any lllounting or
diSlllounting of tapes for backup purposes. By cOlllbining these checks with
strict discipline in the cOlllputer rOOPl,we Ray prevent the loss of database
privacy by !IIeans of unauthorized copyiOi to rePIovable Redia or by Reane of
unauthorized ,ligration to ralllote cOlllputers through the distributed-systeJIs
network.

Intilllate cooperation with the operating systelll

There are literally thousands of cooperating protocols between a DBMSand
the cOlllputer's operating systelt. SollIeof these protocols are little, sOllie
are big; soae are obvious and sOllIe are eHtreJIIely subtle. SOllIe are
documented in the user lIIanuals and SOllIeare undocumented and uncallable by
non-privileged processes. Let us eHaJllinea couple of such protocols just to
taste the general flavor.

lJhenever an IMAGEintrinsic operates, it "arks the calling process as
CRITICAL. A critical HPEprocess cannot be aborted externally (through the
:ABORTor :ABORTJOBCOJllllands)and if the process itself initiates an abort
due to its own errors, HPEcauses a systeR failure. IMAGEuses this feature
to protect the integrity of the database, since any IMAGEintrinsic will be
able to proceed uninterrupted until its logical conclusion .unless it
happens to be blown up by an ..Independent" systePI failure or by a failure in
the intrinsic'S own code or in the database's tables).

To serialize sensitive operations, IMAGEissues a request for the IMAGESIR
before it opens or closes a database on behalf of a given process. Lie can
think of a SIR as an operating-systeR-wide lock upon a certain resource. In
the case of the IMAGESIR, this certain resource is the ability to open or
close IMAGEdatabases. Uhen it obtains the lock, IMAGEknows that no other
processes are in the "idst of opening or closiOi a database ANYUHEREin the

N(JdRUGHay 16-18

1 - 6



systeJII. Hence, IMAGE can proceed with the business at hand, safe frOJll
confusion by other processes.
Reliability

A DBMS is weicollleto have all the bells and whistles that its creators
desire. However, if it is not reliable, it is not worth using at all.
Reliability, for us, lIIeansAVAILABILITY and, in the event of unavailability,
effective RECOVERABILITY.
Availability
Availability (the percentage and contiguity of UP tiIlle)IIIUStbe very high.
The percentage and contiguity of DOWN tiIllePlust be very low. The HP3000
cOlllputerin general, and the IMAGE DBMS in particular, Play very well hold
the world's record in the availability category.

Recoverabili ty
Any of the cOlllponentsof a working database systeR Play fail:
- CPU.
- MeJllory.

I/O channels.
- Mass storage devices.
- Offline (backup) Pledia.
- Site (fire, flood, etc.)
- COllllllunicationslines (for rePIote access to a centralized database or for

rellloteaccess among various databases in the case of a cOlllputernetwork).
- Operating systelll.
- DBMS software, hardware, or fiTtllware.

Applications software.
Malicious (or innocent but equally catastrophic) lIIisuse of QUERY

languages.

A robust DBMS IIIUStbe able to recover frolllany and all of these kinds of
failures. lJebster's Dictionary defines "ROBUST" as "Having or exhibiting
strength or vigorous health: POWERFUL, MUSCULAR, VIGOROUS. Firtlland
assured in purpose, opinion, or outlook. Exceptionally sound. Strongly
forned or constructed: STURDY. Requiring strength or vigor. FULL-BODIED,
STRONG. SynonYl'l: see HEALTIIY."

N<XoIRUGHay 16-18

IMAGE is certainly a robust DBMS: it is able to function even after having
suffered considerable structural daaage and it offers several alternatives
(solliestandard and sOJlleoptional) for recovering back to a consistent state,
including:
- Intrinsic Level Recovery (ILR).
- Transaction logging & DBRECOV.
- DBSTORE & DBRESTOR.

- On-line reconstruction (ADAGER).
As with everything else in life, there is no such thing as a free Iunch.
The price you pay for robustness includes certain degradation of perforlllance
and periodic lack of availability while you do your robustness-oriented
tasks. But it all becoaes worthwhile the day when you really need to
recover frOfta bad catastrophe.
Concurrency

The challenge of allOloJingconcurrent access to a database includes these
criteria:
- Giving access to as lIlanyusers and processes as possible, in a ••ix of

batch/online, 10cal/rePIote, update/brOllse.
- MiniIllizingthe waiting tiIllefor each accessor.
- MaxiIllizing the protection of the database (frOJlllIIalicioususers, froJII

bona-fide users that enter incorrect data or transfol1ll/delete valuable
data, etc.)
MiniIllizingthe totaliIllpact on other users and processes, not associated
with the concurrently-accessed database. .

- Scheduling database-IIIaintenanceactivities in such a way that their impact
on concurrent users is lIIinimal.
EliIllinatingor lIIiniIllizing deadlock situations, when two processes wait
forever for each other.

In the specific case of the HP3000 cosprter , HPE and IMAGE impleJllent
concurrency in several ways, soae controlled by user processes and soae
controlled by the database and operating-systeR processes.
The lII06tobvious way is the lIIechanim.of LOCKING. IMAGE allows teaporary
locks at the database, dataset and data entry levels. These locks are based
on predicates kept in the single database control block, resident in lIleJllory
and shared by all accessors of a given database. Since predicate locking is
LOGICAL and not PHYSICAL in nature, it is extreJllelyefficient. ReJIleJllber

NOlJRUG Hay 16-18

1 - 7



that IMAGEprovides only the locking lIIechaniSllls. It is up to the user to
take advantage of these locking lIIechaniBRSin an intelligent way to reach an
acceptable level of perforaance. The operating systelll will guarantee
deadlock-free operation for users rdthout lIIultiple-rin (tm) capability.
However, the operating systelll will let users with tm capability lock as lIIany
databases in as P1any ways as they wish, with the understanding that
deadlocks ~ay arise and the user, then, will be responsible for restarting
the whole systelll.

A Plore subtle way to ~plelllent concurrency is to share SOReof the internal
resources of the coaputer , of the operating systelll and of the DBMS,both in
hardware and in software. Let us look at a couple of eXaPIples to \let an
idea of these techniques, as iIIIplelllented in the HP3000.

The HP3000 coaputer defines all executable code as shared and re-entrant.
Only one copy of the IMAGEcode exists in the cOPlputer, regardless of the
ruJllber of databases accessed or the J'Mllber of database accessors. t.lhen the
lIIePlory-resident space occupied by a part of the IMAGEcode needs to be used
by sOllIeother code segaent, the lIIe1110rylIIanager silllply overwrites the IMAGE
code. Iolhen the operatir12 systelll needs that "destroyed" part of the IMAGE
code, the lIIe1110rylIIanager saply copies it back frOlll disc, usually recycling
the Plelllory space that is no longer used by SOllIeother code segaent. Note
that code segaents NEVERneed to be written to disc, since they are not
1II0dified at all. llhat is true for the IMAGEcode is true for any other code
(systellls or applications) in the COIIIputer.

The data segaents assigned to a process by the HP3000 lrun-tillle stack plus
extra data segaents) are norlllally private and controlled by each individual
process. Certain extra data &egIIIents can be defined as sharable aIIIong
PlePlbers of the saPIe process faPIily or 8IIIongcOlllpletely unrelated processes,
as is the case with IMAGE'srun-tillle control blocks. The fact that IMAGE's
control blocks are shared by all accessors to the saPIe database turns out to
be very convenient for concurrency, since hierarchical locking and
enqueue/dequeue logic handle conflicting requests.

Ease of use

If getting all the previous benefits lleans getting throu\lh a Jlaze of
incORprehensible gibberish, nobody is going to use (willingly) any DBMS.

IMAGE is iIIIplelllented by Jleane of data structures that are siJIple,
IIell-defined and easy-to-understand. Its atCJlllicuser interface (upon which
all kinds of friendly user interfaces can be built) is also silllple and
consists of a handful of intrinsics. These intrinsics have standard calling
sequences that lIIake thell accessible to ANYlanguage in the HP3000. t.lhen
things go wrong (either in the database itself or in the calling sequence),
these intrinsics return Jleaningful Jlessages and status flags that
distinguish unexpected conditions frOll erroneous conditions. IMAGEhas
straight-forward utilities to cover all aspects of database lIaintenance and
tuning.

Ok. So far! so good. Database lIanaQelllent systelllS certainly look like very
cost-effective Jlethods to lIanage Inforaat.Ion, But how about our PARTICULAR
reality? Howdo lie lIIodel it using a DBMS?

NCliRUGHay 16-18

PRACTICALCONSIDERATIONS

Regardless of the specific DBMSthat we lIIay have chosen to Plodel our
reality, we have to do certain standard tasks to desi\ln and iPIplE!PIent a
database. Let's review soae of these tasks and sOllIe of their possible
pitfalls.

- Identify those aspects of reality that will be lIIodeled by the database.
Reaeaber that only a BRall part of reality can be lIIirrored by a database.
It turns out that defining loIHATto Plodel, HOLIto lIIodel it and WHYwe want
to ROdel it are Jlore difficult than lie think. Therefore, we IIIUSt be
prepared to REVIElJ and CHANGEour opinions (and iIIIpleaentations)
throuQhout the life of our database.

- Make SOllIenotes of the relationships that exist aROne the entities to be
Plodeled. Different folks have different fol'Jlls. SOllIeare nomal fol'Jlls and
SOReare abnoraal, foras. It does not Jlatter. Most likely, what we want
to Plodel does not fit into SOIIebody else's pet theories anyway! The
illlportant question is: "Can lie define, redefine or cancel these
relationsllips at any tillle during the life of the database?" For
perforlllance reasons, we Jlay want to specify that SOlIe OBVIOUS
relationships be "hard-wired" in the database's structure (for instance,
by Reans of PATHSin IMAGEl. But we do not want to be stuck for life!

- Translate these inforJIal notes into SOlIe kind of fOrlllal language that we
understand and that the cOlllputer Understands too. Wewant to be able to
translate our INITIAL notes as well as the notes that we develop DURING
the life of our database. Wedo not IIant this to be a one-tillle affair!

- Parcel out the cOlllputer storage required to build the database's
structures. SoRe DBMS'srequire the user to specify the areas of storage
in sickening detail, down to the cylinder, track and sector level, thereby
ensuring the survival of aperating systeJI gurus. This was OK in the
1950's but we are adults now! The lIodern COPIbination of IMAGEand ADAGER
reserves and fomats ALL disc space at database-creation tillie,
autOlllatically and in a fool-proof lIanner. At any tiJIe during the life of
an IMAGEdatabase, we can physically 1I0ve specific datasets frOll one disc
to another for perfornance fine-tuning, if we so desire. And we can
easily change the capacities of the datasets to keep up with reality.

- Add, delete, Rodify and report entries. Fine tune things in such a way
that we reach a reasonable cOIIproJllisebetween the RESPONSETIMEfor any of
these functions and the global THROUGHPUTfor the whole transaction load.

- Baby-sit the database through its daily (and nightly!) lIaintenance needs.
SoRe DBMS'sasSUPle that only the DATAwill change and Jlake no provisions
for dyrlZlJllicchanges to the SIRUCTURE.IMAGEand ADAGERallow us to do all
kinds of Changes to the data ANDto the structure IIhile preserving the
Jleaning of the Inforaat.Ion, at any tillle during the life of the database.

None of these tasks is easy, and each task is essential if ve want to
Raintain the Mutual reflections of REALITYand DATABASE.It is the DBMS's

NOWRUGHay 16-18

1 - 8



NOURUG May 16-18

responsibility, as our tool, to Plake sure that these tasks are PRAC"l'ICAL
IMPLEMENTATIONS of SOUND TIlEORETICAL IDEALS.

Our reflections have considered IMAGE/3000 as our frilPle of reference. IoIe
look f'oreard to hearing froJII you regarding your reflections and your fraJlles
of reference. Thank you.

1 - 9


