Proceedings: HP3000 1UG 1984 Anaheim

A DISTRIBUTED NETWORK FOR
DEVICE-INDEPENDENT COMPUTER GRAPHICS

by Gary L. Koenig and Clifton Harald
NOI Systems

INTRODUCTION

The purpose of this paper is to describe an
approach to implementing a distributed net-
work for device-independent computer
graphics software on the HP 3000. A dis-
tributed network is a system in which the
various elements function as independent
processes (sometimes on different computers),
cooperating to solve a single problem. Device
independence is a feature of a graphics softi-
ware package that allows a single application
program to draw to many different display
devices. The discussion will emphasize a single
graphics package, the DI-3000 software avail-
able commercially from Precision Visuals, Inc,,
but has broad application to other device-
independent graphics application software.

The first section of the paper will provide
an introduction to the principles of device in-
dependence, and will include descriptions of
the primary functional components of device~
independent graphics systems. A comparison
will then be made between distributed and
modular software networks, drawing on actual
experience with the DI-3000 package.
Originally designed for distributed network
implementation, DI-3000 has most often been
used in modular software networks in which
all modules are simply program subroutines.
Within this section, the disadvantages of using
modular software networks on limited address
machines like the HP 3000 will be addressed in
detail.

An approach to implementing a true dis-
tributed network will then be presented, again
using the DI-3000 software as a specific case
study. This part of the paper includes publica-
tion of the results of testing recently conducted
to determine optimal methods of interprocess
communication. A description of the benefits
of distributed networks will be presented, sub-~
stantiated by the results of performance test-
ing. The paper concludes with a discussion of
the potential for expanding distributed

networking to support multiple CPUs and
highly intelligent devices.

DEVICE INDEPENDENCE

The objective of device independence is to
enable a person to display the same or similar
graphic images on many different graphics dis-
play devices. This capability is desirable for
many reasons. Perhaps most importantly,
device independence can minimize the effects
of hardware obsolescence, since new display
devices can replace outdated ones without
changing graphics application programs.
Secondly, graphics applications can be
developed initially on inexpensive equipment
and then, through device independence, trans-
ferred to more sophisticated devices for
detailed modification. Additionally, device-
independent software is not limited to a
specific vendor's hardware inventory.

In a truly device-independent graphics sys-
tem, general graphic requirements of a single
application program are translated by software
modules (called device drivers) into specific
graphic commands for a target display device.
Commands may be passed to the device as a
string of ASCH characters, as binary informa-
tion or in whatever form is required. Figure [
depicts the primary functional components of a
device-independent graphics system. An ap-
plication program calls up device- independent
routines which perform basic calculations and
format an image in nondevice-specific terms.
When the image has been properly formed, it is
passed to a device driver through a virtual
device interface. The virtual device interface
functions as a communication link between the
device-independent routines and one or more
device drivers. Since each graphics display
device has different capabilities and a different
command language, separate device drivers are
required for each device supported by the

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 JUG 1984

Anaheim

graphics package. The device driver transiates
the image inlo device-specific commands
which are then sent to the display device,
resulting in representation of the image on the

device.

FIGURE I
Device-Independent Graphies System

APPLICATION
PROGRAM

ROUTINES

DEVICE~INDEPENDENT

EN
H

DEVICE-DEPENDENT

(DEVICE DRIVER)

ROUTINES PICTURE

rjﬂ

VIRTUAL DEVICE

The key to device-independent graphics is
the wvirtual display device, which iz a
hypothetical device that represents the com-
bined graphics capabilities of all the devices ac-
tually supported by a-graphics package. All
graphics computations are oriented toward the

actual device requirements represented by the

virtual display device.

Since a virtual display device is an idealized
representation of all graphics device
capabilities, very few devices fully support the
virtual device. Those functions that cannot be
performed directly by the device must be
either simulated or overlooked by the device
driver: Capabilities such as' line style, line
width, polygon fill, polygon interior patterns,
text attributes, and image transformations
generally can be simulated. Color, intensity,
real-time motion, and input capabilties
generally must be overlooked if not specifically
supported by the device hardware.

Device independence has been implemented

in a2 number of different ways over the past-

decade. Current standardization efforts are at-
tempting to provide a commeon basis for design-
ing device-independlent packages. One of the

earliest set of standards was the Core package

forwarded by the Graphics Standards Planning

INTERFACE

75-2

Committee of ACM/SIGGRAPH. The Core
standard has recently given way to the
international Graphical Kernal System (GKS)
standard, which has been adopted by the ANSI
X3H3 committee. :

THE CORE STANDARD

Although the Core standard has been super-
seded by the GKS standard, it is still notewor-
thy, because a number of highly successful
graphics packages are based on it. The Core
system -defines standards for the following
graphics package features:

0

System and virtual device
control;

Positioning and nontext primi-
tives such as moves, lines,
polylines, polygons, and markers
in either two=~ or three-

dimensional coordinate systems;

Attributes for positioning and
nontext primitives. These at-
tributes include color, intensity,
linestyle, line width, polygon

Prepared by the Southern California Regionel User's Group

Proceedings: HP3000 1UG 1984 Anaheim

edge style, polygon interior style
and marker symbol;

o Text, text primitives and text at-
tributes such as path, font, jus-
tification, size, gap, and base;

0 Segments and segment at-
tributes. A segment is a collec-
tion of output primitives
making up a part or all of a
graphic image. Segment at-
tributes include visibility, high-
lighting and pickability, ie,
whether the segment can be
uniquely selected from an inter-
active graphics device. -Seg-
ments can be defined temporari-
ly, or retained permanently;

o Transformations. Modeling
‘transformations allow an object
té be tiranslated, scaled or
rotated within its own coor-
dinate system; Viewing trans-
formationis define the position
orientation, line of sight and
lens configuration that describe
how the image will loock when

75-3

displayed on the graphics display
device. Image transformations
allow the displayed images to be
translated, rotated or scaled on
the display device surface;

o Virtual graphics input;

0 Inquiry capabilities allowing the
graphics system to determine
the current state of all at-
tributes and primitives.

One of the most intriguing challenges of
implementing a Core-based system is to deter-
mine where to place the virtual device inter-
face. Placement is typically defined in terms
of its proximity to the application program.
Figure 1l depicts a simple virtual device inter-
face that is far from the application program.
Figure III shows the interface closer to the
program. As these illustrations suggest, the
major complexity of a graphics software pack-
age can be found in either the device indepen-
dent segment or the device driver segment of
the system, depending on the placement of the
virtual device interface.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

PIGURE 11
Simple Virtual Device Interface
] DEVICE .
APPLICATION INDEPENDENT Ll DEVICE
PROGRAM GRAPHICS DRIVER
) PACKAGE ‘
VIRTUAL
DEVICE
INTERFACE
PIGURE Il
Intelligent Virtual Device Interface
APPLICATION DEVICE INDEPENDENT DEVICE
PROGRAM GRAPHICS PACKAGE DRIVER
VIRTUAL
DEVICE
INTERFACE

75-4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

As the sophistication of graphics devices
improves, it is generally felt that the virtual
device interface should be moved closer to the
application program, in order to take full ad-
vantage of the device features available. If the
device has limited capabilities, the device
driver will either simulate or override requests
for functions not provided in the hardware.

THE DI-3000 SOFTWARE NETWORK

DI-3000, developed by Precision Visuals,
Inc. of Boulder, Colorado, is a commercially
available system based on the 1979 Core stan-~
dard. Designed as a complete three-

dimensional coordinate system, treating two-
dimensionality as a subset, DI-3000 is available
in two configurations: Level A and Extended.
Level A offers all the Core system features ex-
cept for retained segment features. The Ex-
tended configuration adds retained segment
capabilities to the Level A configuration.

Di-3000 was designed as a modular
graphics software network. This approach
lends itself to distributing tasks to intelligent
graphics devices or among linked Central
Processing Units. In this system the virtual
device interface is located close to the applica-
tion program, allowing DI-3000 to take full
advantage of device capabilities. Figure IV il-
lustrates the distributed network of DI-3000. .

FIGURE IV

DE-3000 Distributed Network

APPLICATION PROGRAM

DEVICE-INDEPENDENT
ROUTINES

SEGMENT
STORAGE

METAFILE
DRIVER

DEVICE
DRIVER

DEVICE DEVICE
DRIVER 000 DRIVER

n

The Di-3000 network is composed of four
types of modules. In the first module, the ap-
plication software is combined with the device
independent routines. Device drivers reside in
separate modules. Theoretically, multiple
devices can be activated concurrently, and all
devices can be selected at run time. The
metafile driver module shown above is similar
to 2 device driver, but "draws" to a disk file
rather than to a display driver. These metafile

images can be redrawn and/or modified at a
later time by using a special metafile translator
program.

All retained segments are stored in, and
managed by, the segment storage module.
Segment storage also provides support to the
device drivers. Intelligent devices that main-
tain display lists (or segment information), do
not need much support from the segment

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

storage mode. A command to make a segmeént
invisible would be handled by such a device. A
less intelligent ‘device, however, would have to
depend on the device driver and segment
storage to erase, redraw or otherwise perform
the software functions necessary to simulate
segment invisibility. -

As shown in Figure 1V, the network
manager is the hub of the DI-3000 network;

all ‘communication between nodes' must go -

through the network manager. A sophisticated
protocol has been developed to allow efficient
message switching amorig the nodes. All mes-
sages sent through the network manager are
made up of fifteen-bit, unsigned integers, or
two eight-bit ASCII characters In either case,
the basxc transmission unit is a sixteen-bit
"word." The obvious advantage of this method
is the ease of implementation on any computer
that has at least a sixteen-bit word size. All of
the modules in the network are tailored to the
word size of the host CPU. The sixteen-bit

restriction is in effect only for messages routed

through the network manager. This approach
enables a sixty-bit machine to host the applica-

tion program and device independent routines

while other nodes reside on a sixteen-bit CPU.
The major disadvantage of the fifteen-bit
resolution limitation is that it might be insuf-
ficient to drive ultra-high resolution devices.

COMMON IMPLEMENTATION OF DI-3000

Although designed as a distributed network
DI-3000 is most commonly installed as a sub-
routine library system, where all necessary
routines (including the device driver), are
bound together in a single program image. Al-
though this approach i§ satisfactory for many
applications, it does not take full advantage of
the distributed features of the network., For
example, device selection cannot be deferred
until run time, because a device must be bound
to the program at PREP time. Furthermore,
since all routines are bound into a single
program image, it is difficult to support multi-
ple devices concurrently. Though typically
used on the HP 3000, single bound program
implementation presents difficulties due to HP
architectural limitations.

The major concern in implementing
DI-3000 on the HP 3000 arises from the
product’s memory requirements and the
machine’s memory management limitations.
Figure V presents the code segment and data
segment requirements for the DI-3000

" routines. After these requirements are met, lit-

tle data segment remains for the application
program. As a result, the usefulness of a toolset
product like the DI-3000 is restricted.

FIGURE V
DI-3000 Segment Requirements
Approximate Approximate
Data Segment Used Code Segment Used
DI-3000 with HP7220 Device Driver 40K bytes . © TO0K bytes
DI-3000 Extended with HP7220
Device Driver 47K bytes 102K bytes

The amount of code segment used raises
special concerns. As noted above, DI-3000is a
htrary of callable subroutines, but the HP
3000 does not have well- developed library
handling tools. Therefore, nearly all routines
are bound to the apphcatlon program even if
they are not required.

Neither RL or SL files provide an adequate
solution to the code segment usage problem.
Most DI-3000 routines rely on the use of
COMMON (global) storage. As a result, they

cannot be placed in an SL file. Although an
RL file could be used for some routines, it
would not serve them all, because routines
loaded from an RL file are placed into the
same code segment. As Figure V shows, the
amount of code: segment memory required
would normally exceed the system limitation
for a single code segment. If HP would allow
multiple RL searches, however, the RL alterna-
tive would of fer great promise.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Due to these limitations, most DI-3000
routines are placed into a single USL and the
program is PREPed using -the USL. PREP time
1s often longer than necessary, because many
routines not required by the application
program must be linked mto the program
image.

Since SL use is prohibited, very little code
sharing is possible. Even though the code for
the DI-3000 routines is identical for two dif-
ferent application programs, code sharing is
impossible when the two programs are run
simultaneously. Only when users are running
the same program files can the advantages of
code sharing be realized.

The Extended version of DI-3000 also
presents limitations in usefulness. Since there
1s little data segment available for the applica-
tion program, it is difficult to dedicate a sig-
nificant amount of memory space to the seg-
ment storage module. An application program
that has complex segment storage requirements
is virtually impossible to create on the HP
3000 wusing bound program image
implementation.

PROCESS HANDLING IMPLEMENTATION
OF DI-3000

Since DI-3000 was designed for a dis-
tributed network environment, its implementa-
tion on the HP 3000 may be facilitated by
using MPE’s process handling capabilities. Im-
plementation using process handling is
straightforward due to the rigid separation be-

tween modules in the DI-3000 network. Since
all communication between modules goes
through the network manager, the device
drivers, metafile driver and segment storage
module may be regarded as "son" processes, in-
voked and controlled by the network manager.
The network manager may then be bound
together with the device independent routines
and application program into a single program
image.

Once the decision to utilize process han-
dling is made, it is necessary to determine-
which interprocess communication alternative
to use: message files, extra data segments or
the RECEIVEMALIL and SENDMALIL intrinsics.
The choice is not obvious, however, because the
network is not being implemented for simul- -
taneous processing purposes. Message files are
the - most reasonable alternative when the
processes operate simultaneously, -and must
communicate with each other at 1rregu1ar in-

tervals. In DI-3000, however, the network -

manager passes a message to.a device driver (or
other "son" process), and then waits until a re-
ply is sent back before attempting to perform
any other function.

INTERPROCESS COMMUNICATION TESTS |

To test the resources used by each of the
communication methods described in the
preceding section, several relatively simple
FORTRAN test programs were designed. The
“father" processes were coded as follows:

Message Flle
Find the time of day

Arbitrarily initialize
a 256-word buffer

Build and FOPEN an
input Message File

Build and FOPEN an
output Message File

Create and activate the
“Son® process

Message File
Send and receive 1000

256-word buffers using
FWRITE and FREAD

Extra Data Segment
Find the time of day

Arbitrarily initialize a
256-word buffer

Get a 256-word Extra
Data Segment
Create the “"Son" process

Extra Data Segment

Send and receive 1000

256-word buffers as follows:

DMOVOUT the buffer;
activate the "Son" process;
suspend itself; when
activated by the "Son,”

75-7

MAIL

Find the time of
day

Arbitrarily
initialize a
256-word buffer

Create the “Son"
process

MAIL

Send and receive
1000 256-word
buffers as follows:
SENDMAIL the
buffers;

activate the "Son"

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anabheim

DMOVIN the buffer

Find and display the
"Father’'s" CPU time

Find and display the
Elapsed time
Exit

Elapsed time
Exit

In all cases, the "son" processes essentially
performed mirror actions. The programs were
run on a Series 40 with 1 megabyte of memory
and two Winchester drives on a single GIC.
One set of tests was run on a stand-alone
machine, and another on a machine that had
reached steady-state conditions under a heavy,
reproducible load. The latter tests were design-
ed to heavily stress the CPU, memory and disc
channel. :

Figure VI presents the results of running
each test five times uwnder no-load and heavy

Find and display the
"Father's" CPU time

Find and display the

process; suspend
itself; when
activitated by the
“Son,“ RECEIVEMAIL
the buffer

Find and display
the "Father's" CPU
time

Find and display
the Elapsed time
Exit

load conditions. The tests consistently
demonstrated the advantage of using the extra
data segment method. Although the coding of
this method is slightly more difficult than the
coding of the message file method, the incon-
venience is compensated for by lower execution
and elapsed times. As a result of these tests,
DI-3000 was implemented as a process handled
network, passing messages through a 256-word
extra data segment.

FIGURE VI

- Interprocess Communication Test Results
(All times in seconds)

NO LOAD
Message File Extra Data Segment MAIL

"Son” "Father®” Elapsed "Son" "Father" Elapsed “Son" "Father" Elapsed
Test CPU CPU Time CPU cru Time CPU CPU Time
1 1.50 1.76 8.19 0.7 0.84 5.07 1.40 1.50 16.38
2 1.47 1.85 8.26 0.7 0.84 4.88 1.43 1.54 16.44
3 1.46 1.85 8.27 0.72 0.84 4.84 1.44 1.54 16.39
4 1.47 1.85 8.21 0.72 0.84 4.81 1.44 1.63 16.39
5 1.45 1.86 8.18 0.71 0.84 4.82 1.42 1.54 16.41
Average

1.47 §.83 8.22 0.7 0.84 4.88 1.43 1.53 16.40

WITH LOAD

1 1.43 1.76 10.28 0.7 0.82 7.49 1.50 1.62 19.71
2 1.44 1.79 10.47 0.7 0.82 7.49 1.60 1.68 19.64
3 1.44 1.78 10.60 0.69 0.82 7.32 1.58 1.68 20.92
4 1.42 1.79 10.49 0.70 0.81 7.37 1.58 1.68 20.50
8 1.43 1.79 10.36 0.1 0.81 7.36 1.59 1.70 21.55
Average

1.43 1.78 10.44 0.70 0.82 7.41 1.57 1.67 20.46

75-8

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

BENEFITS OF THE PROCESS STRUCTURE

By using HP’s process handling capabilities,
the advantages envisioned in the design of the
network have been realized. Furthermore,
most of the difficulties arising from HP
hardware and software limitations have been
overcome. Through process handling, for ex-
ample, graphic devices can be selected at run
time. Device drivers are not bound to the
program image, since they run as "son" process-
es. A special routine was added to DI-3000 to
allow the programmer (and ultimately, the
user)} to decide which device driver to activate
at any time during program execution.

Using process handling, drawing to more
than one device at the same time presents no
special problems. Although DI-3000 was
designed to support multiple devices concur-
rently, single bound program image implemen-
tation practically precludes use of this feature.
This is because many of the same routine and
common block names are used in all device
drivers. Since no device drivers are bound in
the process handling implementation, users of
(tih_e network are not limited to a single device

river,

It is important to remember that a "son"
process must always respond to the network
manager before further processing takes place
in the device independent part of the network.
This allows use of the same extra data segment
to communicate with all "son" processes. Con-
sider, for example, a program that draws a pie
chart to an HP2623 terminal and an HP7221
plotter simultaneously. The device indepen-
dent routines form a slice of the pie in a vir-
tual device form. The network manager ac-
tivates the HP2623 device driver and sends a
message through the extra data segment. The
HP1623 device driver translates the message,
draws the slice on the screen, and then replies
to the network manager. The network
manager then activates the HP722] driver and
sends the same message through the same extra
data segment. The HP7221 driver then trans-
lates the message, draws the slice and replies to
the network manager. This same sequence is
repeated until the entire pie chart has been
drawn on both devices.

Another benefit of process handling is a
large increase in the amount of data segment
available to the application program. This is a
result of all global and local storage in the
device drivers, metafile driver and segment
storage being moved out of the "father" data
segment and into data segments for the "son"
processes. DI-3000 now takes approximately
20,000 bytes of data stack for both Level A
and Extended versions. This requirement is a
substantial improvement over the 40-47,000
bytes required when everthing is bound into a
single program image. As a result of increased
data segment availability, the programmer not

only has more data stack, but considerably
more segment storage, as well. Segment storage
is 2 separate process with its own data segment,
which allows programmers to dedicate more
than 25,000 words to segment storage.

Under process handling implementation,
significant improvements in the efficiency of
program creation are realized. The time
required to PREP an application program is
diminished, as is the complexity of the opera-
tion. USL management is more efficient, be-
cause the USL does not coniain code from
device drivers, segment storage and the
metafile driver. Similarly, the Segmenter takes
less time to PREPARE a program because it
has fewer routines to link. The only detrimen-
tal aspect of process handling is an increase in
drawing time. Although the increase has not
been measured and will vary with the baud
rate and display device, it is expected to be no
more than ten percent in the worst case.

One of the most important benefits of
process handling is that all “son" processes may
be shared, since the program image of these
processes does not change from application
program to application program. Sharing of
"son" processes thus relieves some of the strain
that DI-3000 can place on memory.

A potential benefit that has not yet been
fully implemented is the ability to call
DI-3000 routines from COBOL, BASIC or
PASCAL. Almost all FORTRAN input and
output takes place in the device drivers and the
metafile driver. The remaining FORTRAN in-
put/output mainly addresses error and debug
processing. Once the latter input/output is
transferred to a “son" process, or converted to
system intrinsics, DI-3000 should be available
to host languages other than FORTRAN.

FUTURE POSSIBILITIES

Two extenstons of process handling prin-
ciples offer potential benefits in future ap-
plications: concurrent multiple processing, and
distributed processing using more than one
computer,

Concurrent multiple processing offers the
most potential in an environment where many
different DI~3000 apphication programs access
a large number of devices. In such an en-
vironment, the optimal system configuration
would most likely call for separation of the
network manager from the device-independent
module, placing it in a global process that
communicates with several application
programs, as well as all device drivers, segment
storage and the metafile driver., The applica-
tion programs would asynchronously send mes-
sages-to the network manager to be forwarded
to the appropriate driver or segment storage.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

The network manager would thus direct the
flow of signals between aIl programs and
processes.

Distributed processing offers even more
potential, given the increasing intelligence of
graphics devices. A network in which device
drivers actually execute functions within
specific devices would lighten the load placed
on the CPU and the main memory. It is sig-
nificant that a device driver that runs and
draws on the IBM PC is currently available.
True distribution of processing will continue to

Device independence is a very desirable,.
perhaps indispensable, feature for any graphics
package to possess. Standards have grown up
around this feature and have, in turn, been im-
plemented as commercial packages.

DI-3000, the package described in this
paper, was designed as a software network.
Performance problems arise when DI-3000 is
simply installed as a library of subroutines.
Taking advantage of the modular design by
implementing DI-3000 as a process handled
network releases its full power while minimiz-

prosper as more graphics devices gain a high ing its effect on system resources.
level of intelligence.

The network design can be extended to al-
low some processes to run on separate com-
puters, especially intelligent graphics devices.
This is a practical and efficient example of a

true, distributed processing network.

SUMMARY
BIBLIOGRAPHY

Olenchuk, Bruce. "Graphics Standards." Computer Graphics World; Volume 6,
Number 8 August 1983,

Precision Visuals, Inc. DI-3000 User’s Guide. Boulder, CO: Precision
Visuals, Inc.

Warner, James R. "Principles of Device~Independent Computer Graphics
Software" Los Alamitos, CA: The Institute of Electrical and Electronics
Engineers, Inc., 1981.

BIOGRAPHICAL SKETCHES

‘Gary L. Koenig is a computer consultant for NOI Systems o} Boulder, Colorado.
He provides a wide range of services for HP 3000 sites, but specializes in computer
graphics, accounting and productivity tools. In the past two years, Koenig has super-
vised development projects utilizing many of HP's development tools: FORTRAN,
COBOLII, PASCAL, and VPLUS.

Koenig's past experience includes system programming, DF planning, Data Center
management, customer support, product planning, system performance, compiter nef-
working, and application programming.

Koenig received a BS in Mechanical Engineering from Iowa State University in
1969. He worked briefly as an application engineer before joining the Data Process-
ing profession.

Clifton~ Harald is a Research Associate with the National Institute for
Sociceconomic Research (NISR) in Boulder, Colorado. He specializes in evaluating the
public cost and revenue consequences of community development trends, and in

75-10

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

analyzing alternative local government fiscal management policies. He has managed
several socioeconomic impact assessment projects for NISR, and directs marketing of
NISR’s Planning and Management Services among local governments in the western
United States.

Harald also has experience in energy and environmental planning, having previous-
ly worked as an Energy Specialist with the cities of Seattle, Washington, and Boulder,
Colorado. As an Environmental Planner with the regional transit agency in Seattle, he
coordinated facility planning for multi-million dollar construction projects and
prepared technical analyses of transit system energy use.

A graduate of the University of Washington, Harald holds a Masters degree in Ur-

ban Flanning. He received his Bachelor of Arts degree in Literature, Sociology and
Psychology from the University of Colorado.

75-11

Prepared by the Southern California Regionol User's Group

