Proceedings: HP3000 IUG 1984 Anaheim

RECOVER IT YOURSELF WITH USER LOGGING

by: Diane Weir
Los Alamos National Laboratory

INTRODUCTION

IMAGE logging is a good product that
has proved to be an effective and accurate
way to save interactive transactions for
recovery and audit purposes. There is one
shortcoming with the product in that it only
logs transactions within the IMAGE domain.
Some applications require that KSAM and
MPE files be updated in an on-line system.

How can these files be recovered? One answer
1s to use a recoverable program structure that
not only posts the interactive transactions, but
recovers them as well. The user logging facility
is used to store the successful transactions to
either tape or disc. This paper will discuss the
recoverable program structure and the wuser
logging subsystem.

LOGGING AND RECOVERING TRANSACTIONS

THE RECOVERABLE
PROGRAM STRUCTURE

This program structure was developed be-
cause there wasa need to save all update trans-
actions for an on-line payroll system that
used IMAGE, KSAM, and MPE files. A record
is written to the log file for every successful
update on the file sets. The record logged looks
just like the screen’s image that cauvsed the up-
date. The on-line system can be run in in-
teractive mode using V/3000 with users at
terminals entering their transactions, or in
recovery mode. In recovery mode the log file
is read instead of the terminal The edits are
re done to insure that the data files were
properly restored, then the transactions are
posted to the backup copies of the files. If any
of the edits fail the program aborts;, the
recovery is probably being run against the
wrong set of files or the date/time parameters
are wrong. The log file contains before and af-
ter images of the screen for audit reporting
purposes; for recovery only the after images are
reposted on the change transactions. The
deletes contain the before image of the screen
prior to the deletion, the adds, the after image.

THE USER LOG RECORD FORMATS

Although the logging subsystem uses several
record types, the records to concern yourself
with are the user records, coded two and seven.
The first nine words of the 128 word record
are reserved for the logging subsystem. The
first two words contain the record number, the
next, the checksum. The fourth word is impor-
tant in that it contains the record code. Words
five through seven contain the date and time.
The eighth word holds the log id with the
ninth word used to hold the length of the user
area. The user zrez follows for the next §i9
words. Records are added to the log file via the
WRITELOG intrinsic. The file isin 128 word
ASCII format that, through the use of the
length parameter, allows transactions of
various lengths to be logged. If the write to the
log file has a user area of 119 words or less, the
transaction will physically be placed into one
2-record. If the 119 word limitation is ex-
ceeded, as many 7-records as needed to com-
plete the operation are written. For example,
if the length of the user area is 408 words, one
will see one 2-record and three 7-records on
the log for the request. This gives the user the
?izxibility needed for various uses of the log

iles. .

69~1

Prepared by the Southern Californie Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

When designing the application the
2-record was defined to contain certain con-
trol and audit information. In COBOL syntax

the log records were defined as follows.

61 LOG-RECD.

05 LOG-SYSTEM-AREA.
10 FILLER PIC X(6).
10 LOG-REC-CD PIC 9(4) COMP
10 FILLER PIC X(10).

05 LDG-USER-AREA.
10 . LOG-USER PIC X(8).
10 LOG-SCREEN-CD PIC XXX.
10 LOG-BEF-AFT PIC X.
10 LOG-ACTION PIC X.
10 LOG-DATE PIC S2{7) COMP-3.
10 LOG-TIME PIC 59(5) COMP-3.

10 LOG-SCREEN-IMAGE PIC X(218).
05 LOG-CONT-AREA REDEFINES LOG-USER-AREA.
10 LOG-CONT-SCREEN PIC X(238).

The LOG-SYSTEM-AREA is the nine word
area reserved by the user logging facility. The
LOG-USER-AREA is the definition of the

2-record. It contains the user name obtained -

from the WHO intrinsic, the apphcations
screen code, a before/after code, the screen’s
action code, "the posting date and tlme followed
by the first 218 characters of data. If a con-
tinuation record was needed the LOG-CONT-
SCREEN contains the 7-record’s data. The
before/after code is used primarily for audit
reporting. An add transaction will contain
only the after record; a delete, the before
record. A change transaction will reflect both
the before and after states. The screen image is
remainder of the data written to the log file.

THE MAIN PROGRAM

The on-lme system contains a main menu
program that prompts for passwords, opens the
database, terminal, and formfile, and displays
the menu. The sub programs actually update
the files. The menu’s function is to control the
flow between the subprograms. The menu can
be executed in interactive or recovery mode.
The main program knows if recovery or inter-
active mode is desired via the use of run-time
parameters, SW! in COBOL was used if
recovery mode was needed. Thus to run the
program interactively, simply ;RUN PAOOQOI,
to run recovery, RUN
PACOO1 "PARM=/ 40000" The logic of the two

modes is illustrated as follows.

INTERACTIVE MODE RECOVERY MODE

Read the EDITOR file that has the: from
date/time and to date/time for the
recovery process.

Turn echo off and ask for passwords

Open the database

Turn echo back on :

Call the WHO intrinsic to find the FOPEN the log file specifying an eold,
user's name, g permanent file, opened for excluslve

Gain access to the logging facility via access.,

* OPENLOG
Open the formfile. READ-LOOP
Open the terminal Add 1 to the record number.

: ' Call FREADDIR to read the file sequen~

READ-LOOP ' © tially.
Display the menu screen If the log record code is not a 2, skip
Read the menu the record.
Call the subprogram to service the Test the date/time in the log record to

request see that it fits the recovery para-
-or- meters.

Go to the EXIT-ROUTINE if F8 was If the log's time is less than the
pressed. recovery time, read the next record.

Go to READ-LOOP .If the log’'s time is greater than the
recovery time, go to EXIT-ROUTINE.

Subtract 1 from the record number of

69-2

Prepored by the Southern California Regional t'ser's Group

Proceedings: HP3000 IUG 1984

Anaheim

EXIT-ROUTINE
Close the terminal and formfile
Close the database and other files
Terminate the access to the logging
facility with CLOSELOG.
Stop run.

When a system failure occurs in the middle
of the day, the operator must first restore the
files from the latest full and partial backup
sets, Then the date and time of the last backup
tape is entered into an EDITOR file along with
the date and time of the system failure. This
delimits the recovery process to the time para-
meters saved in the log file’s 2-record. The
operator then stops the logging process with the
:LOG console command.

The database is opened for exclusive access
while recovery is running. This insures that no
processes are using the database until recovery
is completed. The log file is also opened in ex-
clusive mode as an extrz safety measure. A
stop of the logging system forces all buffers to
be flushed to their media so the log file should
be as complete as possible.. If logging was not
stopped prior to recovery the exlusive open of
the log file will fail. The log files is then read
using the FREADDIR call because the sub-
programs need to know where to begin process-

INTERACTIVE MODE

READ-LOOP

Read screen (VREADFIELDS,
VFIELDEDITS,
VGETBUFFER)

Edit the transaction
{If errors perform VSETERROR
then go to READ-LOOP)

Update the datasets and other files

the log file .

Call the appropriate subprogram.

When the subprogram returns test the
returning screen code for the end-
-of-file flag. If it is not set,
subtract 1 from the record number and
go to READ-LOOP. 1If it is set go to
EXIT-ROUTINE.

EXIT-ROUTINE
" Close the log file via FCLOSE
Close the database and other files
Stop run.

ing on the log file. The record number is "’
reduced by one prior to calling the subprogram
so the subprogram can add one to the record
number before reading the log file. This keeps
the subprogram’s read loop consistent.

THE SUBPROGRAM

The subprogram’s structure is described
below. In interactive mode the screen is read
and the data is edited. If the edits do not
detect errors the database and other files are
updated. For delete and add transactions, the
screen image is added to the log file via
WRITELOG directly from the screen image in
working-storage. On change transactions, the
"before" screen is re built and written to the
log file before the updated screen image is log~ -
ged. By comparing the "before" screen to the
"after" screen on the audit report the changes
can be isolated. The logic for the subprograms
is outlined below.

RECOVERY MODE

READ-LOOP

Add 1 to record.number, then FREADDIR
the log file. .
Bypass any records whose code is not a 2
Test the "to date/time"” against the rec-
overy parameters., If the time has
expired or the end of file is found
return to the menu.
if the screen belongs to this
subprogram, if not return to the
main program.
if the screen was too large to fit
into one l6g record. If so, cont-
inve reading until the entire screen
is reassembled.

See

See

Edit the transaction
(If errors perform VSETERROR)

Update the datasets and other files -

69-3

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

If add or delete, write screen to log

If change, build "before" screen
write it to the log then
log the "after"” screen.

Initialize screen for next transaction..

Go to READ-LOOP Go to READ-LOOP

VSETERROR ROUTINE

If program is in interactive mode, call VSETERROR for the field,

else abort.

In recovery mode, the routine to edit the
screen’s data and update the files is the same
routine performed when recovery is run.
There are not two separate programs to main-
tain when changes occur to the edit or update
criteria. The same subprogram that updates
the datasets, KSAM, and MPE files interactive-
ly also recovers those transactions. A word of
caution. Since the edit routines are performed
for the recovery to insure data integrety, any
alterations to the edit criteria or the screen
layout should be preceeded by 5 :STORE of the
data~ bases and other files updated by the
system.

There is no need to delimit the logical
transactions by special records written to the
log file. IMAGE logging delimits transactions
by DBBEGIN and DBEND calls. This is to
prevent any incomplete updates from occur-
ring. This is not needed in this type of struc-
ture. The screen is the logical transaction.
One screen may update a variety of files but
since the screen is being recovered instead of

01 COMMON-AREA.
05 PP-D-BASE PIC X(8}.
05 PP-USER PIC X(8).
05 PP-LOG-INDEX PIC S9(9) COMP.
05 PP-REVCOVER-FLG PIC S9(4) COMP.
¢S5 PP-REC-NUM PIC 59(9) COMP.
05 PP-SCREEN-CD PIC X(4).

05 PP-EOF-FLAG REDEFINES PP-SCREEN-CD

PIC X{4).
05 PP-RECOVER-TO-TIME,

the records, special transaction delimiting
records become unneces sary.

THE COMMON AREA

The common area of the on-line system
contains the V/3000 area, the database name,
and the data needed for the logging and
recovery. PP-USER comes from a call to WHO
to determine the user’s name. PP-LOG-INDEX
is the log index returned from the call to
OPENLOG. LOG-FILE-NUM is the file
number for the log file when run for recovery;
it is required to FREADDIR the log file. The
PP-RECOVER-FLG indicates the mode,
recovery or interactive, o the subprograms.
PP-REC-NUM indicates where recovery is to
begin on the log file. PP-SCREEN-CODE teils
the main program the next screen to process or
whether the subprogram reached the end of
file or the time Iimit was exceeded. The
recovery is terminated when log file ends or
the log records date and time exceed
PP-RECOVER -TO~TIME.

10 PP-T-DATE PIC 59(6).

10 PP-T-TIME PIC 59{4).
05 LOG-FILE-NUM PIC $9(4) COMP.
05 V-COM-AREA PIC X(102).

TESTING CONSIDERATIONS

How is testing conducted on a logging sys-
tem? When testing occurs against a test
database, the transactions should not be logged
to the production log file. Instead the transac-—
tions are logged to a test log file. The log file
identifier in main program is altered prior to
the OPENLOG call. Also, the recovery should
be tested if the screen layout was altered. This

69~4

mandates that the FOPEN of the log file in
recovery mode use the file name of the test log
file, not the production log file. This can be
accomplished through a file equation. Again
the run parameter, SW2, was used to indicate
whether testing was occurring. To test interac-
tively one would :RUN
PAOOOL;PARM=%20000, for testing recovery,
:RUN PAOQOL;PARM=%60000.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984

Anaheim

THE USER LOGGING SUBSYSTEM

THE LOGGING PROCESS

The user logging subsystem allows for one
shared file buffer per logging process regardless
of the number of users accessing the log file.
A write is performed on a log file via the
WRITELOG intrinsic. One may log to either
tape or disc. For disc logging, the log entries
are loaded into the buffer area of the logging
data segment. The records are written to disc
when the buffer area becomes full or when
certain intrinsics such as FLUSHLOG, BEGIN-
LOG, or ENDLOG are called. Tape logging ac-
tvally writes the log buffer to disc for a later
transfer to tape. Transfers to tape occur simul-
taneously with writes to the disc log file be-
cause the two steps are controlled by separate
processes. The reason for the two processes is so
that the process that loads the buffer to disc
can continue without interruption. The process
that writes the transaction to tape can pause
while a reel rewinds and another is mounted.
This gives the logging process the capability to
continue without interruption at the end of a
tape volume.

:HELLO MANAGER.SYS

IMAGE uses the user logging subsystem to
record updates to the databses where logging is
enabled. The user logging facility was written
by a team in the MPE group to provide the
framework for IMAGE logging. IMAGE
records physical records updated by DBPUT,
DBUPDATE, and DBDELETE calls if the log-
ging on that database is active.

GETTING STARTED
WITH USER LOGGING

This section will deal with the commands
and utilities uwsed for the logging subsystem.
All users accessing the user logging facility
need to have logging, or LG, capability. The
system manager needs to allocate LG
capability to the account, then the account
manager can allocate LG capability to himself
and to the users accessing the interactive log-
ging system.

:ALTACCT PAYROLL;CAP=AM Al GL,OP ,ND SF,IA BA,LG

:HELLO MGR.PAYROLL

:ALTUSER MGR;CAP=AM, AL,GL,0P ND,SF IA,BA LG
:ALTUSER SALLY;CAP=ND,SF,IA, BA,LG

Estimate the size of the log files. They
should be large enough to contain at least one
day's worth of transactions. You may want to
set the file size large enough to hold a week’s
worth of transactions if weekly audit reporting
from the log file is desired. Build the log file
with a record length of 128 words and a file

code of LOG. Decide on a log identifier (log
id). The log id is your link to the logging sub-
system. Use the :GETLOG command to as-
sociate the log file with the log id, to tell the
subsystem where logging is to occur, and to as-
sign a password to the logging access. The
password is not mandatory.

:BUILD PAD100;REC=128,5,F,ASCII;DISC=15000,16;CODE=LDG
:GETLOG PADLOG;LOG=PAD100,DISC;PASS=

OPERATIONAL CONSIDERATIONS

The command to actually start the logging
process is the :LOG console com mand. There is
a problem with the console commands in that
one must have been allowed the command in
order to issue it from somewhere other than
the console. The contributed utility AL~

:RUN ALLOWME .UTIL.SYS
Allowme Utility Vo .0
MGR . PAYROLL ; COMMANDS =L0G
END OF PROGRAM

69-5

LOWME will grant console command
capability to users other than the owner of the
console. The account manager was allowed
the LOG command. OPERATORSYS was al-
lowed both the LIMIT and LOG commands so
that these can be controlled by the batch job
running the SYSDUMPS.

19 January 80

Prepored by the Southern California Regional User’s Group

Proceedings: HP3000 [UG 1984 Anaheim

The jobstream for the SYSDUMPS sets the
LIMIT to zero then stops the logging processes
before a full or partial SYSDUMP. This allows
the log file to be saved on the backup tape.
After the SYSDUMP has completed, the
jobstreams restart the logging processes and
raise the limits back to normal. It is useful for

the account manager to have access to the
:‘LOG command and OP capability so that the
logging process can be stopped and all files, in~
cluding databases, can be stored prior to clear-
ing the log file. OP capability allows a user to
store a database without needing dangerous PM
capability. :

1JOB PARTIAL,OPERATOR/OPPASS.SYS/SYSPASS

IRUN ALLOWME .UTIL.SYS
ILIMIT 0,0

L CONTINUE

ILOG PADLOG, STOP
IFILE TP;DEV=7

'FILE LP;DEV=LP
ISYSDUMP XTP,XLP

t0/20/83

Y

ILIMIT 2,16

1L0G PADLOG,RESTART
1EDJ

The system manager might need to alter
the system configuration for the logging to
work on your application. In the system table
section of the SYSDUMP dialog, the manager
defines the maximum number of logging
processes allowed on the system at any one
time and the maximum number of users per
logging process. The system manager manual
recommends 20 for both of these parameters
but that might not be enough. When assigning
these numbers remember that any IMAGE log
ging performed on the system needs to be taken
into account also.

One last operational consideration for the
user logging facility is the OPERATORSYS
startup procedure. Some shops stream a job
and others use a UDC file. In the logon UDC
for the console, the logging processes are re-
started via the :LOG command.

STARTUP

OPTIONS LOGON, LIST

ALLOW GPERATOR.SYS; COMMANDS=CONSOLE
LOG PADLOG,RESTART

STREAMS 10

JOBFENCE 4

OUTFENCE 4

STARTSPOOL LP

ALLGCATE EDITOR.PUB
{etc) ...

LOGGING COMMANDS

There are other logging commands that help
one use the facility. LISTLOG lists the active
log identifiers on the system and their creators.
:RELLOG del etes log identifiers from the user
logging facility. :ALTLOG changes certain
characteristics of the log id such as the log file
name, the log destination, or or the logging
password. :SHOWLOGSTATUS displays the
status of all currently active log files. When
the CIPER MIT was installed, the log iden-
tifiers were corrupted. The fix was to delete
the bad log ids with :RELLOG and add the
good ones back with :GETLOG. Fortunately,
the log files were intact, just the identifiers
were corripted.

LOGFILE

HEADOFF 6
(LISTLOG <<lists active log identifiers>>
LOGID CREATOR
PADLDG

MGR . PAYROLL
:ALTLOG PADLOG;LOG=PAD100,TAPE |

FPAD100 .PUB. PAYROLL

<<changes log characteristics>>

:SHOWLOGSTATUS <cstatus display of active log processes>>
LOGID USERS STATE . RECORDS '
PADLGOG 0 INACT 225

69-~6

Prepared by the Seuthern California Regionat User's Group

Proceedings: HP3000 IUG 1984 Anaheim

:RELLOG PADLOG

<<deletes a log identifier>>

THE LOG RECORDS AND THEIR FORMATS

There are nine record types in a log file.
The format of the log records vary depending
on the record type. Record type one is the
openlog record. It is generated whenever a user
accesses a logging system via the OPENLOG
call. The three-record is the closelog record,
generated when a user executes the
CLOSELOG intrinsic. There is a start or res-
tart record, code six. Records coded four and
five are the transaction header and trailer
record generated by the BEGINLOG and
ENDLOG intrinsics. IMAGE uses these for
DBBEGIN and DBEND calls. BEGINLOG and
ENDLOG cause the logging buffer to be
flushed to disc; so do DBBEGIN and DBEND
calls. The nine record is a crash marker. When
logging is restarted after a system failure while
logging was active, recovery occurs on the log
files. The crash marker tells the user logging
subsystem where the crash occurred so it can
recover itself. The user records, code two and
seven, were discussed in the first section.

INTRINSICS USED IN LOGGING

A write call to the logging subsystem uses a
mode parameter. This parameter tells the log-
ging system which action to take if the buffer
becomes full prior to the write request. Mode
one functions similar to no-wait I/0; the
process continues after passing the request to

the logging subsystem. Mode zero forces the
process to wait until the logging system has
processed the write to the log file. If the buff-
er is full and the write to the log file in mode
zero, the buffer is written to disc and cleared.
The entry is placed into the buffer, before con-
trol is returned to the calling program. The
mode is also used for other calls to the logging
system and operates in the same fashion.

Access to the logging facility is obtained via
the OPENLOG imtrinsic. The format 1is
OPENLOG index, logid, password, mode, status.
The index returned is used on subsequent calls
to WRITELOG and CLOSELOG. The logid
contains the log identifier, the password, the
logging password. The mode indicates the wait
request as discussed above. The status will con-
tain error codes if the OPENLOG call failed.

The WRITELOG intrinsic format is
WRITELOG index, data, length, mode, status.
The index is the same index returned from the
OPENLOG call. The data is the user data to
be written to the user area of the log record.
The length is the size of the data being passed.
Again the mode is the wait/no-wait request.

The CLOSELOG intrinsic is used to stop ac-
cess to the logging facility. Its Its format is
CLOSELOG index, mode, status. Index,
mode, and status are the same as for the
WRITELOG intrinsic previously described.

CONCLUSION

There are various methods available to users
to recover lost interactive transactions. The
method previously described is one way to ap-
proach the task. IMAGE logging is probably
preferred since the programmer does not have
to be involved with recovery. Unfortunately,
IMAGE logging is not always the answer.
There are files outside the IMAGE domain,
KSAM and MPE files, that are updated via in-
teractive programs that also need to be
recovered. The user logging fac ility is an effi-
cient answer to save those transactions that are

69-7

critical to the application. The recoverable
program structure described may be a useful
tech nique since the chances of inconsistent
results between two separate posting programs
are eliminated. There 1s extra time required to
develop and maintain the self-recovering
programs, but the time is probably less than
having one program post interactively and
another post for recovery. There is a better
chance of data consistency if one program does
all the posting, be it inter active or recovery.

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 UG 1984 Anaheim

BIOGRAPHICAL SKETCH of Diane Weir

I am currently employed by Los Alamos National Laboratory as a staff member
using DEC equipment. Formerly, I was the data processing manager for a heavy con-
struction firm using the HP 3000 for three years. It was in this capacity that this
recovery technique and the User Logging subsystem was developed. I began in data
processing in 1970 and have worked on IBM, Burroughs, Hewlett - Packard, and Digi-
tal hardware. [have a Bachelors of Business Administration from the University of
Texas at El Paso.

69-8

Prepored by the Southern California Regional User's Group

