Proceedings: HP3000 IUG 1984 Anaheim

Small World, but how should it be orgamzed" "7

Chrls Spottrswoode
Synergy Computing

A. Naive Real-Time

You are a healthy human being, aware of what
is going on round about you.. Your nervous sys-
tem relays its : sense-perceptions to your
brain fast enough for you to be able to
respond to threats or opportunities in. your
immediate - surroundings: you~ have a 100%
real ~time mf ormatron system

Your computenz.ed mventory control system. .

records every.inventory movement as it takes

place, so you know exactly when to reorder or
move or ship your goods: you. have .a. 100%

real tlme mformatlon system . -

Both statements are wrong. They represent

what I call "The Naive Real-Time Fallacy",
propagated by the optimists: of this world.

And I-am not referring only to- computer

salesmen for are we not all optrmlstsl

Where is the fallacy? And how can it be cor-

rected"

Let us start. wrth an extreme counterexampie

Our -eyesight and -our. reactipns are not fast

enough to spot and dodge falling meteorites:

"Of ‘course not,” you respend, "but there aren't .

enough - fallmg meteorites to bother me.

99.999.% is good enough for me" And -
mankind’s millions of years m the survwal 7

race prove you rlght

No- country 8- fast enough and powerful
enough to.spot: and neutralize falling- ballis-
tic missiles. No. company. has a perfect in-
ventory movement recording system or in-
ventory reorder algorithm. "Just a matter of
improving technology," you may well retort.
And you are almost' right. But -not guite,

for the solution may prove more. costly-

than .the problem, and finally- our competitors

can impro¥é too. We should not ‘even ex~.
pect .anywhere near . 100% real-timeness or . -

accuracy. "Just enough!” should: be our

watchword, as indeed it has always “been
throughout the saga of evolutlon

So let us accept that we have 9OA real- :
time information systems, which are quite gdod -
enough for us. Qur knowledge of what matters:
in the world around us marches along ~with
that world, even though we are sometimes a
little behind in our perceptions or reactions.

Many first=time purchasers of inventory con-
trol systems are still at this stage of under-
standing of the system they are expecting.
Regrettably many designers of real-time in-
ventory control -systems are still there too! For .
this is still- Naive - Real-Time. The above
qualifications are still not the point: the: mes-

sage. from Distributed Processing to Naive -
Real-Time is not that slow or.irregular or in~- -

frequent communications -make real-time
difficult. Let us summarize the naive concep---
tion of real-time. and see what the real
problem is. &

Imagine a data-structure diagram of ‘our
naive inventory control system: we probably
have at least an item master, an inventory
master, an mventory movement transaction
detail file and various order files, all adding
into summary fields for that instant access to
the current status. There are data access paths
where necessary, and we (the end=-user or the
programmer) can wander around these paths
and -establish the. exact 1nventory posmon
order—sta.tus etc. :

As Charlie Bachman (*The Father of Data- -
Base") puts it (in his ACM Turing Award Lec-

ture of 1973), we are now "navigators in a, :

data-base”. The Data-Base Revolution™ in
programming is like the Copernican Revolution
in astronomy. The CPU, like the sun, is no
longer the center of our universe: we must
situate ourselves in a universe of data.”™

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

In this Information Age we must take this
view, but the mistake one then naively makes
is to look at a business enterprise as if it
were a human being. A rather similar parallel
was drawn in the seventeenth century by
Thomas Hobbes, in his book Leviathan, where
he compares the state or "commonwealth" with
a giant body, with its lines of authority and
central sovereign (or as we would say now:
lines of communication and central co-
ordinating organ). Nowadays we look back on
Hobbes as one of the intellectual fathers of
political absolutism. This leads us on to look
at how the real world has forced us to adopt
more decentralized and democratic views.

B. The Real World

Naive Real-Time had its heyday in the late
sixties, but the centralized on-line
mainframe was soon recognized as the
monster or Leviathan that it was. The price
and limitations of all those telephone lines for
so-called instant access, and the complexity of
the programming on those big beasts simply
made the costs too high. These issues totally
obscured the more fundamental design com-
plexities to which we return later, but they
were sufficient to-lead to rebellion.

Distributed Processing was rising .in the
seventies even as Charlie Bachman was giving
Lis Turing address (though in 1973 we were
doing it before the name ‘was invented!).- By the
end of the seventies "Small is Beautiful" had
become the motto. By 1984 the indepen-
dent PC, that symbol of the democratic revolt,
had been blessed by IBM (and how satisfying
that we should be celebrating this in George
Orwell's dreaded vearl).-

But what has happened to that elusive
ideal of real-time information? With siow or
infrequent communications between dis-
tributed files, it has some definite limitations.
How much has it mattered? Briefly: not much.

Clearly there are major application areas
where a high degree of real-timeness is essen-
tial and used: airline reservations and auto-
matic bank tellers are familiar examples
though even here off-line or degraded'
modes, with their various consequences,
are part of the total design. But the majority
of enterprises with integrated computerized
applications simply. do not require total 100%
(or 90%) real-time systems. Why not?

BECAUSE THERE IS A
FUNDAMENTAL DIFFERENCE

We shall see that the fundamental error in
Naive Real-Time is to assume just one ob-
server or central actor, who sees the entire
data-universe as if at the same time, that is
with no time component, no time dimension
within which to distinguish the points in the
data-space. We shall see the same problem
that Einstein saw in the Newtonian
universe: there is no simple definition of
simultaneity. WNaive Real-Time is equiv-
alent to absolute Newtonian space, the whole
of it being observed as if at one time. We need
to introduce the concept of relativity to
Real-Time.

BETWEEN AN INDIVIDUAL
AND AN ORGANIZATION.

Organizations exist because the individual
cannot do everything himself. In our
complex society we must specialize. We each
live and work in our own little worlds, com~
municating - and co-operating with others,
Informal communications between the in-
dividuals in any one department enable that
department to act as one person, with one
real-time. An organization consists of multiple
departments, each with its own perfectly valid
naive real-time.

In a typical manufacturing and distribution
company, we do not involve the sales order
processing department with the details of the
factory order planning, at most we let them
know the results In some applications
warehouse staff might not usé the theorstical
inventory levels at all: it is their job to move
goods and record those movements.
Frequently the theoretical levels will only
coincide with the physical levels at stock-take,
since they may at other times refer to unsold
inventory, which is not the same as inventory
actually in the warchouse. '

The sales order processing department is not
concerned with the processing of customer bill-
ings and payments. That is the job of the
Credit Control department, who in their turn
update the on-line customer file with credit
status, not “real-time" balance, so that orders
for risky customers are referred to them.

So we have two examples of "real-time" values,
customer ¢redit balance and inventory balance‘
which do not necessarily refer to any "“real'
balance in the world represented. Why not?
There are two main reasons. The first is the
obvious one that the balance may be incorrect

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 JUG 1984 Anaheim

or misleading. Not all relevant movements
may have been entered, and others may have
been entered incorrectly (This is part of what
made us reduce the 100% to 90% real-
timeness). The main reason is however that the
real-time balance has a different meaning,
such as unsold inventory, which refers not
to physical inventory but for example to on-
hand plus expected from factory plus resale-
able returns less expected shippings for some
known period. And it is usually quite a task
to relate theoretical to physical inventory from
time to time.

The meaning of any value on the real-time
database depends on the point of view of the
user for whom it is intended. Now this is so
obvious that it is well to reflect on why it
has become necessary to say it. Well: the
culprit is the dogma of non-redundancy of
data, created by the DBMS missionaries!
Before DBMS, each department had its own
files, so of course they were looked at from
the point of view of that department. Now
we are tempted to have one real-time inven-
tory balance field, and it becomes a non-trivial
task to relate it to its various potential users.

But relate we must! Without further ado, let
me describe the Relativistic Real-Time
Data-Universe.

Modern organizations are not run by some su-
perhuman Leviathan or Big Brother who
knows everything in (naive) real-time and
directs activities with infaflibility. An or-
ganization, by definition, consists of separate
departments organized to achieve some more
or less precisely understood objective. Each
department runs in its own real-time, iso-
lated to a greater or lesser degree from the
others. Qur limited minds require that we
work in simplified worlds, and historically or-
ganizations have evolved taking the sizes of our
minds into account. (As an aside, one
wonders how the much-trumpeted Fifth
Generation will cope with the essentially
hul:ne)m problem of assessing what people can
take.

As in astronomy, all points of view can start
by defining themselves relative to the fixed
stars, which may in our case be an Item Mast-
er and a Customer Master, though at this point
without such attributes as balances.

Then a Credit Control department, for ex-
ample, will add balances, credit status,
transaction entry files with associated con-
trols, and sundry other local data. They will
work independently of the order-processing
department, say, except in two respects. The
first involves the Accounts Receivable
statement close, when Credit Control

determines that its transaction data is complete
and accurate enough, and initiates the close.
The balances are updated and the customer
credit statuses are deduced as a function of
the balances and other factors. Order-
processing might refuse orders or refer them
to Credit Control as determined by these credit
statuses, which are derived from the same
transactions that are communicated to the
customers on their statements. These referrals
of orders back to Credit Control represent the
second type of interaction between our two
departments. Let us characterize these two
types of interaction in more detail.

The second (we return to the first later) was
a stream of referrals of incoming orders back
to Credit Control for possible credit
authorization or other follow-up. This is a
queue f{or queues) of objects or entities
representing a flow of units of work be-
tween the two departments. There will be
more such queues, such as the queue of
authorized orders passing on to the shipping
department.

The first type of inter-departmental inter-
action was the close, in the above case an
Accounts Receivable statement close. Now
we associate this with a batch job on the com~
puter and hence tend to think of it as a
computer-created evil. Not so. Such com-
puter batch jobs are always associated with a
real application event: a cut-off. In this
case Credit Control triggers the event by
“eutting off" the A/R transaction flow
from outside the computer and thereby
synchronizes various parties, for example
data capture, order-processing, and the cus-
tomer base. Refusals by an order clerk may be
by referring the customer to the state of af-
fairs as it was at this "sync-point". A later
“real-time balance" may confuse or mislead
any or all of the parties concerned: because of
delays and/or errors in payments, mailing,
encoding, data-capture, or data-control (to
name a few possible sources) a balance at any
time other than at a close should perhaps
most diplomatically be used by the Credit
Control department itself rather than by an
order-clerk. The close- or cut-off- related
sync-point provides a much more clear and
unambiguous communication.

A more interesting application-defined cut-off
is to be seen in the physical inventory
count or stock-take. Here warehouse, ship-
ping, Credit Control (re returns), and ac-
counting have a familiar sync-point around
which they orient themselves relative to each
other. Inventory movements are frozen, or cut
off, during the stock-take. A batch run will
“"transform" the real-time inventory
balance used by order-processing - by

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

making adjustments such as adding back

allocated orders - to make it coincide with the

real physical balance. If this balance was being

maintained then only the next step might be
necessary: an exception report of variances to
assist all relevant departments with the error
correction or :reconciliation process. At

other times the separate departments will.

operate much more jndependently

So we build up the plcture of each department
with its private data, its communications by
means of queues, and the synchronization of
its own real-time with the real-times of
other departments by means of cut-offs and
possibly assoctated batch runs on the computer.

At this point I might just add that these con-
cepts lie behind a package that has now

reached an advanced stage. of beta testing: .

SYNQ (for S¥Nchronizer and Queue-
manager) is a system control package based
on a system design language called IDIOM,
in which’' the system designer describes the
organization in terms appropriate .to . its
own peculiar interrelations.

By means of the SYNQ package, or by ap-
propnate use of, for example, .Data- F]ow

Diagrams, or simply by otherwise emulating
SYNQ’s gqueue-management and
synchronization functions, the system designer
thus defines the interactions between the .
various departments, whether they are
manual or computer-assisted.

We end up. with the relativistic picture of an
organization’s departments each working in
their own real-time or time-frame, with the
time-frames being related to each other, or
synchronized, by transformations effected by
means of batch jobs.

This parallelism with Relativity in physics
is not merely contrived. Each recognizes that
we must start with the viewpoint of the
observer in his department or frame of
reference; that absolute simultaneity between
such viewpoints is not possible, since simul-
taneity is based on finite-speed limited com-
munication between viewpoints, that dif-
ferent -viewpoints, except where they share
common fixed entities or resources, can only
be made to correspond by means of trans-
formations of data between viewpoints.

C. Cohsequences for computer system design

C1lIn Aplplication Design

It is safe to design an application for use

within any one department.- Naive real- -

time is good enough. If the entire application
is managed in detail by one person, then you
can obviously ignore Relativity. This is- one
reason for the success of micros. And PCs will
continue to play a major role in the more iso-
lated activities, whether ' partly on-line or
not. . .

But if your intended computerized ap-'

plication spans departments look for the

shared static resources and for the interfa_ces .

and transformations -.-the communicating
queues and synchronizing cut-offs. In this
way you reduce a complex integrated or-

ganization to multiple, simple, end-user . -

understood viewpeints in which Naive Real-
Time holds true. If vou are cautious you will
not change the departmentalization, because it
defines the simplified worlds of the actors in
your drama.

Incidentally you will find that your databa_se

design is much simplified, because you too witl -

be able to work in largely separate simplified
worlds or databases.

But if you want to remove or change inter-
departmental walls, beware! The move may be
justified, but it will only be accepted and
work if the computerization removes the
raison d'etre for the barriers, and if the effect
can be seen by the end-users to be 2
simplification. My warning is not that change
is always resisted: my experience iz rather
that .. change is welcomed if it can be
perceived to be a simplification. It is con-
fusion and perplexity that is resisted.

Now if the computer can simplify the ac-
tivities of the organization, how is this to be
brought home to the first and all later users?.
The first must be sold on the benefits.
Prototyping and system modelling or simula-
tion would help. Then all users must be
able. to find out how the new organization
hangs together.. Remember that the new
technological organization probably relies
heavily on the computer for its communica-
tions. On-line help is probably the answer.

The structure of this on-line help must also be
Relativistic:'a Leviathan of a text, even one
beautifully organized in top-down fashion, will
probably npot- be read. Your on-line help
must be structured to mirror the organization:

Prepared by 1the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

simple and relative to the context, but it must
also be possible to easily establish the role
of the current activity in any continuing in-
terdepartmental communication or ap-
proaching cut-off.

Finally, the operations of the computerized
organization should be under the control of
the end-users. Those batch runs are not
yours, they are part of the end-users’ regular
functions and should not be hidden from them.
If a particular close normally takes two hours,
the end-user wants to know and draw up his
schedule accordingly. He must be able to
find past run time history and (within limits)
program different schedules on the computer.

An end-user oriented application operating
system is indicated. You can program your
own {Who has not written an applications
monitor or control program?) and build in
those modelling and on-line help functions,
or you could use a package like SYNQ.

C.2 In technical design

One often hears statements such as this: In on-
line systems, 75% of the difficulty is in ensur-
ing data integrity, This is surely true if one
broadly interprets integrity to encompass ac-
cess security, data consistency, ac-
curacy, and fault-tolerance.

D.

This paper has taken a largely informal
and sometimes high-faluting approach to
what is essentially a very simple, though much
overlooked, issue: some common traps into
which the application designer can fall when
designing integrated applications.

The human and philosophical aspects were
emphasized because they are part of the
problem, and the analogy with Relativity con-
centrates the mind on the essence of the logical
problem.

Clearly a Relativistic approach will result in a
rational and simple solution to defining ap-
propriate access rules.

Data consistency is less of a problem the less
you are a slave to Naive Real-Time, which
dictates that you maintain multiple on-line
summaries and access paths, "in case someone
wants to use them".

Inaccuracy of data can never be avoided,
it can only be reduced. Errors must be control-
lable, that is, detectable and correctable before
too much damage is done. This is one of the
major functions of the separation of depart-
ments: get the work done quickly, but don’t
pass it on to anyone else until it is complete
and accurate enough. That is what cut-offs
are all about.

By fault-tolerance I mean tolerance to
technical computer faults such as power or sys—
tem or program failures. There is no simple
solution to these problems, only compromises.
But there is one general approach to this set of
problems: the system must be restartable or
reconfigurable from known checkpoints or
sync-points. On-line programs can use log-
ging and recovery mechanisms, batch
programs must be broken down into restartable
steps. Clearly an application designed with
rational and clearly understood
interrelationships between functions, that is, a
Relativistic design, will more easily be made
restartable and have more easily designed and
implemented degraded modes.

Conclusion

A more formal and systematic formulation can
be made {though this cannot be done here) of
the simple concepts this analysis reveals. Such
an approach - with which we are experiment-
ing at the moment - will create oppor-
tunities ranging from Critical Path
analyses for integrating inter-department
scheduling with the D.P. implementation, to
network resolution exercises for simplifying the
multi-department organization.

Chris Spottiswoode has been in D.P. for over Id4 years, the first & with a

manufacturing and distribution comparny, for which he implemented the first
mini-based nation-wide commercial distributed processing system in South
Africa. Robert Gibson and he formed Synergy Computing in 1978 and in 1979 were
responsible for the first purely commercial HP3000 in South Africa. Synergy is the
Distributor in S.A. for Robelle Consulting, Quasar Systems, VESOFT, and
dcecount-A-Call. Chris is married, with 3 children, and enjoys mountaineering, skiing,
sailing, tennis, philosophy, and politics.

64-5

Prepared by the Southern California Regional User's Group

