[Proceedings: HP3000 IUG 1984 Anaheim

IMAGE Locking: Practices and Pitfalls

by Michael A. Casteel
Vice President
Computing Capabilities Corporation
Mountain View, California, USA.

The HP3000 literature includes a number of
contributions which address the design and im-
plementation of IMAGE data bases and ap-
plications using them (see [1] and its bibliogra-
phy). Unfortunately, with the notable excep-
tion of [2], these contribuitions give short shrift
to one of the most critical aspects of data base
design and programming: the correct applica-
tion of IMAGE locking. While this is not such
an important consideration for single-user sys-
tems or for large batch, "byte-banging" ap-
plications, a properly designed and imple-
mented locking strategy is crucial for modern
on-line systems.

If a suitable locking strategy is not included in
the data base design, .on~line performance can
suffer due to locking conflicts between users.
More importantly, improper design or
programming of a locking strategy directly af-
fects the reliability and correctness of the on-
line system.

This article describes two common approaches
to locking and reveals some hidden flaws in
major implementations. As we shall see, it is
not only application programmers who may err
in their locking strategies: even some commer-
cial transaction processors. can damage your
data base due to flaws in their application of
locking.

Locking-related “"bugs" are among the most in-
sidious, since all the programs can appear to
work properIy but the data base on occasion
becomes logically inconsistent. These bugs typi-
cally show up when two users try to update the
same record at the same time, with the result
that only one of the updates is actually
recorded in the data base. Both users think
their transactions were completed correctly,
but at least part of one has been lost.

For a simple example, consider an on-line parts
inventory system. Suppose that two users

simultaneously issue the same part from
inventory. For each user, the program first
reads the current inventory record showing,
say,.a stock on hand of 25 and displays it on
the screen. When the first user completes the
transaction, the program locks and updates the
record; subtracting one part issued from 2§,
leaving 24. A short time later, as the second
vser completes the transaction, the program
again locks and updates the same record, again
subtracts one from 235, leaving 24. Asa result
the next physical mventory will show a
“shrinkage" of one part due solely to improper
locking. While two parts were actually issued,
the computer only subtracted one. .

Weak Locking

This is an example of what I call "weak" lock-
ing, where locks are only placed just prior to
the update. In particular, locks are not held
during interactions with the user. The relative-
ly short duration of these locks tends to mini~
mize the possibility of contention. between
users. However, this example raises the more
serious question of how to guarantee data base
integrity using. -weak locking. While there is
nothing inherently wrong with this approach,
the evidence shows that it is very easy to make
a mistake {see below). What is reqmred to doit
right?

Referring to the simple example above, the
program made the fatal assumption that the
inventory record being updated had not chang-
ed since it was read. The problem here is that
IMAGE only guarantees the record will not
change AFTER you lock it. In this example,
the first user coincidentally changed the record
after it was read, but before it was locked by
the second user. The probability of such an oc-
currence depends on the frequency with which
different users access the same part, and the
length of time between reading the record and
locking it. Naturally, this probability is near
zero during testing!

Prepared by the Sauthern California Regional User’s Group

Proceedings: HP3000 IUG 1934

Anaheim

For correct operation with weak locking, fol-
low this procedure:

1

2)

3)

4)

5)

6)

Read the record(s) which you will be up-
dating. Show them to the wuser, think
about them, calculate with them, etc.
When ready to update, proceed to step 2.

Lock all the record(s) which you will be
updating.

Re-read the record(s). You may use mode
1 (re-read) to minimize overhead, with
the risk of an occasional transaction can-
cellation (see below) due to migrating
secondaries on manual masters. This risk
won’t be high if your data set capacities
are adequate.

Compare each record you re-read with
the contents originally read in step 1.
THIS STEP IS ESSENTIAL. You must
make sure, one, that the record you
originally read is still there, and, two,
that it hasn’t changed. If the record has
been changed or deleted (note that the
re-read in step 3 may fail in this case),

" cancel the transaction. Your thoughts

and calculations in step 1 were based on
obsolete data. .

Once that you are assured that a record is
still the same, you may update or delete
it. If you haven’t yet re-read and ¢om-

. pared all the records, be prepared to undo

(back out) this update/delete if you sub-
sequently find that the transaction must
be cancelled.

After updating all the records, unlock
thein.

If you apply these steps to the inventory up-
date example, you will see that they would
have prevented the problem. In this example,
step 4 would have detected the first user's up-
date and cancelled the second user’s update
before damaging the data base. But this is not
the only pitfall to avoid when using weak lock-
ing. The other steps in this procedure also have
their purpose. By precisely following the steps,
your applications should work correctly. Ap-
parently slight variations can invalidate the
whole thing. For example:

1

Not bothering to re-read the records.
This gives you no assurance that the
original record is still there, much less
unchanged. Some other user may have
deleted the record, and another wuser
added a completely unrelated record in
{,)he same slot where your record used to
e.

This error appears to be made by the
TRANSACT processor, as described in [3].

63-2

2)

3)

TRANSACT is the transaction processing
component of Hewlett Packard’s
RAPID/3000 package. Although it has
been criticized for its use of data base
level locking [4], there have been no
warnings of this fundamental omission in
its locking implementation. Once the
problem has been recognized, however, it
is possible for the programmer to imple-
ment correct locking by coding explicit
calls to DBLOCK.

Not bothering to compare the record you
re-read with the original Once again,
you have no assurance that the record
you re-read has anything in common
with the original record.

This step was left out of item 6 under
"Database Programming” in [[]. The er-
roneous inventory count in the above ex~
ample is one possible consequence of this
error. Perhaps more surprising is the pos-
sibility of updating or deleting the wrong
record. Suppose in our example that the
first user actually deleted the record in-
stead of updating it. After the record has
been deleted, a third user may add a
completely different record in the same
slot. When the second user re-reads the
record to update it, he reads and updates
this new record instead. Now things will
really be fouled up!

Not keeping the entire original contents
for comparison. As this can add up to a
lot of memory when many records are to
be updated, you might try to compress
the record down to a few words, such as a
hash total. However, there is a risk with
this approach: Because each hash total
value equates to a very large number of
record values, changes can be made to the
record which the hash totaling scheme
will fail to detect.

This method appears to be used in the
QUICK processor, as described in [5])
QUICK is the on-line transaction proces-
sor in Quasar Systems’ POWERHOUSE
family. There seems to be no simple way
for the programmer to correct this
problem within the QUICK environment.

The degree of risk in this approach
depends on how well the hash totaling
scheme matches the changes being made.
For example, a simple hash totaling
scheme might be to take the algebraic
sum of the contents of each word in the
record. This scheme would be foiled by a
typical inventory record update which
adds one to Quantity Issued at the same
time it subtracts one from Quantity On
Hand, with the result that the (algebraic)
hash total would not change!

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

A variation which will. work is to keep
and compare. the original contents of only
those items to be updated. But be very
careful not to change any other items;
another user may have "been using or
changing them.

4) Only locking, re-reading, updating and
unlocking one record at a time can also
be a problem. Sevéral records. could 'be
updated before discovering one that has
been changed or deleted. The transaction
must then be cancelled and all the up-
dates undone. But if one of the records
that was updated and then unlocked has
since been updated by another user, a
logically inconsistent data base results. In
order to cancel your transaction you must
back out the other user’s update. If you
don't, you haven’t completely cancelled

. your transactlon

.['I;liis also appears to Se the case in QUICK

As you can see, it is easy to. make a mistake in
programming ~weak locking;, a lot of people
have. While there are variations which work
correctly, any mistake places your system at
risk of creating a logically inconsistent data

base. The four errors: listed here might only -

damage your data base infrequently, but you
would naturally prefer not to leave such holes
in the logic of your system.

Strong Locking o

An alternative to weak locking is what 1 call
"strong" locking, wherein all the records to be
updated are locked before they are read, and
not unlocked until after they have been up-
dated. This approach has the advantage of

being simpler and less error- prone The ongmal

procedure becomes:

1) Lock the record(s) which you w111 be

updatmg

2) Read the.record(s) which you will be up-
dating. Show them to the user, think
about them, calculate with. them, etc.
When you are ready to update, proceed to
step 3.

3) You know that the records you originally
-read haven't been changed, deleted or
moved, since you have kept them locked.
Just - go. ahead and do your wup-
dates/deletes, and unlock when you are
done. :

While this method is clearly easier to imple-
ment and maintain, thus promising more reli-
able software, it is not without its price. The
use of strong locking often involves holding
locks while interacting with the user, possibly

for long periods. This raises the possibility that
conflicting locks could delay one user while
another finishes a transaction. On the plus
side, there 15 less risk of damage to your data
base due to subtle errors in implementation. At
the same -time, strong locking also reduces
overhead by eliminating the need to re-read
and compare every record before updating.

The usual practice when using strong locking 1s
to minmimize the likelihood of conflicting locks
by using entry level locks, with a judicious
choice of the data item to be used for locking
each data set (see [2] and below). Using entry
level locks with strong locking usually works
quite well for all but a few complex transac~
tions, provided that the data base and locking
strategy have been carefully designed. «

Choosing 2 Locking Strategy

The - choice between weak and strong locking
methods is not the only decision .to be made in
regard to locking. There is also the question of
the detailed locking strategy, ie. which. levels
of lo;:king to use: data base, data set, or entry
level?

At one time, data base locking was the only op~-
tion IMAGE offered. Even with the relatively
short duration of weak locks, using data base
locking will limit throughput by allowing only
one user 1o be performing updates at any time.
Data set locking is better, where the user only
locks the data sets which are to be updated.
While this allows other users to be updating
other data sets, it stil] delays users who wish to
update other records in any of the locked data
sets,

The option with the least likelihood of delaying
users is entry level locking. In IMAGE, this is
the logical equivalent of record locking. Rather
than locking specified records, however, IM-
AGE locks any records within a particular data
set which contain certain data item values. For
example, you can lock records with PART-NO
equal to 312, or DATE-ADDED. equal to
December 31, 1982. It is also possible to lock
using other comparison relations, such as
D9A8'17‘-E ADDED greater than December 31,
1

With entry level locking, no user need wait for
a lock unless another user holds a similar lock,
e.g. with the same PART-NO, or an incom-
patible lock. An entry level lock is incom-
patible with a data base or data set lock, or
with an entry level lock on the same data set
using a different data’ item. If one user is
delayed by an incompatible lock, subsequent
users will also be delayed, even if their lock
requests are compatible w1th locks already
held.

IMAGE manual master data sets often pdse
such locking conflicts. IMAGE will not add or

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

delete records in manual master data sets Finally, is it likely that more than one user at a
without a data set lock. This restriction time will attempt to access and update records
conflicts with the user of entry level locking. in the same data set with the same value for

this lock item? If so, your users could ex-
For example, one user locks a record while en- perience delays due to lock contention. You
tering changes to a manual master. When the may wish to consider using a different data
next user tries to add a record to that data set, item for locking.

IMAGE requires that the entire data set be
locked. Since the first user has a record locked,

IMAGE makes the second user wait until the Combining Strong and Weak Locking

first one is finished. All subsequent users zlso

have to wait, even if they only want to lock a As mentioned earlier, there are some complex

record. As a result, the entire data set is "lock- transactions which do not lend themselves to

ed up” until the first user unlocks the one strong locking. Perhaps every user is expected

record. This result is the same when different to update a single control record in this trans-

programs use different items for entry level action. Keeping this record locked for any

locks. length of time will surely delay other users.

If on-line adds and deletes to the manual In cases like this you may wish to combine the

master are infrequent, this may not be a two types of locking in a given application: use

problem. On the other hand, if your data base strong locking where possible, for simplicity

design includes manual masters which you ex- and reliability; use weak locking on transac-

pect to be subject to a significant number of tions where you need short lock duration. This

on-line adds, deletes and updates, then you will work fine, PROVIDED that you:

may wish to consider making it 2 detail data :

set instead. 1) Define and use an appropriate entry level
locking strategy. This is important in or-

This shows how important it is to consider der to avoid delaying weak locking trans-

locking strategy during the design of the data actions at long~-held strong locks.

base. You c¢an minimize locking delays by

using entry level locking choosing a single item 2) Correctly program your weak locks.

in each data set to be used as the lock item.

(This is usually a search item, although it need In the example where many users need to up-

not be.) It is very important that all programs date a single control record, strong locking is

use the same data item for locking. If any fine for most of the transacuon to hold locks

program (or transaction) uses a different item, over all the other (data) records to be updated.

the resulting conflicts in locking can be as bad Then, when it’s time to update, lock, re-read,

as when using data set level locks. update and unlock the control record. But be

careful to avoid the following pitfalls:
In a purchasing system, for example, data sets

containing order headers order lines and First of all, placing the control record lock
receiving transactions could all be locked using while other records are already locked will
the Purchase Order Number data item. Since it require that your Programs possess MR (Multi-
is unlikely that two users would be dealing ple RIN) capability. Don’t take this capability
with the same order simultaneously, there is lightly, as the risk of deadlocking your applica-
little risk of delay due to lock contention. tion is very real. In this example, you must
make sure that no one who already has the
Now, consider the likely on-line usage: If you control record locked tries to lock a data
are using strong locking, will the program record. This will deadlock with a user who has
know the data item value in order to place the that data record locked while waiting for the
lock before reading the record? If not, it will control record.
have to read the record, place the lock then ‘
read it again, just asin weak locking. Finally, IMAGE doesn't allow you to unlock
just the control record; when you unlock, all
For example, suppose that the receiving trans- your strong locks will be removed as well. This
action in our purchasing system retrieves order is fine if you have updated all the data records
lines by part number without knowing the as well as the control record, just before un-
purchase order number. The part number must locking everything. If you need to keep your
not be used for locking; this would conflict other locks in order to continue the transac-
with locking on purchase order number. tion, then you must place the control record in
Having retrieved the proper order line record, another data base, or access it using & second
place the lock using the purchase order number DBOPEN,
from the record. Re-read the record and test
to make sure that it’s still the proper record. Locking and MPE /KSAM Files

Remember that it may have been changed (or
even deleted) since it was read before locking.

63-4

Prepared by the Southern California Regione! User's Group

Proceedings: HP3000 1UG 1984 Anaheim

These locking principles apply to MPE files as
well as to IMAGE data bases. Since the MPE
file system does not provide record locking, it is
harder to use strong locking without encount-
ering locking conflicts among wusers. Even
weak locking is more complicated, since locking
all the files to be updated (in order to avoid
weak locking problem (4) above) requires the
use of MR capability, with special care to avoid
deadlock.

One scheme to support strong locking when
using MPE files is to create a dummy IMAGE
data set corresponding to each MPE file, and
use entry level locking on the dummy data set
to effect record locking. This scheme is used in
the INSIGHT transaction processor from Com-
Fg}ting Capabilities Corporation, as described in

MR capability must still be used in order to
lock each file around the actual update
(FLOCK / FUPDATE / FUNLOCK) while
holding the IMAGE entry locks. With KSAM
files, you should re-read by key to reposition in
the file before update. Note: This action is ad-
vised in the KSAM manual, but I have not yet
observed the situations in which it is actually
needed. No doubt these situations involve
restructuring of the KSAM index.

Conclusion

Although it is essential to the correct operation
of multi-user on-line systems, the subject of
locking strategy and implementation has been
largely ignored in the literature. It is in fact
not a simple subject. This article has described
two common approaches to locking and pointed
out subtle flaws in some major
impilementations.

63-5

While the technique of strong locking has been
criticized for potential delays due to locking
conflicts, it is easier to guarantee data base in~
tegrity with strong locking than with weak
locking. When combined with the proper use
of entry level locking, strong locking need not
delay users except when they attempt to up-
date the same record at the same time. In such
an event, a proper implementation of weak
locking will not delay a user, but is likely to
produce a transaction abort instead.

REFERENCES

[1] David J. Greer, "IMAGE/COBOL.: Prac-
tical Guidelines”, Journal of the
HPIUG, Vol. ¢ No. 1, Jan/Mar 1983.

(21 Gerald W. Davidson, "IMAGE Locking
and Application Design", Journal of the
Il-lgg}lSUG, Vol. IV, No. 1, First Quarter

(31 Hewlett-Packard Company,
"TRANSACT/3000 Reference Manual",
Second Edition, December 1982,
Appendix C (flowcharts).

[4) M.P. Ashdown, "Developing Large In-
tegrated Systems Using RAPID/3000",
Proceedings of the HPIUG Conference,
Edinburgh, 1983.

[5] Quasar Systems Ltd, "You zare the
QUICK Screen Designer”, Second Edi-
tion, December 1982, pp. 184, 186~-7.

[6] Computing Capabilities Corporation,
INSIGHT II Reference Manual", Fifth
Edition, December 1982, p. 113.

Prepared by the Southern California Regional User's Group

