Proceedings; HP3000 IUG 1984 Anaheim

Process Handling for Fun and Profit

Jeff Kell

UTC Computing Services

Process Handling Fundamentals

A program with process handling capabitity
may create, delete, and exert certain controls
over other processes. Processes created by a
program of this type are called. son processes,
the originator of the processes is called the
father process. This relationship may extend to
other *generations’ of processes as well.

In essence, a process handling program has the
capability of doing a "RUN’ command, In the
most. simple form, a program creates some
other program, suspends itself, and the newly
created program begins execution. When the
new program completes, the original program is
reactivated. However, the father program does
not have to suspend. It may continue executing

some other task, or ereate additional son
processes.

This concept can be applied to improve on
many application systems, as will be explored
later, but it also adds a degree of complexity to
the operation. Most process handling applica-
tions can be duplicated, at least in terms of
results, by standard programming techniques;
but process handling can improve throughput,
performance, and flexibility of certain applica-
tions. Thus, a tradeoff point is evident when
the advantages of process handling cannot jus-.
tify the extra code required to support reliable
process handling applications.

Process Handling Difficulties

The most prominent difficulty in any process
handling application is the need for error
detection and handling, especially when more
than one process is created, or the depth of
process handling extends beyond the initial
generation. Whenever the father process con-
tinues execution in parallel with the son
processes, 1t is difficult enough to simply detect
the completion of the son, let alone detect er-
rors such as program abort conditions.

When only 1 son process is involved, and the
father suspends while the son executes, the
father will always be activated upon comple-
tion of the son process (or abnormal termina-
tion). Simple communication mechanisms such
as a JCW may be used to determine the ter-
mination status of the son. When multiple son
processes are involved, there is always the pos-
sibility of a son terminating while the father is
already activated, in which case the activation
has no affect; thus the father is unaware of the
son’s termination. There is no overall method
of reliably detecting this condition. To

overcome this situation, some form of periodic
activation of the father can be performed so
that the father can check on the status of each
son.,

Communication is often necessary between the
members of a. process handling family, if only
to communicate status information. There are
numerous ways of passing information, such as
PARM, INFO, mail, message files, and data
segments. The latter three allow for two way
communication, and are usually the tools of
choice. For example, a father process may have
a message file for status reception. When a son
terminates, the termination status and son
identification are written to the message file.
The father process can then read the message
file until ali sons have completed. If the father
process uses 'timeout’ reads on this file, which is
possible, it can check for any abnormally ter-
minated sons on each cycle,

When many processes are involved, the number
of required message files may become too large

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

to be considered efficient. This becomes
readily apparent when two way
communication is required, as each son process
must have its own message file. In such cases, a
shared data segment is the most efficient com-

munication mechanism. If this route is chosen,
special procedures must also be written to sup-
port the transfer of messages through the data
segment.

Theoretical Divisions of Process Handling

Process handling aﬂp]ications fall into one of

two broad categories. The first category, in= -

dependent processes, encompasses most typical
uses of process handling. Independent processes
do not depend upon other processes for-their
welfare. The second category, dependent
processes, is much more complex. These
processes work together to accomplish a com-
mon goal, and usually involve 2 high degree of
communication and control.

Some applications do not fall into a specific
division, and may exhibit characteristics of

both. Independent processes have only a

limited value in terms of processing advantages,
but dependent processes are worthy of greater
investigation. Applications which combine

both areas are useful if the goal is to control -

several independent tasks, with the tasks being
accomplished through dependent processes.

The most common form of independent process

control is the menu driver. A menu driver
program displays a set of command names and
allows the user to select a command from the
list by name, function key, or some other
method. The menu driver, in turn, executes the
program corresponding to that function. Menu
drivers are often added to systems which are

comprised of several separate programs to ease.

the transition from one program to another.
The menu program in this case is suspended
while the selected program executes.

Slight revisions to this facility could allow the
user to select several "background" tasks to be
executed while an on-line function is being
done. For example, several reports may be
requested while the user execiutes an on-line
update program.

Menu programs often provide control informa-
tion to the selected programs. For example, the
menu program may set up file equations, ob-
tain various run options, et¢. In this way, ex-
tended control is provided over the selected
programs. : ;

The impact of such applications on the overall
performance of the system varies on the im-
plementation. In normal execution, MPE has a
CI process for each user. When a :RUN is
requested, the program is added as a son process
of the CI. Thus, 2 processes are present for
each user on the system. Thus, given a number

of users (U), a number of user programs (P), and
a fixed number of processes required by MPE
(S), we can examine the number of processes
required to support a givén implementation of
application systems. Note that other resources
(data segments, etc) also increase in proportion
to the number of processes.

Without process handling, the number of

"Processes 1s:

(Q)U+P+S, or 2P + §

This equation holds for batch as well as on-
line. Each additional user will require 2
processes. With a ‘given physical limit of 256
processes under MPE, the limits on the number
of users on a Series 64 (without MPE-V) are
¢learly defined by (256-S)/2.

Simple menu drivers (with a single son task)
clearly complicate the matter, as both a CI
process and 2 menu process will be required for
each user. For this case, the number of
processes is:

(b)2U +P+S,0r 3P+ S

Menu drivers which allow multiple processes

" help somewhat by removing the CI process for

each additional task, but the tasks must be
batch oriented since the terminal user can only
run one on-line task at a time. This equation
is given by: :

(¢) 20+ P +8, or
{3P + 8§) - (batch tasks)

To really improve the system load, process han-
dling must be extended to an.additional level
Consider one main process which creates a
menu program for each terminal, redirecting
STDIN and STDLIST to the appropriate ter-
minal. Now the equation is:

(d) U +P+S+2
(2 is the main and its CI}

This equation is only 2 processes over the nor-
mal (2) equation, and allows a menu driver for
each user. Since the main program controls ac~
cess from each terminal, security and logon
provisions can be added easily. If the attached
menu programs are of the multiple type (for
concurrent batch tasks), the reduction is even

Prepared by the Southern Calijornia Regional User’s Group

Proceedings: HP3000 IUG 1984 Anaheim

greater. With no-wait 1/0 (priviliged), the
main task could be a ’global’ menu program,
controlling all terminals. This eliminates the
user menu altogether, giving:

(e) P+ S + 2

With this implementation, well over 200 users
could be supported on MPE-IV. In general, the
process related resource requirements are cut
by nearly half. A non-priviliged solution to
the above model would be to provide com-

munication paths between the main program
and the son processes, then attach the user
menu programs. When the function was selec—- -
ted, the request would be sent to the main
program and the menu program can terminate.
The main program would then attach the ap-
propriate application program. Thus, the main
program would alternate betweena menu and
application processes. The process equation
remains the same, but more process switching is
required (a suitable tradeoff bo remam
non- prwﬂlged))

Dependent Processes

Process handling applications involving two or
more processes working together for a common
goal are the most beneficial forms of process
handling. Exact implementations differ on a
widespread scale, with only vague suggestions

of a concrete definition. Dependent. processes

are best defined by examination of the basic
concepts which can be used. Actual applica-
tions usually combine more than one concept,
and may utilize only a basic theory rather than
a literal definition.

The concept of dependent processes is difficult '
to define, as some areas:are difficult to classify.

For example, TDP uses process handling when
formatting its output by creating the program
SCRIBE 1o perform the formatting. From one
standpoint, the two programs are working
together for -z .common purpose; however, it
would be possible to get the same results if
SCRIBE was an independent program. TDP is
using SCRIBE as a 'sub- routine’ to format
output, yet this formatting is independent of
TDP itself. This arrangement is marginally .
classified as dependent by the first definition
to follow.

Co-routines

A co-routine (uswally written coroutine)
relationship exists be- tween processes which,
when combined, perform a complete task. In
strict terms, coroutines are always in pairs, and
may ar- bltran]y swap’ execution from one to
the other. A coroutine relatlonshxp simply im-
plies a higher level of ’subroutine’ than with
subprograms. The application of coroutines
leads to greater modularity and all of the ad-
vantages incurred by modular program- ming.
Coroutines may be used to provide greater

modularity, or to split a large task {possibly too
large or inefficient for a smgle program) into
manageable parts. Standard ’menu’ apphca.—
tions described earlier could be considered in
this category, but such applications rarely
communicate with each other. Coroutines
work together for a single transaction, while
the applied programs of a menu are usually in-
dependent transactions or func- tions. The
TDP/SCRIBE relationship can be loosely ap-

plied to either definition.

Pipe Processors

The first logical extension of the coroutine
relationship is the pipe processor. If the

processes: of a coroutine are designed so that
they accept 'input’ from their predecessor, per-
form some ad- ditional processing, and send
‘output’ to their successor, the processes. have
been changed to pipe processors. Programs in
this category have an input ’pipe’ sendmg m-
formation to be processed, and an output 'pipe’
transmitting results. Plpe processors can be
hooked together in any number of ways by
con- nectmg the output 'pipe’ of one process to
the input *pipe’ of another.

One application where this method can be -
elegantly applied is data -base inquiry and
report. In this case, there are usually a number
of different retrieval methods; sorting methods,
and print formats. If each unique retrieval
method, sort criteria, and print format was
coded as a pipe processor, a flex1ble reporting
system can be created from a2 minimum num-

“ber of programs. At run time, the desired

retrieval method, sort sequence, and print for-
mat are selected and linked together. Each
record selected by the retrieval procedure is
passed to the sort routine by the pipe. The sort
routine passes the records to the SORT
procedure until all records are processed. The

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984

Anaheim

sort routine then retrives records from SORT
and passes them to the output process by the
pipe.

In simple coroutine relationships, these process-
es would not overlap. Instead of passing data
in the pipe, they would trans- fer control to
the next process. When the next process com-
pletes its handling of the data, control is trans-
ferred back to the first process. In other words,
the processes must be synchronized together
with no overlap. Pipe processors must also be
synchrenized, but they may overlap. A pipe
processor waits until data is available in the
pipe, but begins processing once the data is

read. When writing to a pipe, the process must
wait until the next process reads the data
before it loops back for more input. Some
overlap is obtained, but the pipe can only hold
a single record.

The sorting requirement places a bottleneck in
this scheme. All records must be given before
the sort process can release one to the report
procedure. If the sort is not required, a greater
overlap can occur. Without the sort, we have
TRANSACTION overlap; with the sort, we
have PROCEDURAL overlap. Some applica-
tions cannot overlap either case.

Transaction Pipe Processors

When transaction overlap is possible, pipe
processors can perform at their most beneficial
level. In all pipe processors and coroutines
there is some synchronization to be performed.
With coroutines; the lack of overlap implies the
synchronization, much like a main program
calling a subprogram. With- pipe processors,
there is the question of overlap: After writing
results to the output pipe, when does the pipe
processor go back for more input? In applica-
tions where there is transaction dependency, a
transaction may have to finish the entire pipe
before the next transaction can begin. In this
case, we have no overlap at all. When transac-
tions are independent, the pipe processors can
proceed at will, limited only by the capacity of
the pipe .(in simple pipe processors, the pipe
holds only | transaction). Overlap is pos- sible,
but limited by certain restrictions.

Linear (no process handling):

sl +s2 +53 +s4

In all cases where a transaction is split into
pipe processors (or stages), the processing time
for each stage will probably vary from one
stage to another. To complicate the matter, the
For purposes of present discussion, the average
processing time will suffice, and thus the
average time for the stages will probably vary.

For example, consider a given transaction
divided into four stages. The average process-
ing time for each stage can be denoted by the
variables s1 through s4. Regardless of the ac-
tual time required for each stage, the time
required for each transaction without process
handling is:

The use of coroutines will result in a slightly larger transaction time, since the overhead of coroutine
switching must be added to the time required for the four individual stages. The same rule applies to

pipe processors with transaction dependence.

When transaction independence is possible, the average time for each stage becomes important. If each
stage is equal, the time required for each transaction is the time required for a single stage, plus over-

head of filling the pipe at first, plus emptying the pipe after the last transaction.
tion depicts this case, using *t’ for transactions and "T’ for time:

The following illustra-

Pipe Processor Stages Time Linear Processor Stages
st - s2 's3 s4 (T) sl s2 s3 - s4
tl 1 tl
t2 tl 2 tl1
t3 t2 til 3 t]
t4 t3 t2 tl 4 ti
ts t4 t3 t2 5 t2

t5 t4 t3 6 t2
t5 td 7 t2
t5 8 t2
59-4

Prepared by the Southern Califoernio Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Of course, this example is an ideal situation.
Several factors can interfere with this ideal
case: stage times may be unequal, stages may
interfere with each other, and stages may have
idle time. If the stages are unequal, and the
pipe only holds 1 transaction, some stage will
obviously be idle for some period of time. This
leaves only two main factors to examine: un-
equal stage times and stage interference.

If stage times are equal, the average transac-
tion processing time is the length of a single
stage {once the pipe is filled). If unequal, the
transaction processing time is, at best, the
length of the longest stage time. If more than
1 stage has an unusually long stage time, and
the stages occur in a worst case sequence, the
time may be slightly longer. There is, however,
a definate overlap of the stages with shorter
times.

Stage interference can be present if the stages
are divided so that there is contention for some
common resource between two or more stages.
Examples of such cases include locking a com-~
mon resource (data base, file, Rin, etc.) and
heavily 1/0 bound stages. CPU bound stages
may interfere if the need is excessive (the stage
cannot complete before its allocated quantum
expires). Most transactions are I/O bound, and
CPU bound stages consequently fill in the gaps.
If the CPU time for a transaction exceeds the
1/0 wait time, there is a probability of CPU
resource contention; however, the interference
caused by other resources is much more exag-
gerated. Exceptions can be found for most at-
tempts to define rules for preventing resource
contention, and to some ex- tent, there is al-
ways some interference. The - only general

guideline 15 to avoid gross interference cases

such as locking;

Proper division of stages to elxmmate inter-
ference leads to a pipe processor approach
which can achieve overlap, which is clearly
more efficient than the traditional linear ap-
proach. Once this goal is attained, optimization
is simplified by con- centrating on the longest
stage. However, this approach does not address
the problem of data dependent processing time
mentioned earlier.

Queued Pipeline Linkage

The next extension to transaction pipe proces—
sors involves the means by which the processors
are linked, or the pipe itself. If the pipe is a
queue instead of a 'mailbox’ as assumed earlier,
greater overlap is possible, especially when
varizble stage times are involved. Each stage
proceeds at its maximum speed, limited only by
the capacity of the queue. The queue effec-

tively smooths out irregularities caused by

variable processing times in most cases. The

longest stage time still limits throughput, but
this approach helps when the longest stage time
is vanable. Slower stages keep a queue of wait-
ing data, while faster stages remain idle. Inter-
ference. may be exaggerated by a queued
pipeline, especially in I/O bound situations.
Queueing will improve over- all throughput (in
general) if the straight pipe linkage alone does
not saturate the system. It is often necessary to
impose some limit of transactions which are al-
lowed in the pipe, espe~ cially when pipeline
applications affect interactiive response time.
Most quened pipeline applications can be tuned
to a level where the CPU or I/O system is
saturated; consequently, other ap~ plications on
the system will experience poor response time.

All of the previous techniques take advantage
of the fact that some idle time is caused during
transaction processing. Time which was
previously idle is now spent on another task in
paral- lel. Although the application under
study is experiencing throughput increases,
there is a greater load imposed on the sys- tem,
and less time is free for other applications. To
minimize this impact, the process handling ap-
plication should take advant- age of resources
not currently being utilized. On the other
hand, if a given 1/0O bound application is siow
because of the to- tal 1/0 load of all applica-
tions, process handling will only slow every-
thing down. At this level of complexity (and
subsequent levels) the tradeoffs in this area
determine the benefit or cost of process han-
dling applications.

Switching Pipeline Manager

A sthchmg pipeline manager is a front-end
processor for more than one pipe application.
In general, if more than one depen- dent
process handling application is in use, a switch-
ing pipeline manager can be used to route
transactions to the proper application. Usually
this type of manager controls transaction pipes,
and the examination will be limited to this
application.

Most systems involve more than one type of
transaction, but it is desireable to stay in the
same program. An independent process parallel
is the menu program, defined in the first sec-
tion. With a pipeline manager, however, the
entire transaction is gathered and ’switched’ to
the input pipe of the appropriate pipeline. The
user may begin the next transaction while the
gurrent trans- action is being processed. This is
particularly useful in applications which
require a printed document as a final result,
such as inventory tags, order entry, etc. The
user can begin the next transaction while the
previous document is being printed. If more
than one document is used, the pipeline
manager controls the production of the

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

appropriate one (otherwise a simple pipe
Processor is sufficient).

The benefit of a switching pipeline manager is
limited for online applications, but is extremely
useful for batch applications where input (or
requests) come from a common source. The
next section deals with applying this concept fo
online systems.

Centralized Pipeline Manager

With online applications, it is obviously waste-
ful to have a copy of the entire pipeline system
for each user. A centralized pipeline manager
collects requests from all users of a given sys-
tem and passes them to a common pipeline sys-
tem. The collection procedure for the user
simply validates the transaction and places it in
the input pipe for the centralized manager. In
ef- fect, all user collection programs write to a
commeon input pipe (queueing is almost man-
datory). If a single application is pipelined
with a message file as input, the manager is not
really required. A manager process can, if
present, control the number of transactions. in
the pipe and queue the overflow. As men-
tioned earlier, this limit is frequently necessary.

If more than one application is being pipelined,
the centralized manager can be merged with
the switching concept described above. In this
case, transactions are centralized from the dif-
ferent user terminals and then split according
to transaction type. With this setup, it is pos-
sible for the manager to provide infor- mation
about the number and type of transactions per-
formed for each terminal. Security can be en-
hanced by limiting transactions by terminal.
The manager can even log transactions for
recovery purposes without the need for IM-
AGE or other logging code in the transaction
processors. If certain transaction stages require
a lot of information to be transferred from one
stage to another, the manager can assign extra
data segments (from a limited pool) to the
transactions. Many functions can be done, but
they imply some means of posting the comple-
tion of a transaction. This can be easily done
by having the last processor in each plpe write
a compietion message in the manager's input

pipe.
Vectored Pipeline Scheduler

In many pipeline applications it is desireable to
select certain stages which apply to the trans-
action. Some pipelines may have common
stages, in which case duplication should be
avoided. For these cases, the stages can be
identified by some method known to the
scheduler and the collection program. As a

transaction is collected (or received by the
scheduler) it is assigned a vector of stages
through which it must pass to complete the .
transaction. In this case, each stage posts com-
pletion to the scheduler, which in turn selects
the next stage for the transaction. It is possible
for each stage to be given selection logic so that
sub- sequent stages can be invoked directly,
but this causes some redundant code and dis-
ables the tracing and monitoring capabilities
that can be included in the vector scheduler,

A number of additional functions can be in-
cluded in the vectored scheduler, particularly
when combined with the centralized con- cept
previously discussed. The vector can be data
dependent, and the vector can be modified by
any of the stages. Stage modifica~ of the vec-
tor can be used for error handling ~ if a stage
detects an error, the vector is changed to pass
the transaction to the error handling stage(s).
The efficiency of a vector scheduler is much
more important than other schedulers due to. -
its intervention between each stage, rather
than between transaction tions. For this
reason, the vector scheduler usvally maintains
a high priority queue for stage pipes and a
lower priority queue for incoming transactions.

Swapping Vectored Pipeline Scheduler

At the extremely complex end of transaction
processing systems we find the swapping vec-
tored pipeline scheduler, an extension of the
vectored scheduler defined above.. When the
number of stages exceeds the number of -
processes which can be efficiently managed by
the system, it is impractical to keep all possible
stages loaded at once. The swapping version of
the scheduler controls dynamic loading and un~
loading of stages as required or desired. From a
simple requirement standpoint, a preset limit of
stages can be determined as the maximum
number to be loaded at a given time. As stages -
are needed, the scheduler fills -the pipe (if
loaded) or loads the stage. Some replacement
method is needed to swap ocut stages to make
room for additional stages when the limit has
been reached. The scheduler can be modified
to unload stages that are unused for a given
time limit.

Swapping schedulers can be used to drive many
application sys- tems. This is particularly
beneficial when related systems are present.
For example, an installation may have systems
for in- ventory, order entry, receivables, pay-
ables, and ledger. If the systems are broken
down into specific stages (or vectors), a single
order entry transaction can be transferred
through inven~- tory (to adjust items ordered),
order entry (to print a shipping notice), receiv-
ables (for .a new. bill), and ledger (to post the
cash flows between accounts) Furthermore,

Prepared by the Southern Calijornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

the same transaction data can be sent to report
stages for queueing daily summary
information.

Summary

Many applications of process handling have
been examined, some of which are very appeal-
ing. A good process handling manager can
provide control and communication which are
vital for comprehen- sive systems. However,
careful consideration should be given to the
complexity of the system, limitations of the
computer, and error handling facilities. Com-
plex process handling systems pass around a
great deal of information, and the possibilities
of sys- tem failure, program abort, invalid

Brief Biographical Sketch of Jeffrey R. Kell

data, and program detected errors must be
taken into account. For exampie, what does a
stage do if an IMAGE error is encountered?
What does the scheduler do if a stage aborts?

As mentioned in the introduction, one may
swedr by or swear at process handling systems.
The division is largely up to the process han-
dling manager or scheduler in large systems,
but also relates to the resources available in the
machine. There are few, if any, instances
which require process handling. However,
there are instances which may benefit from
process handling. In the hands of a careful
analyst, it can prove itself to be an in- valu-
able tool in the design of powerful, efficient
transaction processing systems.

Jeff Kell, 25, has been in data processing for eight years, with a background in sys-
tems programming on IBM equipment for three years, and five years with Hewlett-
Packard equipment. Jeff has been with the University of Tennessee at Chattanooga
for six years, and serves as senior systems analyst for Administrative Computing Ser-
vices. In addition, he maintains configurations, backup, and recovery for the univer-

sity's five HP-3000 computer systems.

Prepared by the Southern Californio Regional User's Group

