Proceedings: HP3000 IUG 1984

Anaheim

AN INTRODUCTION TO DATA BASE NORMALIZATION

Richard L. Seltzer
Prudential Reinsurance Company

PREFACE '

The terminology of relational theory is not
strictly adhered to in this paper. Wherever
possible, IMAGE terminology is used in order
to facilitate understanding by the reader.
Consequently, this paper cannot be considered
a formal exposition of normalization.

1 would like to acknowledge the cooperation
and support of Prudential Reinsurance during
the preparation of this paper. Thanks also go
to Dean Livingston, Linda Mitchell, and Zoe
Putnam for invaluable critiques on various
facets of this paper, and especially to Lisa
Masarek for presenting the initial opportunity.

INTRODUCTICN

Relational data bases have been getting much
attention over the past several years. A major
feature of relational data base theory is
normalization of data. Hierarchical data bases
and network data bases (of which IMAGE is
a subset) can benefit from the techniques of
data normalization in the conceptual design of
the data structure, as one facet of entity
relationship analysm This paper will describe
and illustrate the several forms of normaliza-
tion, discuss their 1mplementatmn in IMAGE
data bases, and examine the tradeoffs of such
an 1mplementanon

1. NORMALIZATION DEFINED

Normalization is a method of organizing the
data in a data base and decomposing the data
into small, simple, non-redundant related
units which contain functionally related data.
Six forms of normalization are discussed herel.
They are first (INF), second {INF), third
(3NF), Boyce/Codd (BCNF}, fourth (4NF), and
fifth (5NF) normal forms.2 The higher
normal forms are more strongly decomposed
than the lower normal forms and are inclusive
of them.

There are several advantages that result from
normalization of data that may be missed in
unnormalized data structures. Many affect the
data and the database itself:

57-1

The examples used in this paper are very simple
and the illustrated result of normalization
may not differ much from the way that most
people would design a data base. The purpose
of this paper is, however, to illustrate the rules
of normalization so that in more complex
cases, the approach to normalization would be
understood and a methodology appiied to data
base design.

* Data base storage requirements are kept
to a2 minimum. The elimination of
redundant data also eliminates the need
for space that the redundant data would
have required.

* Maintenance of data is both eased and
speeded. When fields are updated, they
need be updated in only one place, not
in many, due to the lack of redundancy.

* Inconsistency of data is avoided. Be-
cause, in most cases, there is only one
copy of data, multiple copies of data
with differing values does not occur.

Prepared by the Southern California Regional User’s Group

Proceedings: HP3000 IUG 1984 Anaheim

* Currency of data is assured. Since there
are not multiple copies of inconsistent
data, there is no question as to which
copy is the most current one.

* Data base manipulation is facilitated.
The functional grouping of like data in
one place, rather than in several
places, eliminates major restructuring of
the data base when fields or data sets
are added or deleted.

Another advantage is that the data become
more useful. Ad hoc data structures may be
good for the requirement at hand, but should

new functions be required, these data struc-
tures can become quite cumbersome. Since
normalized data is kept in small, functional
blocks, there exists a flexibilty allowing for use
in new and different functions.

The key to normalization’s advantages, decom-
position of data into functional groups, also
results in its disadvantage: an application may
have to perform more retrieval operations be-
causg the data required resides in several data
sets.

These advantages and disadvantages will be il-
lustrated throughout this paper.

II. THE NORMALIZATION PROCESS

Before detailing the normalization process, two
concepts need to be explained: keys and func-
tionail dependence.

A key is a value used to identify a record.. (Do
not confuse this key with the IMAGE search
item, which is used for path implementation
purposes.) A key may be one field, or it may
consist of several fields, in which case it i3
known as a composite key. There are severa
types of keys. :

A primary key is a value that uniquely iden-
tifies a record within a data set. Every record
in a normalized data base must have a primary
key. An example of a single field primary
key is Part-no as the key in data set PARTS
(which describes a particular part). A com-
posite primary key would be Part~no and
Warehouse-no as the key in data set PART-
WAREHOUSE (which gives the quantity of a
particular part at a particular location).. A
primary key value, or any part of it (a5 in a
composite primary key), may not be null, If it
were, it could not uniquely identify the
record. Primary keys in the examples in this
paper are denoted by underlining.

Candidate keys are multiple keys in a record,
each of which uniquely identifies that
record. For example, if each supplier has a
unique name as well as a unique number,
both Supplier-no and Supplier-name are can-~
didate keys. Candidate keys in the examples in
this paper are denoted by a pound sign (#).

A foreign key is a non-primary key value in a
data set that is also a primary key in another

data set. The individual values within a com-
posite primary key are also considered foreign
keys. A foreign key can be used to represent
a relationship between data sets. For example,
in a case where a particular shipper will be
shipping a part on order from a certain sup-
plier, the PARTS~ SUPPLIER data set would
contain a field for Shipper-no to indicate who
will be shipping that part. All the information
about that shipper would be found in the
SHIPPERS data set under the primary key
Shipper-no. Because they are needed to
maintain relationships, foreign keys are the
only redundant data found in a fully normal-
ized data base. Foreign keys in the examples
in this paper are denoted by an asterisk (*).

Functional dependence deals with the iden-
tification of the value of one field by another
field or key. Field B is functionally dependent
on field A .if and only if for any A value
there exists only one B value. For example,
given Supplier-no (field A), you can deter-
mine the Supplier-address (field B)
Supplier-address is functionally dependent on
Supplier-no. Field A is also known as the
determinant. Since the primary key uniquely
identifies a record, the primary key is the
determinant of all of the fields in that record.

The process of normalizing data will now
be illustrated in a stepwise fashion.4 As an
example, let’s use a parts inventory system. The
information necessary for this system, along
with an explanation of the fields, is represented
in Figure .

Part-no . -- identifies a part

- Part-cost -- cost of the part

Parts-on-hand ~- quantity available of the part
Parts-on-hand-value -- total inventory value of the part

37-2

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Supplier-no-1 -- identifies a supplier of the part
Supplier-name-1 -~ supplier's name
Supplier-address-1 -~ supplier's address
Supplier-bal-due-1 -- total balance due the supplier for all orders
Parts-on-order-} -- quantity of the part on order from the supplier
Shipper-no-1 -- identifies the shipper of the part on order
Shipper-name-1 -- shipper's name
Shipper-address-1 -- shipper's address
Supplier-no-2 -- identifies a second suppller of the part
Supplier-name-2 -- second supplier's name
Supplier-address-2 -- second supplier's address
Supplier-bal-due-2 -- total balance due second supplier for all orders
Parts-on-order-2 -- guantity of the part ordered from this supplier
Shipper-~no-2 -- shipper of part on order from second supplier
Shipper-name-2 -- shipper's name
Shipper-address-2 -- shipper’'s address
Warehouse-no-~) -- identifies warehouse where part is stored
Warehouse-loc-1 -- location of the warehouse
Warehouse-capacity-1 -- capacity of the warehouse
Wh-parts-quantity-1 -~ quantity of the part stored in the warehouse
Wh-manager-no-1 - 1dentifies the manager of the warehouse
Wh-=manager-name-1 - manager $ name
Wh-manager-salary-1 .. -- manager's salary
Warehouse-no-2 == another warehouse where the part is stored
Warehouse-~loc-2 - "=~ location of second warehouse
Warehouse~capacity-2 ~ -- capacity of second warehouse
‘Wh-parts-quantity-2 -- quantity of the part stored in second warehouse .
Wh-manager-no-2 -- identifies manager of the second warehouse
Wh-manager-name-2 -- manager's name
Wh-manager-salary-2 -- manager's salary

FIGURE 1

Unnormalized Data

This data organization is prone to .wasted
space. For example; a part can be supplied by
many suppliers. If a particular part-is supplied

by only one supplier, the information relevant -

to that supplier will be put in Supplier~no-1,
Supplier-name~1, Supplier-address-1, and
Suppher-bal-due 1.. The fields for Suppher-l
(and however many more suppliers there are)
will be empty.5

First normal form resolves this- problem by
removing the repetitious fields. A data set is
in INF if and only if it has no repeating fiélds,
The use of IMAGE sub-ltems would violate
INF.

In order to place our data into INF, the
Supplier, Shipper, Warehouse and other
repititious fields. must be replaced by single sets
of fields. The data after this transformation,
now in INF, appear in Figure 2.

Each record in this data set, which has been
labteled GENERAL-PART-INFQ, can be
uniquely identified (ie. determined) by a com-
posite key made up of Part-no, Supplier-no,
and Warehouse-no. Every field is filled6, and
there is no wasted space.

GENERAL-PART-INFD

-Part-no
Part-cost

Parts-on-hand
Parts-on-hand-value
Supplier-no
Supplier-name

57-3

Prepared by the Southern Californic Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Supplier-address
Supplier-bal-due
Parts-on-order
Shipper-no
Shipper-name
Shipper-address
Warehouse-no
Warehouse-loc

Warehouse-capacity
Wh-parts-quantity

Wh-manager-no
Wh-manager-name

Wh-manager-salary

FIGURE 2
Data in INF

There are still problems with this form,
though. For example, if a supplier is not cur-
rently supplying a part, or a warehouse is not
currently being used, information about that
supplier or warehouse will not be in the data
base until a part is supplied by that supplier or
a part is stored in that warehouse, Similarly, if
only one part is supplied by a particular sup-
plier, and it is no longer purchased from him,
the information about that supplier is lost
Keeping the supplier or warehouse informa-
tion in & record with a null Part-no would
not be a solution; that would violate the rule
that no value in a primary key may be null.

Another problem arises with the information
that is in this data set. It is redundant. If a
suppher supplies three different parts, infor-
mation about that supplier, such as the ad-
dress, appears three times. This creates extra
work for wupdating. Whenever the address
changes, every record in which it appears
must be updated. If not every record is
changed, the data base becomes inconsistent,
leading to other troubles, such as determmmg
which datum is the most current.

The logical solution to these problems, and
the idea behind second normal form, is to
somehow extract this redundant information
about a specific entity and deposit a single
copy of it somewhere else. This is ac-
complished by creating data sets containing

PARTS SUPPLIERS
Part-no Supplier-no
Part-cost Supplier-name#
Parts-on-hand Supplier-address
Parts-oen-hand-value Supplier-bal-due

37-4

information which is dependent on the entire
primary key and not on only part of the (com~
posite) primary key. (This type of functional
dependence is called full functional depen-
dence.) For example, the composite key Part-
no Warehouse-no determines the quantity of a
particular part in a particular warehouse. A
field such as part-cost is functionally depen-
dent only on Part-no and not on Warehouse-
no and is thereby not fully functionally
dependent on the entire key Part-no
Warehouse-no.

A data‘ set is in 2NF if and only if it is in
INF and every nonkey field is fully dependent
on the primary key.

To decompose GENERAL-PART-INFO into
INF, the fields that are only partially depen-
dent on the primary key will be removed to
separate. data sets with a primary key on
which they are fully dependent. The original
primary key does remain in the original data
set, and its components function as foreign
keys. In our example, six new data sets will be
created, as appear in Figure 3, and all of the
fields in them are fully functionally dependent
on their respective primary. keys. The data set
GENERAL-PART-INFO, renamed PART-
SUPPLIER-WAREHOUSE after the decom-
position, denotes the relationship among parts,
suppliers of those parts, and warehouses in
which those parts are supplied.

WAREHOUSES

Warehouse-no
Warehouse-loc¢
Warehouse-capacity
Wh-manager-no
Wh-manager-name
Wh-manager-salary

Prepared by the Southern California Regional User’'s Group

Proceedings: HP3000 IUG 1984

Anaheim

PART-WAREHOUSE PART-SUPPLIER
Part-noX
Supplier-no¥
Parts-on-order
Shipper-no
Shipper-name
Shipper-address

Part-noX
Warehouse-noX
Wh-parts-quantity

FIGURE 3
Data in 2NF

Even though there are now six data sets instead
of one, the total information in them is
preserved through relationships expressed by
the foreign keys. For example, from the data
set PART-WAREHOUSE, which contains the
quantity of a particular part stored in a par-
ticular warehouse, information pertaining
uniquely to the part can be obtained by taking
Part~no and finding the record in the PARTS
data set containing the same Part-no. The
same thing can be done with Warehouse-no
and the WAREHOUSE data set.?

Despite the fact that the data sets are in 2NF,
there are still some redundancy problems. For
example, a shipper may have information
about him recorded in several places if he is
shipping several parts, leading to data consis-
tency and currency questions; information
about the shipper will be lost if he is not
shipping any parts at this time.

These problems arise because the data in ques-
tion is information not about the primary key,
but about another non-key field. The data
does not directly describe {or depend on) the
primary key, but does so transitively through
the non-key field. Take as an example the.
data set WAREHOUSES. Wh-manager-salary
is an attribute of Wh-manager-no
manager earns a specific salary) and is directly
dependent on it. Wh-manager-no is an at-
tribute of Warehouse-no (the warehouse has
one manager) and is directly dependent on it.
Consequently, for & warehouse, there i1s only
one manager-salary paid, and Wh-manager-
salary is therefore transitively dependent on
Warehouse-no by way of Wh-manager-no.

PARTS SUPPLIERS
Part-no Supplier-no
Part-costX Supplier-name#

Parts-on-hand¥ Supplier-address

Supplier-bal-due

(the -

31-5

PART -SUPPLIER-WAREHGUSE

Part-no¥%
Supplier-no¥*
Warehouse-no¥

The solution to the redundancy problems is to
extract this transitively dependent information
and place it in its own data set. This is ac-
complished by third normal form.

A data set is in 3NF if and only if it is in
2NF and every nonkey field is directly depen-
dent on the primary key.

Decomposition of 2NF data sets into 3NF data
sets is done by removing to their own data set
the non-key data that directly describe other
non-key data. The primary key of the new
data set is the “directly-described" non-key
data. A copy of this key remains in the
original data set to serve as a foreign key.

To decompose the data in Figure 3 into 3NF, as
represented in Figure 4, three new data sets,
SHIPPERS, MANAGERS, and
PART-VALUESS, are created. (Note that the
fields Part-cost and Parts-on-hand form a
composite primary key in the data set PART-
VALUES. Therefore, these two fields together
form a composite foreign key in the data set
PARTS) :

(3NF does have a weakness in .that it does not
satisfactorily handle cases of two or more
composite and overlapping keys.9 As a result
of this shortcoming, INF has been replaced by
Boyce/Codd normal form, which is stronger yet
conceptually simpler. A data set is in BCNF if
and only if every determinant is a candidate
key.. This means that every field in the data
set must be directly functionally dependent
on the entire primary key, and only candidates
of the entire primary key are allowed. As you
can see, Figure 4 is also in BCNF.10)

WAREHOUSES

Warehouse-no
Warehouse-loc
Warehouse-capacgity
Wh-manager-no¥

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

PART-VALUES PART-WAREHOUSE

Part-noX
Warehouse-no¥

Parts-on-hand
Part-cost
Parts-on-hand-value

SHIPPERS MANAGERS
Manager-no
Manager-named
Manager-salary

Shipper-no
Shipper-name#
Shipper-address

center 2 FIGURE 4 Data in 3INF/BCNF

Fourth normal form deals with multivﬁlued

dependencies. A multivalued dependence -

(MVD) can be considered a special case of
functional dependence, but - instead of one
specific field value associated with a given
ll:ey, there is a specific set of values for that
ey. -

Putting two or more MVD's that are indepen?-
dent of each other (ie., they are dependent on .

the primary key, but have no effect on each
other) in the same data set leads to redun-
dancy problems. For example, a shipper can
make deliveries in one or more time periods -~

Wh-parts-quantity

PART-SUPPLIER

Part-noX
Supplier-no¥ .
Parts-on-order
Shipper-no¥

PART-SUPPLIER-WAREHOUSE

Part-noX
Supplier-noX
Warehouse-noX

day, night, or weekend. The shipper can also
handle, independent of delivery time, one or
more kinds of freight -~ regular, fragile,
electronic, or perishable -- and have a rating
for each type. One way of arranging this data
is as in Figure 5. This data set is in BCNF --
the entire record is the primary key. Stil],
redundancy problems remain. Add another
type - of freight for a shipper, and many
records, not just one, will have to be added to
the data set. .Updating of records will also
suffer. from the effects of data redundancy.
Independent MVD’s will have to be put in
separate data sets to avoid these problems.

Shipper-no Delivery-time Freight-type

— — el el S S e o w—
£EZ2Z2220000

$7-6

VLIOMMIDIVMMDO

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

1 W F
1 W E
1 W P
2 D R
2 D F
2 3] P
2 N R
2 N P
2 W R
2 W P
143 D R
143 D F
143 N R
143 N F
143 W R
FIGURE J
MVD's in BCNF

A data set is in 4NF if and only if it does not
contain more than one independent MVD
about an entity.

To decompose a data set into 4NF, each MVD
is paired with the primary key it is dependent
upon to form a new composite primary key for
a new data set, Any information that is fully
and directly dependent on this new primary
key is removed from the original data set and
placed in the new data set.

PARTS SUPPLIERS
Part-no o Supplier-no
Part-cost ‘ Supplier-named

$7-7

If, in our data base, we want to keep informa-
tion about a shipper’s delivery times, the types
of freight he carries, and, additionally, his
rating for that type of freight, the data will be
decomposed into two small data sets]1:

Shipper~-no Delivery-time &
Shipper-no Freight-type Rating

The full data base in' 4NF, with these new data
sets, appears in Figure 6.

WAREHQUSES

Warehouse-no
Warehouse-loc

Prepared by the Southern Californio Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Parts-on-hand Supplier-address
Supplier-bal-due

PART-WAREHOUSE PART-SUPPLIER
Part-noX Part-nok
Warehouse-noX Supplier-noX
Wh-parts-quantity Parts-on-order

Shipper-noX

SHIPPERS MANAGERS
Shipper-no Manager-no
Shipper-name# Manager-name#
Shipper-address Manager-salary
SHIPPER-TIMES SHIPPER-FREIGHT
Shipper-no% Shipper-noX
Delivery-time Freight-type
Rating

Warehouse-capacity
Wh-manager-noX

PART-SUPPLIER~WAREHOUSE

Part-noX
Supplier-noX
Warehouse-no%

FIGURE 6
Data in 4NF

Fifth normal form provides a general purpose
decomposition. It is conceptually based not
only on the determination of fields in the data
set, as are the other normal forms, but also on
the values within the data set. Consequently, it
can be difficult to explain SNF and to ident:ify
SNF data sets. Therefore, what follows is only
a brief overview.

SNF, like 4NF, deals with multiple MVD's, but
in cases where they are not independent of
each other, Take* the PART-SUPPLIER-
WAREHOUSE data set created as a result of
INF. It contaings MVD’, since a part could

come from many suppliers and could be stored
in many warehouses. These MVD’s are not,
however, independent of each other. All of a
supplier’s parts are not necessarily in all of the
warehouses.

A data set is in SNF if and only if it cannot
be further decomposed without causing the
creation of spurious information upon
reconstruction.

For a2 non-§NF data set to be decomposed into
SNF, it must meet a certain constraint. Using
our example, it can be stated like this: if a part

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

is stored in certain warehouses, and that part is
obtained from certain suppliers, then the part
from each and every supplier will be in each
and every warehouse.12

When this constraint holds, a data set with
dependent MVD’s can be decomposed into
three or more (not two, as in the previously
mentioned normal forms) smaller data sets,
from which the original information can be
accurately reconstructed by combining all of
these data sets if the original data set meets the
specific constraint. However, when the con-
straint does not hold, a recombination of the
smaller data sets results in extra, spurious
information.

Figure 7 illustrates a case where the data set
cannot be decomposed and accurately
recreated. PART-SUPPLIER-WAREHOUSE
is decomposed into three smaller data sets

PART-SUPPLIER, SUPPLIER-WAREHOUSE,

and PART-WAREHOUSE (the PART-
WAREHOQUSE data set already existing in our
data base serves this purpose) When PART-
SUPPLIER and SUPPLIER-WAREHOUSE are
joined by the common value of their common
key, Part-no, and the result joined with
PART-WAREHOUSE by the common values
of their common keys Part-no and Warehouse~
no, the reconstructed data set contains an ex-
tra, spurious record (PI, S1, W1). (Spurious
records are indicated in the example by an
exclamation point ()) Therefore, the original
I;ART-SUPPLIER-WAREHOUSE data set isin
NF.

If the record (P1, S1, W1) were in the PART~
SUPPLIER-WAREHOUSE data set, it could
be accurately reconstructed from the decom-
posed data sets. In that case, PART-
SUPPLIER-WAREHOUSE would not be in
SNF, but would have to be decomposed into
the three smaller SNF data sets.

ORIGINAL DATA SET

Part-no "Supplier-no Narehoﬁse-no

P1 s w2

Pl 52 W)

P2 S1 W1

‘ DECOMPOSED DATA SETS
Part-no Supplier-no Supplier-no Warehouse-no Part-no Narehousamo-

Pl Si) - Py Wil
P1 §2 s P1 W2
P2 - Wi

p2 S1 52

RECOMPOSITION (INTERMEDIATE STEP)

Part-no Supplier-nc Warehouse-no

! Pl 81 Wi
Pl Sl W2
P1 82 W1
p2) Wi

! P2 S1 w2

Part-no Warehouse-no

P1 Wi
P1 w2
P2 Wi

RECOMPOSED DATA SET WITH SPURIOUS RECORD

Part-no Supplier-noe Warehouse-no

Prapared by the Southern Californio Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Pl S1
Pl S1
P 52
P2 - 81

, FIGURE 7
Dependent MVD Decomposition and Recomposition

III. IMAGE IMPLEMENTATION

We now have our data base decomposed into
several small, functionally cohesive, nonredun-
dant data sets. A logical view of these data sets
and how they relate to each other is presented

As you can see, there are several levels of
dependence. IMAGE, however, being only a
two level network data base management sys-
tem, can efficiently handle only one depen-
dence level for one-to-many relationships,
making hierarchy implementation awkward.]3
It also has, like any data base management
system, implementation features to consider.
How do we bring the logical data base into
conformity with the real world of IMAGE?
Here are some general rules {of course, general
rules always have exceptions):

1. Data sets that have a single-field
primary key, such as the data set
PARTS, should be manual master data
sets. This way, a search for a value, for
example, that of a foreign key in another
data set, can hash directly to the proper
record.

2. Data sets that have a composite primary
key, such as the data set PART- SUP-
PLIER, should be detail data sets. A
composite key implies a one-to- many
relationship between master data sets

in.Figure 8. The arrows represent whether a
one-to-one, one-to-many, or many-to-one
relationship exists between data sets.

having single-field keys and the
. composite-key detail data set itself;
consequently, paths between these data
sets can be established. Automatic
master data sets can be established to
create paths for key fields without
corresponding master data sets (for ex-
ample, an automatic master for
FREIGHT with a path to SHIPPER-
FREIGHT) or for non-key fields for
which quick access is a necessity.

3. 'Those manual master data sets reguiring
quick access of non-key fields can be
dropped a.level to detail data sets, and
automatic master data sets can be
created to establish the search paths. (1
must state here the standard warnings
about many paths in a detail data set:
while retrieval is fast, updating is slow,
and maintenance of the data base can be
difficult.)

The IMAGE-implemented normalized data
base is shown in Figure 9 Standard HP
graphic representation is used.

$7-10

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

fodT-
SUPPLIER
WAREROUSE

SUPPLIERS WA REHOUES

PALT-
SuPPLIER

fpeT-~
w BREHOUSE

SHIPERS farAcers
SHIFPER- SHIPPER-
TIMES FREIGHT

Figure B
Logical Relationships Among the Deta Sets

57-11

Prepared by the Southern California Regionol User’s Group

Proceedings: HP3000 IUG 1984 Anaheim

YPL:FI‘.S PRRTS wnggnwyy
n
& M

PART-
SUPPLIER

PaRT-
swPPLIER

\WRQG“W"/

Ting s SHIpPERS FRLEIGAT
A r A

SHIPPER- \ SHiPPER-
TINES FREIGAT

1N AVARGERS

N

Figure 9
IMAGE Izplementation of Data Base

57-12

Prepared by the Southern Californic Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Figure 9

IMAGE Implementation of Data Base
CONCLUSION

Normalization of data provides many advant-
ages. The data base requires much less space
than an unnormalized data base would. Be-
cause of the nonredundancy of data, the data
base becomes more useful and can be main-
tained much more easily, both physically (ex-
cept for IMAGE search items, which are of~
ten the redundant keys) and loglcally (as shown
in the examples).

On the other hand, application programs must
retrieve data from many data sets instead of
from only one, thereby increasing retrieval
time. The question then arises;, how many
levels of normalization to apply to the data
before the cost of extended retrieval time
overshadows the benefits of normalization.
The answer is application dependent, but it
would be difficult to justify not commonly
normalizing to at least ANF/BCNF.

NOTES
1. There are other normal forms, such as know for "normalizing" programs). (See
(3,3 normal form and domain-key Wirth, Systematic Programming (1973),
normal form. These, however, are Algorithms + Data Structures =
beyond the scope of this paper. Programs (1975) and Dijkstra Structured
Programming (1972).)
2. INF, 2NF, and 3NF were discovered
by E. F. Codd {see Codd{1970] and 5. This type of data organization resulted
Codd[1972]). BCNF was discovered by in a real-life problem on an IMAGE
Codd and R. F. Boyce (see E. F. Codd, data base. A detail data set had a series
“Recent Investigations into Relational of names, Name-1, Name-2, Name- 3,
Database Systems." Proc. IFIP Congress and Name-4, which were dependent
1974). 4NF ad 5NF were discovered upon the record key. All four names
by R. Fagin (see R. Fagin, "Multivalued were not always entered. Sometimes
Dependencies and a New Normal Form only one name was entered, in Name-1;
for Relational Databases" ACM Trans- sometimes only two names were entered,
actions on Database Systems. 2, No. 3 in Name-1 and Name-2; and so on.
{September 1977). and R. Fagin, "Nor- Most of the time, no Name-4 was en-
mal Forms and Relational Database tered. Those name fields not entered
Operators.” ACM SIGMOD Internation- were filled, by default, with blanks.
al Conference on Management of Data.). ‘
These name fields were often used for
3, To make the data base structure searching this data set, so they were
transparent to the applications, shield made search items and linked to an au-
the applications from data base main- tomatic master. Unfortunately, because
tenance, and prevent excessive program of all the blank entries in Name-4, the
mamtenance an access module might be maximum chain length was quickly
used. When the structure of the data reached for the blank valwes and no
changes, only the access module needs to more records could be added to that data
be changed, not the application set unless all the name fields were filled.
programs. The access module itself
would add slightly to retrieval time. 6. That is, there is no systematic occurrence
of sets of empty fields. Only fields that
4, It is interesting to compare stepwise are part of a key are forbidden to be
normalization of data into nonredundant null. Non-key fields may contain null
functional groups with structured values, but these should be rarely occur.
programming’s idea of stepwise
refinement of programs, as presented by 7. When physically or logically
Wirth and Dijkstra, and nonredundant reconstructing the data through the
functional procedures/modules. One foreign keys, multiple- combinations of
could be called "structured data" and the the reconstructed records become pos-
other "“normalized’ programs” (although sible. For example, given the data sets:
there is no formal method of which I
PARTS WAREHOUSES PART -WAREHQUSE
§7-13

Prepared by the Southern California Regional User’s Group

Proceedings: HP3000 IUG 1984

Part-ne Part-info

Anaheim

Warehouse-no Warehouse-info Part-no Warehouse-no

PN PIT... WN1 WIl... PNI WNI1
PN2 PI2... WN2 Wiz... PN1 WN2
WN3 WI3. .. PN1 WN3
PN2 WNI1
PN2 WN2

PN2

WN3

the foll‘owing redundant data set would result from recombination:

PART-WAREHOUSE -COMBINED

Part-no Warehouse-no Part-info Warehouse-info

PNI WN1T PIl... WIl. ..
PN1 WN2 PI1... WI2...
PN WN3 PIl. .. WI3...
PN2 WN1 PI2. .. WIl...
PN2 WN2 pI2... Wi2. ..
PN2 WN3 PI2... WI3. ..

Consequently, we see that the amount of
space saved by decomposition is a multi-
plicative function. This concept is high-
lighted by the fact that the relational
operator used for reconstructing data
sets through common keys, join, is based
on the traditional set operator Cartesian
product.

PART-VALUES appears here for -il-
lustrative purposes. While it is in 3NF,
it is really nothing more than a multi-
plication table. Since the Parts~ on-
hand-value field can be calculated, this
data set is actually unnecessary and its
presence contradicts the philosophy be-
hind normalization. For this reason, the
PART-VALUES data set will not appear
subsequently in examples. Pragmatical-
ly, the relative importance of process-
ing time to storage space is the deciding
factor in whether data that can be cal-
‘l:;ulated- should be included in a data
ase.

As an example, take the following case:

Part-no Supplier-no. Supplier-
name Parts-on-order

Because Supplier-no and Supplier-name
are candidate keys, this data set has
“two overlapping candidate primary keys
Part-no Supplier-no, and Part- no
Supplier-name. This data set is in 3NF,
since every non-key field is directly
dependent on the primary key.
However, there is still a possibility of
redundancy in Supplier-name. This is
because 3NF does not require a field to
be fully dependent on the primary key if
Lt is itself a component of a candidate
ey.

57-14

10.

Project Leader

BCNF can sometimes be too strong,
destroying the dependence relationships
of the decompesed data sets. As an
example, take the data set

Project Leader Salary

This data set is in 2NF but not 3NF nor
BCNF. It is possible to decompose this
data as such:

&

These two data sets are in BCNF, but
the dependence relationship and the in-
dependence of the data have been lost,
resulting in insertion, deletion, and up-
date irregularities. For example, it is
not possible to know a given project
leader’s salary unless that project
leader is manging a project, and if he is
managing two projects, his salary is
recorded twice.)

Project Salary

It is also possible to decompose the data

this way:
PrOJECt Salary & Leader Salary
These, too, are in BCNF but if we com~-
bine these two data sets (logically or
physically) based on the common field
Salary, extra, spurious records will be
created. This results from the fact that
many project leaders may earn the same
salary, and the combined data set is a
product of all possible combinations of
the smaller data sets linked by common
salaries.

The optimal decomposition, refléctin_g
the hierarchy of the relationships, is
this:

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Project Leader* & Leader Salary

This structure shows ‘ which project -
leader manages a given project, and we -
know a project leader’s salary even when:

he is not leading any project.

11. There are perfectly valid reasons for
having one data set with all of the in-
formation, such as when you need in-
formation that is fully dependent on
several multivalued dependencies (this is
really a result of 2NF). For example,
to record the on-time percentage of a
given shipper at a given time for a
specific type of freight, the following
data set is needed:

Shipper Delivery-time Freight-
type On-time-percentage

From the information in this data set,
you can calculate the on-time- per-

this way:
If the records

‘centage for a single delivery-time or a
single freight-type, or for any combina-~
tion. If you don’t want to calculate
this information, you can build new
data sels. (e.g.,. Delivery-time
Freight-type On-time- percentage) to
house that information, but that saves
calculation time at the expense of extra
space consumption and data redundancy.

Note that even in this case, the data set
Shipper-no Freight-type Rating

will still exist to prevent redundancy
within rating type. Of course, On-
time-percentage could be 2 part of this
data set, too, under the "save time, not
space" option.

12. More formally, the constraint, called a
join dependence, can be described

appear in the data set PART-SUPPLIER-WAREHQUSE,

then the record

(P1, 81, W2)
(P1, S2, W1)
(P2, S1, M1)
(P1, S1, W1}

appears in the data set PART-SUPPLIER-WAREHOUSE.

13. For example, if data set A has a one-to-
many relationship to data set B, and data
set B has a one-to-many relationship to
data set C (not illus- trated in this
paper), in the best case, retrieval of a
record from data set C requires a c¢hain
traversal from master data set A to

detail data set B, then a hash to master
data set C, from which another chain
traversal to detail data set C is done.
One-to-one and many-to-one relation-
ships are easily handled by hashing
directly to the entry in a master data set.

BIBLIOGRAPHY

Codd, EF. "A Relational Model of Data for
Large Shared Data Banks" Communications
of the ACM. 13, No. 6 (June 1970} 377~387.

--------- . "Further Normalization of the
Data Base Relational Model" Data Base Sys-
tems (Courant Computer Science Symposium
6). Ed. Randall Rustin. Englewood Cliffs, N.J.
Prentice-Hall, 1972. 33-64.

Date, CJ. An Introduction to Data Base Sys-
tems. Third Edition. Reading, Mass: Addison-
Wesley, 1981.

Flores, Ivan. Data Base Architecture. New
York, N.Y: Van Nostrand Reinhold, 1981.

IMAGE Data Base Management System
Reference Manual. Second Edition. Cupertino,
Ca.. Hewlett-Packard, 1979.

Kent, William, "A Simple Guide to Five
Normal Forms in Relational Data Base
Theory” Communications of the ACM. 26,
No.2 (February 1983) 120-125,

Ullman, JD. Principles of Database Systems.
Second Edition. Rockville, Maryland: Com-
puter Science Press, 1932.

Further refer.ences may be obtained from the
excellent bibliographic notes in Date.

Richard Seltzer is familiar with a variety of hardware, having his most extensive
experience on HP 3000's af the Prudential Reinsurance Co. in Newark, N.J. Among

57-15

Prepared by the Southern Californic Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

his areas of involvement on the HP 3000 are data base design, the design and
programming of both business and soffware systems (such as security and
chargeback systems), and systems management. He is currently pursuing an M.S. in
Computer Methodology from Baruch College of the City University of New York.
For his thesis, he is writing a structured English query language based on relational
algebra.

57-16

Prepared by the Southern California Regional User’s Group

