Proceedings: HP3000 IUG 1984 Anaheim

DISC MEMORY CACHING ON A SERIES 1l
. WITH EXTRA DATA SEGMENTS
by KURT D. RAHM

SR. PROGRAMMER/ANAYLST
© BOHEMIA, INC.

INTRODUCTION

A major bottleneck of any computer is disc
I/0 and the HP3000 is no exception.
Hewlett-Packard has announced MPE V with
disc memory caching which allows disc files to
be resident in memory, therefore, providing
increased throughput of disc [/O. Since disc
memory caching will not be available on the

Series IIl, users of these systems need some
aiternative to increase disc throughput. This
paper explains how extra data segments, in
conjunction with process handling and multi-

" ple rins, can be used to obtain the benefits

of increased disc throughput without having
disc memory caching. - .

- DISC CACHING

Disc caching is a sub-system that utilizes ex~
cess main memory and processor capacity of
certain HP300(0's (Series 39, 42, 48 & 68) to
eliminate a large portion of disc access
delays. It locates, moves, and replaces disc
domains in main memory for access by any

user. A disc domain is all or part, of a disc. .

file.

When a process requests input from a disc file,
a list of currently cached disc domains is sear-
ched, If the requested disc domain resides in
main memory, @2 memory~-to-memory transfer
occurs ‘between the .cached disc. domain and
the . requesting - processes: data area. The
process will contihue executing without an
interrupt. . If the data requested is not in
main memory, a fetching- strategy using
numerous facts determines the optimal disc

domain to bring . into memory, then a

memory-to- memory transfer occurs.

EXTRA DATA SEGMENTS.

An extra data segment, XDS, is a block of un-
structured memory that is initialized to zero.
The data in an XDS can be private, for the
creator only, or shared by the creator and its

There are various options for disc caching
when a write to disc is requested. The option
selected is dependant on ; 1 - whether the
required disc domain is currently cached, 2 - if
there another write pending, and 3 - 'if disc
caching enabled for writes. Assuming disc
caching is enables for writes, a user should
never have to wait for the physmal write to
disc. .

With the addition of disc caching to a sys-
tem, the delays to read or write disc data will
be significantly reduced thus decreasing
response time - and . increasing productivity.
Disc caching, or . an . alternative technique,
would therefore be a valuable asset to any sys-
tem. You can get more information on disc
caching from your SE, so I will not go into
any more detail. This article will furhter dis-
cuss an alternative to disc cachmg with the
use of extra data segments.

sons (more later under process handling).
Anything .you use COBOL’s workingstorage
for, :an XDS can also be used. Large arrays,
table lookup, and parameter passing (linkage

Prepared by the Southern California Regional User’s Group

Proceedings: HP3000 IUG 1984 Anaheim

section) are some examples. The gquestion is
then asked - If ! can use working-storage or
linkage section, why use extra data seg-
ments? Working-storage cannot be shared be-
tween processes, and what if your table is too
large (ie. MAXDATA can't be big enough)

Extra data segments can be used to decrease
an individual processes stack size, share data,
decrease disc 1/0, and increase throughput.
Before we can look at how XDS’s can be used
to duplicate disc caching, we need to look at
process handling (PH) and local rins.

PROCESS HANDLING

Process handling allows a user (process) to
create, delete, activate, and suspend other
processes. Process handling (PH) is required if
you want to share an XDS. Refer to the fami-
ly tree in Figure KDRTXT-1 for the fol-
lowing discussion. In order for a process to
have access to an XDS, either it or its father
or grandfather, etc, must have created the

XDS. In order for 'SON 1A’ to have access to
an XDS, either 'SON 1A’, 'SON I’ or 'FATHER’
must ‘have created the XDS. If 'SON 2’ creates
an XDS, SON |A’ doesn’t have access to it,
only 'SON 2, 'SON 2A’ and 'SON 2B’ would
have access to this XDS. If you want more in-
formation about process handling, see chapter 7
in MPE Intrinsics manual.

Gonin) 150N 16 J[E08 7=l [Son 2p] UEoH 20l [SoM 2R)

LOCAL RINS

Local rins (resource identification numbers) are
used to exclude simultaneous access of a
resource by two or more processes within a
family tree. Local rins can be locked, condi-
tionally or unconditionally, and unlocked
just like an IMAGE dataset, allowing ex-
clusive resource access. If your application
uses V/3000, you need some way to get the
right screen to the right terminal at the
right time. VOPENTERM defaults to $STDIN
to paint the desired screen, but a parameter to
VOPENTERM is 'termfile’. ’Termfile’ can be
file equated to some LDEV allowing the
screen to be painted on that ldev and not
$STDIN, By locking a local rin around.the
file equation and the VOPENTERM, some
other process within the family tree can’t
change the file equation until the local rin is

unlocked (assuming that all programs available
to any process within the family tree locks the
local rin prior to VOPENTERM). Local rins
require MR capabilities and you now need to
be careful to avoid deadlocking. Deadlocking
occurs when two processes try to
unconditionally lock a resource (local rin, data
set, etc) that the other process has locked.
Since MR allows multiple locks to be in affect,
deadlock is a potential hazard. The only way
to get out of a deadlock situation is to shut-
down the system. If you want more infor-
mation on local rins, see chapter 6 in the
MPE Intrinsics manual. I want you to realize
that only DS capabilities are required if you
use extra data segments. PH is required if
you intend to share extra data segments, and
MR is required if local rins are required.

DUPLICATING DISC CACHING

Since data is either input from or outpuf to
disc I will handle these individually in
presenting alternatives to disc caching. Since

the majority of disc accesses are for input,
let’s discuss it first. Bohemia, In¢, has an
Order/Entry system that uses 21 data sets to

Prepared by 1he Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

edit orders and invoices for their sawmills,
plywood and particleboard plants. These sets
include information such as state, country,
specie, grade, product, thickness, etc. When-
ever an order/entry clerk enters an order, these
sets are accessed to validate the entered data.
Our procedure was to place these 21 sets into
3 XDS based upon record size and number of
entries in each set. Each record consist of a
dataset number, key, and miscellaneous data
including a description. A batch job controls
this whole process.

Referring to Figure KDRTXT-1, assume
'FATHER’ is a program in the above batch
job and therefore the key to the whole
process. 'FATHER’ creates the 3 XDS, sequen-
tially reads the 21 data sets, loads the data
into the approriate XDS and obtain a local rin
so the right screen gets to the right ter-
minal. Since the '’FATHER’' has created the
XDS and obtained the local rin, all processes it
creates, or are created by his sons, have access
to all 3 XDS and the local rin. The 'FATHER’
then creates 5 sons (menus) on 5§ different
terminals, locking the local rin around the
VOPENTERM. These menus later create a son
based upon the option selected by the users,
which will validate the input using the XDS's.
If the value entered by the user is not in the
XDS, the program goes to disc to attempt
validation since the users have the capability
to add items to the 21 data sets. In the Or-
der/Entry system, the majority of disc input is
a memory-to-memory transfer and not a
physical disc access increasing throughput.
For those who want more detail on how to
create and access extra data segments, read
about ‘GETDSEG’, 'DMOVIN' and
'DMOVOUT' intrinsics. For local rins, see
'GETLOCRIN’, 'LOCKLOCRIN’ and
'"UNLOCKLOCRIN'

This above mentioned process has been used
at Bohemia since Jaunary, 1983, with great
success. Our interactive users have commented
on the noticable improvement in response
time, and we have modified our printing of
orders and invoices to access the XDSs for
descriptions instead of going to disc.

POTENTIAL GOTCHA'S

Thinking through this process, realize there are
a few potential problems in the above duplica-
tion of disc caching. The most critical invol-
ves the output phase. What happens if you
get a system failure? The user thinks they
have completed the transaction, but have
they? If there is a system failure, there may be
some data put by a user to the output XDS,
but because of the volume or other delays, this
data hasn’t made it to the disc. If this is true,
even if you have transaction logging enabled,
no disc output has happened so your logging
won't help and some data may be Jost.

What about output to disc? One goal of disc
caching was to decrease the delays of physical
disc activity, thus allowing the user to proceed
sooner. We have showed how these delays can
be decreased for disc input, but what about
disc output. This can be duplicated by adding
another XDS to the ’FATHER’ and another
process. [Instead of your programs doing
'DBPUT’, 'DBUPDATE’, or, ' DBDELETE’, they
output to: the new XDS and Jet an output
process do the physical disc activity. In order
to do this, some information needs to be
available to all processes involved in the
family tree. The first record of this output
XDS can contain the following: 1 - disc
output displacement, 2 - user output to XDS
displacement, 3 -~ length of XDS, and 4 -
status flag. Displacement is the length (in
words) from the beginning of the XDS to the
beginning of the data to be transferred. Disc

- output displacement is the number of words to

the beginning of the next XDS record to be
put (updated or deleted) to disc. User output
displacement is the number of words to the
beginning of the next available XDS record
for interactive users {ie. where the next
user is going to put his/hers next disc output
detail). Since we will By using the XDS as a
circular file, the length of the XDS must be ob-
tained to determine the “end-of-file". When
the end is reached process starts back at the
beginning. The process flag can be used to in-
dicate various status’ of the output XDS such
as XDS full. Records two through the end of
the XDS contain the following: 1 - database
name or number, 2 - dataset name or number,
3 - activity flag (O-free space, 1-add,
2-update, 3~ delete), and 4 - data to be put,
updated, or deleted. After the users have
put the disc activity to the XDS, the output
process can read the same data, and per-
form the desired activity. Since the interac-
tive user is writing to memory and not disc,
the delays associated with a physical write are
not encountered and the user can continue
processing sooner. A local rin can be used to
control whether a user or the update process
has exclusive access to the output XDS.

Security may also be a problem. Since the
users at their terminals never get a colon
prompt and never enter :HELLO, MPE’s
logon security won't work. Solution: create
your own security that is used instead of MPE
logon security.

One rule with process handling is - when
the father stops, 50 does every other process in
the tree. If something would happen to cause

Prepared by the Southern California Regional User’s Group

Proceedings: HP3000 JUG 1984 Anaheim

’FATHER’ to abort, all other process stop and -

the XDS's are lost. The only way this will
happen with our 'FATHER’ is with a "bounds
vmlatlon" or "system failure".

The 'FATHER' is a batch job, and anythmg
displayed to $STDLIST won't be séen until
the . job terminates. If a son aborts, 'we want

and FCOPY the disc file to LP if you want to
see it.

If you use local rins (MR .capabilities), be
aware of deadlock possibilities. SOLUTION:
thoroughly test programs without local rins
and MR capabilities (at more than 1 terminal
at a time). - Only after the program is tested

to know the reason now, not hours later.

should MR and local rins be added.
SOLUTION: . Redefi_ne $STDLIST to a disc file L .

- Kurt Rahm s the Senior. Programmer/Analyst for Bohemia, Inc, in Eugene, .
Oregon. His work experience on the HP 3000 family dates back fo 1977, begin-

- ning on a'Series 11, to the Series I11 he now works on. Kurt has modified the
Order/Entry systém at Bohemia to access extra data segments, not disc files,
to validate orders and invoices processed by their - sales department. Kurt

- is an active member of the Oregon Regional Users Group (ORERUG) as a
speaker and is a nominee for the presidents position of ORERUG.

53-4

[o Prepared by the Southern Californic Regional User's Group

