Proceedings: HP3000 IUG 1984

Anaheim

BURN BEFORE READING - HP 3000 SECURITY AND YOU.

by Eugene Volokh,
VESOFT, INC.

DISCLAIMER

One of the most important things you can
do for your security system is to plug holes
that may exist in it. To help you do this,
this paper shows some ways in which
most inadequately secured systems can be
penetrated. Although this information can
be used by would-be security violators to

break into a poorly secured system, it is in
my opinion more important that it can be
uwsed by you to protect yourself against
these violators.

ATTENTION WOQULD~BE THIEVES! DO
NOT READ ANY FURTHER!

INTRODUCTION

Life’s not fair.

Just when you think vyouwve got it
made, just when you (or your company)
have found the pot of gold at the end of
the rainbow, you find it out.

Someone else wants the same pot,

To prevent your property from becoming
theirs, you set up a series of obstacles be-
tween the would-be thief and your
property. It is these obstacles that comprise
your security system, and it is the quality of
these obstacles that determines whether or
not your property (in our case, your com-
puter data) is secure.

These obstacles come in two flavors:

* Qbstacles to unauthorized retrieval
of data. Data is often valuable in
and of itself, whether it is salary in-
formation you want to keep secret
from your employees, financial infor-
mation you want to keep secret from
your competition, or military informa-
tion you want to keep secret from
THEM.

+* QObstacles to unauthorized
modification of data. Data does not
exist for its own sake;, real-life
decisions are made based on that data,

46-1

and unauthorized modification of
data can affect those decisions in an
undesirable way.

This paper will try to give you some
useful tips on making your valuable data
more secure.

THE ROAD TO YOUR DATA

Consider Joe Q. Sinister, who has his
sights set on your payroll database. There
is a fixed road that he must travel to reach
the data stored in it and change it; know-
ing this road will help us erect the proper
roadblocks.

His first step must be to log on to the com-
puter; if we can frustrate his attempts to
do that, our data is secure. The techniques
used to prevent unauthorized users from
logging on to the computer are called
LOGON SECURITY.

LOGON SECURITY

Logon security 1is probably the most
important component in Your security
fence. This is because many of the further
security devices (e.g. file security} use in-
formation that is established at logon time,
such as user id and account name, Thus, we
must not only forbid unauthorized users
from logging on, but must also ensure that

Prepared by the Sourthern California Regional User's Group

Proceedings; HP3000 IUG 1984

Anaheim

even an authorized user can only log on to
his user id.

So, logon security essentially involves
ensuring that the person logging on is
authorized to use the user id he is logging
on to. How is this to be done?

The optimal approach, of course, would be
to somehow identify who the person is
(fingerprints? retina scan?) and check: to see
if he is on the authorization list for the
particular user id. Unfortunately, these
approaches are not within the means of
most HP 3000 users. However, another
good method is.

A person can be identified by what he

knows almost as well as by what he looks.

like. For instance, a user id may be assigned
a password, and - only the people
authorized to use that user id may be
told that password. Then (assuming no one
else somehow learns the password), if a per-
son knows the password, it follows that
he is authorized. Alternatively, if one and
only one user is allowed to use a particular
user id, he may be asked to enter some per-
sonal mformauon (mother’s maiden name?)
when he is initially added to the system,
and then be asked that question (or one of
a number of such personal questions) every
time he logs on. This general method of
determining a user’s authorizations by what
he knows we will call "knowledge security".

Unfortunately, the knowledge security
approach, although one of the best avail-
able has one major flaw -- unlike fin-
gerprints, information is easily transferred,
be it revealed voluntarily or involuntarily;
thus, someone who is not authorized to
use a particular user id may nonetheless
find out the user’s password. You may
say: "Well, we change the passwords every
month, so that’s not a problem". The very
fact that you have to change the passwords
every month means that they tend to get
out through the grapevine! A good security
system does not need to be redone every
month, especially - since that would mean
that at least towards the end of the
month, the system is already rather shaky
and subject to penetration.

Ironically, the biggest culprit in this
respect is the user himself. Users have
been often known to write down passwords
and post them in prominent places so
they will not forget them; reveal passwords
to . people who really shouldn’t know them;
and, in general, wreak havoc on your logon
security system. Some ways have been
designed to cope‘with this, such as the per-
sonal -profile - security system {asking
questions such as. "What's your mother’s

46-2

maiden name?', "Where did you go on your
first date?", etc) described above, whose
main advantage is that users are less like-
ly to reveal personal data than imper-
sonal passwords, additionally, there can be
more than one personal profile password
~= all of them or a random one can be as~
ked at logon time ~- whereas there is only
user password. However, the user is still the
weakest link in the logon security system,
and major steps should be taken to avoid
voluntary password disclosure by the user.
Thus, an important security rule arises:

* THE USER IS THE WEAKEST
LINK IN THE LOGON SECURITY
SYSTEM -- DISCOURAGE HIM
FROM REVEALING PASSWORDS
(by techniques such as personal
profile security or even by
reprimanding people who reveal
passwords -~ they seem innocent,
but they can lose you millions).

Yet another way in which passwords are of -
ten revealed is by having job streams with
embedded passwords. First of all, unless you
take special precautions (such as altering
the job streams so that Read access to them
is disallowed, and only Execute -- enough

'+ for STREAMing -~ is permitted), anyone

who can stream the job stream can also
read it and thus see the passwords; in any
case, any listing of the job stream (of which
plenty are liable to be laying -around
the computer room) contains this pass-
word. More importantly, since changing a
password means- having to-change every
single job stream that contains it, these
passwords are virtually guaranteed never
to be changed. Fortunately, there is a
simple way to resolve this problem: there
are -plenty of programs, contributed and
vendor-supported, that take a job stream
without. embedded passwords, prompt for
them, insert them into the Job stream and
then stream it.

* PASSWORDS EMBEDDED IN JOB
STREAMS ARE EASY TO SEE AND
VIRTUALLY

IMPOSSIBLE TO CHANGE --

AVOID THEM.

Another way of increasing logon
security is by indirectly using another
aspect of user identification =-- iden-

tification by human beings. Actually, this
could be the main part of your logon
security system: any user who wishes to sign
on must first get clearance from a security
guard or console operator. Going quite
this far is too expensive, but a little bit of
this can be obtained for free.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

If some 15-year-old high school student
walks into your data entry area and starts
using the computer, people are bound to
notice. It is fear of being identified as a
security violator by other human beings
that makes most violation attempts come
across phone lines, usually at night or on
weekends: Thus, another -useful security
feature is to be able to restrict access by
access location (i.e. terminal) and access
time. The very fact that someone is trying
to run payroll across a phone line at 11
PM on a Saturday is an indication of un-
authorized ‘access. Thus, it is ‘worthwile to
implement some form of security that
prohibits access to certain user id’s and ac-
counts at certain times of day, days of
week, and/or from certain terminals, Al-
ternatxvely, you might want to force people
to answer an additional password at certain
times, or especially when signing on from
certam terminals.-

This may seem like a poor approach in-
deed -~ after all, if the thief hits the time
of day, day of week, or terminal
prohibition/password, this means that he
has successfully penetrated the rest of
your security system, which will never hap-
pen -- right? In reahty, this is a -very
potent way of frustrating would-be
security violators, ~especially if the at-
tempted violators are promptly mvestlgated-
Thus, another maxim appears:

* SOME FORMS OF ACCESS
ARE INHERENTLY SUSPECT
(AND THUS REQUIRE EXTRA
PASSWORDS) OR.ARE - IN-
HERENTLY. SECURITY VIOLA-
TIONS. THUS, ACCESS TO CER-
TAIN USER ID'S AT. CERTAIN
TIMES OF DAY, ON CERTAIN
DAYS OF WEEK, AND/OR FROM
CERTAIN TERMINALS (SUCH AS
DIAL-IN OR DS LINES) SHOULD
BE SPECIALLY RESTRICTED.

ASIDE =-- ATTEMPTED YVIOLATION
REPORTING

Before we go any further with our dis-
cussion of various security devices, it is
worthwhile to pay particularly close at-
tention to something which should be

present in all security devices -~ violation

reporting.

No security system can cover you 100%
-- given enough time, a determined (or
even relatively casual) thief can penetrate
even the best system. Fortunately, before
this one successful penetration, chances
are that the thief will make many unsuc-
cessful attempts; if you pay attention to
these unsuccessful attempts, you can catch

46-3

the thief (or at least improve the security
system by, say, temporarily shutting down
dial-in lines) before he gets in.

This may seem obvious, but few shops
really pay attention to . unsuccessful
penetration attempts -- when was the last
time you looked at "INVALID PASS-
WORD" messages on the system console or
in the log files? In reality, every incorrect
password entry is indication of a possible
attempted security violation, even more
50 .if there are several such errors in a row.

HP ‘doesn’t help any either -- the IN-
VALID PASSWORD messages look just like
any other console message {no enhance-~
ments of any kind);, the only place where
invalid' password entries are logged are in
the system log files together with the rest
of the console log messages. It would have
been far more desirable if the message were
logged to a separate log file, and maybe
even reported to the line printer or some
special device. Additionaly, it might be
wise. for a terminal on which an invalid
password entry occurs to be shut down for
some period of time so that it would take
more time for a would-be thief to try
more passwords. ‘

But, even with the existing HP system an
alert console operator can nip many a
potential -security violation in the bud by
catching the INVALID PASSWORD mes-
sages that can be a sign of an at-
tempted violation. In fact, there is a way to
highlight some messages so they will be
more easily visible. Since most MPE mes-
sages are stored in the system file called
CATALOG.PUBSYS, you can do the
following:

1. :Sign‘on as MANAGERSYS.

2. In EDITOR' (or TDP), /TEXT
" CATALOG.PUBSYS '

3. Modify the first line in the file
that starts with "65 " and the first
liné that starts with "68 " to con~
.tain an escape sequence such as "es-
capeddB" (inverse video) right after
the blank after the message number
and to.contain a "escape&d@" (turn
off enhancement) at - thé end of the
message. Alternatively, if you. have

- a 263x with expanded character set,
insert an "escape&kIS" (enter ex-
panded set) right after the blank af-
ter the message. number and a
"escape& k03" (exit’ expanded set) at
the end of the message. Similar es-

. cape sequences may be put in if you
have some other kind of terminal or
a voice ouiput device.

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 1UG 1984

Anaheim

4. /KEEP the file as INPUT.
5.:RUN MAKECAT.PUBSYS,BUILD

6. Prestol Your "INVALID PASS-
WORD" and "MISSING PASS-
WORD" messages are now much
easier to read.

Thus:

* MANY SECURITY VIOLATIONS

CAN BE AVERTED BY
MONITORING THE WARNINGS
OF UNSUCCESSFUL VIOLATION
ATTEMPTS THAT OFTEN
PRECEDE A SUCCESSFUL AT-
TEMPT. IF POSSIBLE, CHANGE
THE USUAL MPE CONSOLE
MESSAGES 50 THEY WILL BE
MORE VISIBLE.

LOGOFF SECURITY

Another threat to your system security
is, unfortunately, a rather common one. If
someone signs on to a terminal and then
walks away (for a lunch break, say), a
would-be thief can access your computer
without even having to log on ~- just walk
up to the terminal and use it.

You may think this to be a relatively rare
occurence, but consider: do your people al-
ways sign off when they go to lunch?
Haven’t there been times when they forgot
to sign off even when they leave for the
day? Leaving & terminal signed on is a
very common mistake, and one that can
greatly jeopardize the security of your
system.

How can you solve this problem? Well,
for one, you can tell your people -~
whenever they leave the terminal, they
should sign off. Alternatively, if you find
that people often leave the terminal when
it's in some particular state (say, the
main menu of your accounts payable
program), set a timeout just before issuing
the terminal read (with the FCONTROL
intrinsic, mode 4). That way, when the user
does not respond for a certain amount of
time, the read will abort, and your
program will be able to terminate and
maybe log off the user. An even better al-
ternative is to use a contributed or
vendor-supplied program that automati-
cally aborts all terminals that have
been inactive for more than a certain
amount of time (such as Boeing’s BOUNC-
ER or VESOFT's LOGOFF).

Another, more Yangerous, problem occurs
when a dial-in user hangs up the phone

46-4

instead of properly BYEing off. Then, if
the dial-in line is configured with subtype
0, the user will not be automatically :BYEd
off, and the next person to call up the
computer will be dropped into the still-
logged in session. Thus, remember to con-
figure all your dial-in lines with subtype 1
or tell your users in no uncertain terms that
they MUST always :BYE off when using the
dial-in line.

Thus,

* LEAVING A TERMINAL
LOGGED ON AND UNATTENDED
IS JUST AS MUCH A SECURITY
VIOLATION AS REVEALING THE
LOGON PASSWORD. USE SOME
KIND OF TIMEOUT FACILITY TO
ENSURE THAT TERMINALS
DON'T REMAIN INACTIVE FOR
LONG; SET UP ALL YOUR DIAL-
IN TERMINALS WITH SUBTYPE 1.

RESTRICTED VS,
USER INTERFACE

UNRESTRICTED

As was mentioned before, logon security is
a . very important component of your
security system, but it is by no means the
only one. Many security violations are
committed by people who are allowed to
sign on to the computer but manage to
get at things that they are not permitted
to access.

There are two major ways of forbidding
authorized users from doing unauthorized
things. One is by permitting them to do
only certain specific things (the inclusive
approach) and the other is by forbidding
them from doing specific things (the ex-
clusive approach). Each has its merits,-its
uses, and its security strategies.

THE INCLUSIVE APPROACH

Briefly, the inclusive approach is usually
implemented by having an OPTION
LOGON, NOBREAK (the NOBREAK is
important!) UDC that runs an application
program and then, upon exit from the
program, immediately BYEs. Thus, the
user is only allowed to perform the func-
tion or functions of this one program (or,
if the program so wishes, only a subset of
these functions), and he is forbidden from
doing anything else -~ accessing files, run-
ning programs, or executing MPE
commands.

This is, overall, a good approach. Its only
real problem is that in some instances, it
is too restrictive -- some wusers (especxally
programmers) need to have access to the

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

entire power of MPE. However, when the
user does not need to access MPE, 1t is not
only more secure but also more convenient
for the user to- be automatically dropped
into his program when he signs on and be
automatically signed off when he exits the
program. However, certain techmcal issues
must be kept in mind:

1. Don’t forget to make the UDC OP-
TION LOGON, NOBREAK. If you
omit the NOBREAK, the user can
hit break, type :ABORT, and get into
MFPE.

2. A less~known fact is that it is
usually essential that you add a
CONTINUE line before running
your program, thus making your
UDC look something like

LOGONUDC OPTION LOGON,
NOBREAK CONTINUE RUN AC-
CPAY.PUBAP BYE

Why? Because otherwise, if the
program aborts the entire UDC will
be flushed and the BYE will never
be encountered. Although it might
seem quite improbable that your
program will abort, the user can ac-
tually make most programs abort
by typing a :EOD (or sometimes just
a :) when prompted for input. This
causes an end of file on 3$STDIN
and makes many programs, including
almost all . BASIC, COBOL,
Ft?RTRAN and PASCAL programs,
abort.

Of course, this approach need not be
restricted to running simple applications

STREAM |FILENAME="$STDIN" ,
OPTION LIST

programs. One of the best uses of this ap-
proach is to run some program that dis-
plays a menu of allowed MPE com-
mands or constructs and asks the user to
choose one. Thus, if you want a vser to ac-
cess the A/P system, EDITOR, or the
TELLOP command, yocu might write a
program that displays these three options
to the user, asks the user for one, and
then executes it {via the COMMAND or
CREATE intrinsic). Even better, get a
general-purpose menu procesing program
that permits you to easily set up various
%tlznus by just changing some data files.
us,

* A USEFUL APPROACH TO
SECURING YOUR SYSTEM IS TO
SET UP A LOGON MENU WHICH
ALLOWS THE USER TO CHOOSE
ONE OF SEVERAL OPTIONS
RATHER THAN TO LET THE
USER ACCESS MPE AND ALL ITS
POWER DIRECTLY.

THE EXCLUSIVE APPROACH

Sometimes, programmers or other users that
have to use a wide range of programs, files,
and MPE commands must have access to
MPE itself. This is a far less controlled
environment than a program that is run at
log]cin time, but can still be secured very
well,

One approach to securing the system
while still allowing people to access MPE
is to disable certain MPE commands you
find undesirable. For instance, say you do
not want your people to :STREAM jobs.
You c¢ould set up a system or account UDC

1COLON="1"

COMMENT YOU ARE NOT ALLOWED TO :STREAM FILES.

That way, whenever someone {ypes a
STREAM command, he gets the UDC
instead.

This approach, however, has a major
flaw: Although the command interpreter
gives precedence to UDCs over ordinary
MPE commands (thus allowing you to
block out :STREAM commands by setting
up a STREAM UDC), the COMMAND in-
trinsic -does not. Thus, if the user is allowed
to access FCOPY, EDITOR, TDP, SPOOK,
or even a2 user-written program that calls

the COMMAND intrinsic, he will be

able to bypass the UDC restriction. In

46-35

other words, in the example above, all I
need do to bypass the :STREAM command
restriction is to run FCOPY, and type the
STREAM command from there!

The only exceptions to the above rule are
the commands that can not be directly ex-
ecuted via the COMMAND intrinsic, such
as :RUN, :PREP, the compiler commands,
SETCATALOG, and :SHOWCATALOG.
But even these commands (all except
SETCATALOG and :SHOWCATALOG)
are available through some programs, such
as TDP and SPOOK.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Thus,

* BLOCKING OUT MPE COM-
MANDS VIA UDC'S WITH THE
SAME NAME WILL USUALLY
FAIL UNLESS THE COMMAND IS
SETCATALOG OR SHOW-.
CATALOG ‘ORIF YOU ALSO-
FORBID ACCESS: TO MANY HP
SUBSYSTEMS AND HP-SUPPLIED
PROGRAMS., THIS = SEVERELY
LIMITS THE USEFULNESS OF THIS
METHOD.

Again, Id like to stress that the :SET—
CATALOG and :SHOWCATALGOG can be
blocked out this way, as can - (with more
difficulty) the :RUN command and some
other commands, however, the set of com~
mands still permitted will usually be so
small, thé method involved so complex, and
the chance of penetration so great, that all
advantages of the exclusive approach pale
In COMPATISOn.

By far the best way, in my opinion, of
implementing the exclusive approach is by
using the existing MPE file, database, and
program security features, which " is what
the next few sectlons will discuss.

FILE SECURITY

File security is quite possibly the most
sophisticated and the least used and under-
stood security system provided by MPE.
If properly handled, it can permit a user to
use all MPE commands and all of MPE’s
power without allowing him to go -beyond
the confines of his files.

Each file has a so-called "security matrix",
an array of information that describes what
classes of users can read, write, append, ex-
ecute, and/or lock a file. Smnlarly each
group has a security matrix describing the
security to be set for its files, and each ac-
count also has a security matrix. These
security matrices are the things that

LISTDIR2 shows youw when you -do a
LISTSEC (or L!STF LISTGROUP or
LISTACCT).

When a user tries to open 2 flle MPE
checks to.see if the user-is allowed to ac-
cess the file by the account security
matrix, by-the group security matrix, and
the file security matrix. If he is allowed by
all three; the file is opened; if at least one
security matrix forbids access by this user,

46-6

the open fails. For instance; if we try to
open TESTFILEJOHN.DEV when logged on
1o an account other than DEV and the
security matrix of the group JOHN.DEV
forbids access by users of other accounts,
the open will fail (even though both
TESTFILE's and DEV's security matrices
permit access by users of other accounts).

Each security matrix describes which of
the: following classes can READ, WRITE,
i]_:“-.XECUTE APPEND to and LOCK the
ile:

* CR - File'’s creator

* GU - Any user Iogged on to the same
group as the file is in

* GL - User logged on to the same
group as the file is in and having
Group Libririan (GL) capability

* AC - Any user logged on to the same
account as the file is in

* AL - User logged on to the same ac-
count as the file is in and having Ac-
count Librarian (AL) capability

* ANY - any user

* Any. combmatlon of the above (in-
cludmg none of the above)

By default whenever ‘any account 1S
creafed, access to-all its files is restricted to
AC (account users only), except for the S5YS
account, in which Read and Execute is al-
lowed for ANY and Write, Append, and
Lock for AC; whenever any group is
created, access to all its files is restricted ‘to
GU (group users only), except if the group
is PUB, in which case access is Read and
Execute for AC (all account users) and
Write, Append, and Lock for GU (group
users) and AL (account librarian), and
whenever any file is created, access to it is
allowed to everyone. Incxdentally a System
Manager can access {in any modeﬁ any file
in the system, and an Account Manager
any file in his account.

Thus let us say that you, who build "your
files in JOHN.DEV, wish other users to be
able to read your files. To do this, you have
to go to your account manager, get him to
allow . Read access to the group JOHN.DEV"
for ANY, and get him to ask the system
manager to.allow Read access to DEV for
ANY. This, needless to say, is rather com-
plicated, and in fact, most users go the
much easier route of Just :RELEASEing
thelr flles .

However, the problem ‘with RELEASEmg
a file is that when you do it, ANYBODY is

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984

Anaheim

allowed to do ANYTHING to -the file --
this means read it, write to it, even purge
it! And, smce domg this is so easy, many
files are “RELEASEd and -never re-
SECUREGJ, thus leaving them open for easy
tampering by anyone;-another contributing
factor to this is that ordinary .MPE :LISTF
does not show whether or not the’file has
been :RELEASEd, so. many péople. don't
even know which of the:r flles are
‘RELEASEd. ‘ oo

However, if getting the access restrictions
on your group and account loosened is so
difficult, but :RELEASEing the file makes
it wide-open for any: kind .of access,
what is- to be done? Unfortunately, the
solutlon is by O means easy. ’

The first step.is to.set up all your accounts
with all forms of access allowed to ANY; ie.
alter them with a command such as i

ALTACCT i
accountname; ACCESS—(R WA LX: ANY)

This still leaves a level of security (group
security) that will by default protect the
file (except for PUB groups, -which should
thus be built with Read and Execute ac-
cess for AC instead of ANY) while making
the security much easier to waive -- one
would need to lift ‘group security only in-
stead of group and account security. - ‘

Next, when bmldmg ezch group, conmder
closely the security that you would wish to
put on it. If, for instance, this group consists
mostly of files that should be readable by
anybody, build it with Read access allowed

to ANY. Files can then be protécted in—

dividually by :ALTSECing them to a more
restrictive security level,

Finally, if you :RELEASE a file so that
someone.can access it, be sure to SECURE
it immediately after the other person is
done (unless you don’t care about security
for that file). It's even better if you have
some global file manipulation utility

{such as VESOFT’s MPEX) with which_you

can :SECURE all the files in some flleset
that have been ‘RELEASEd.

important file

Thus, some éécurity
guidelines exist:
* REMEMBER THAT

:RELEASE'ING ‘A FILE LEAVES.IT
WIDE OPEN FOR ANY KIND OF
ACCESS; ‘RELEASE. ' FILES -
CAUTIOUSLY, AND -RE-SECURE
THEM AS SOON AS POSSIBLE. :

t TRY TO MAKE IT AS EASY AS -
POSSIBLE FOR - PEOPLE TO
ALLOW THEIR FILES TO BE

46-7.

ACCESSED BY OTHERS WITHOUT
HAVING TO :RELEASE THEM.
THUS, BUILD ALL ACCOUNTS
WITH (RWXAL:ANY) SO THAT
ALLOWING ACCESS TO A GROUP -
WILL BE EASIER. o

* IF A GROUP 1S MOSTLY COM-
POSED OF FILES THAT SHOULD
BE ACCESSIBLE BY ALL USERS
IN THE SYSTEM OR. BY ALL AC-
COUNT USERS, BUILD IT THAT
WAY. THIS WILL ALSO REDUCE
‘RELEASE'S. :

* THE :ALTSEC COMMAND‘ IS.
USEFUL FOR RESTRICTING AC-
CESS TO FILES IN A GROUP TO
WHICH ACCESS IS NORMALLY
LESS RESTRICTED.

One more aspect of file security that
bears mentioning is the file lockword. With
it, you could conceivably restrict 2ccess to a
file to only those users (or programs!) who
know .the file lockword, even if the - file’s
security matrix says that they have com-
plete access to the . file, However, the
problem with lockwords is the same as the
problem with passwords -~ they don’t
stay secret for long. In my opinion, other
security = approaches (better use ‘of the
security matrices,- user id checks " in
programs being protected, etc.) are superior.

* LOCKWORDS - ARENT ALL
THEY'RE CRACKED UP TO BE.
OTHER APPROACHES SHOULD BE
PREFERRED :

ASIDE -- ALLOWING PROGRAMS TO
READ :SECURE'D FILES

Say that you want your dccounts payable
program to ask the user for a password and
then check the. user’s input against a pass-
word stored in a file. Now, you naturally
can’t store the password in a :RELEASEd

file, for then the password would be
readable’ by anybody; however, -if it -is
stored in a :SECUREd file, then the

program won't be able to access it, either,
smce the program is run by ordmary users.

One solution is to RELEASE a flle but
put a lockword on it. Then, the program
could open the file spec:fymg a lockword,
but users will not be able to open a file be-
cause they won't know the lockword. This is
a relatively good solution; however, its
flaw . is that; like all passwords, the
lockword is likely to become known
sooner or later. Then, -the entire advantage
of storing the password in a_file, namely
that the password can be easnly changed

Prepared by the Southern California Regionol User's Group

Proceedings: HP3000 IUG 1984

Anaheim

will be nullified by the fact that the file'’s
lockword can not be easily changed.

A different approach uses an undocu-
mented feature of the FOPEN intrinsic.
If FOPEN is called in privileged mode, and
the 4 low-order bits of the "aoptions" pa-
rameter {third from the left) are set to 15,
the file is opened for read access IGNOR~
ING ALL SECURITY. This is not ‘a
security violation because it requires PM
capability (see the CAPABILITIES section);
however, since PM need only be granted
the program and the group and account in
which it resides (which could be PUBSYS),
the program will be able to access the file
regardless of who is’ running it, but most
users will not- (since the file can thus be
SECUREd).

CAPABILITIES
There are some MPE capabilities that
have a bearing on system security.

Of these, SM and AM are simple to
explain and relatively well understood --
they allow one to access (in any way) all
files in the system, and the account,
respectively.

Some others -- AL and GL ~-- allow one
to establish classes of users (Librarians) that
are allowed to access files that other users
may not because they can be explicitly al-
lowed access by the security matrices (see
FILE SECURITY).)

However, the security effects ot‘ two other
capabilities -- OP and PM -- are often not
properly appreciated, much to the detn-
ment of system security. :

OP CAPABILITY

OP capability, which stands for System Su-
pervisor (NOT Operator!)) has. one
capability that has a very large bearing
on system security: a wuser with OP
capability can :STORE and :RESTORE
any file on the system. This might not
mean much, but this really means that

A USER WITH OP CAPABILITY CAN
READ AND WRITE ANY FILE IN THE
SYSTEM

After all, to read it, all he has to do is to
‘STORE 1t and then FCOPY. the tape to
the line printer; and to write to jit, hé can
store it, move 1t to a system on which he
has write access to the file's group and ac-
count, modify it} store it again, and restore
it 'on the original system. Can you trust
your operators (who are wusually given this
capability) with this kind of power?

46-8

* YOU SHOULD ONLY GIVE OP
CAPABILITY TO USERS WHO YOU
TRUST .AS MUCH AS YOU
WOULD A SYSTEM MANAGER,
TO USERS WHO HAVE NO AC-
CESS TO MAGNETIC TAPES OR |
SERIAL DISCS, OR TO USERS
WHO HAVE A LOGON UDC THAT
DROPS THEM INTO A MENU
WHICH FOREBIDS THEM FROM
DOING STORE'S OR :RESTORE'S .

PM CAPABILITY

No capability has been feared, discussed, or
maligned. quite as much as PM capability.
In this paper, 1 will only discuss the the
securily ramifications of PM capability;
for a discussion of PM and system crashes,
sele) my paper "Privileged Mode: Use and
Abuse".

What does PM capability give you?
Quite simply, it allows you to obtain SM
capability as follows:

:DEBUG

IMDL-"DL-1"+2

DL-NNN L IS |
?E ‘

Once you do this, you are (at least partial-
ly) a system manager until you log off. You
¢an access any file and even execute system
manager commands like :ALTACCT and
'ALTGROUP to give yourself SM or any
other capability permanently.

Obvmuslf, PM capability is not somethmg'
you want to give to every Tom, Dick, and
Harry.

* YOU SHOULD ONLY GIVE PM
CAPABILITY TO USERS WHO YOU
TRUST AS MUCH AS YOU WOULD
A SYSTEM MANAGER.

However, there are other ways in which
users can get PM capability.

For one, for a program to have PM
capability fand thus use various privileged
operating system functions), the program
must reside in a group and account which
have PM capability. This is very good --
that way, programs like DBUTIL and
SPOOK, which use privileged mode, can be
run by plain vanilla users who do not
have to be given PM. However, this means
that if a privileged program does some-
thing to circumvent normal MPE security
(see the ASIDE ~- ALLOWING
PROGRAMS TO READ SECURED
FILES), it'll do it for anybody who runs

Prepared by 1he Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

it, unless it explicitly checks who is running
it.

More importantly, this means that a user
does not need to have PM capability to
write privileged programs -- only the
ability to build files in a privileged group
{te. S [Save] access to that group) or to
overwrite a program file in that group
with his own file {i.e. W [Write] access to
any program file in that group) and then
run them {ie. X access to the program file
being overwritten or any access if he has S
access to the group ~- then he can just
release the file).

For instance, say that 1 work out of
EUGENEDEV and the group PROG.DEV
has PM capability and Save access for all
account users. I can just write a program
that uses privileged mode to access a file
that I shouldn't be able to access or to
grant myself all the capabilities (like in
the :DEBUG example above), :PREP it
without CAP=PM (since :PREPping with
CAP=PM requires PM capability), then
change the program file to have PM
capability (a task that does not require
privileged mode), and copy it into
PROG.DEV. Although while the program
was in EUGENE.DEV, 1 couldn’t run it
(since it is required that the group in which
the program is have PM capability), once
it is in PROG.DEV, [could run it. If I
don’t have execute access to PROG.DEV, I
can :RELEASE the program before run-
ning it, since I'm the creator of the file.

Or, say that somebody RELEASEd any
program file in PUBSYS, thus giving me
write and execute access to-it. Then, I can
write a program that uses privileged mode
to bypass system security, :PREP it without
CAP=PM, change the program file to have
PM capability, and copy it on top of that
program file in PUB.SYS. Then, since
PUB.SYS has PM capability and I have ex-
ecute access to the file I just overwrote, I
can run the program.

Thus,

* JF ANY USER HAS SAVE AC-
CESS TO A GROUP WITH PM
CAPABILITY, OR WRITE AND
EXECUTE ACCESS TO ANY
PROGRAM FILE THAT RESIDES
IN A GROUP WITH PM
CAPABILITY, HE CAN WRITE
AND RUN PRIVILEGED CODE.

And, since ‘RELEASEing a2 file gives
everyone write and execute access to it,

* *NEVER* ‘RELEASE A
PROGRAM FILE THAT RESIDES

46-9

IN A GROUP WHICH HAS PM
CAPABILITY!

As if this wasn’t enough, there are some
other potential security violations that can
occur with privileged mode. Consider the
following circumstance:

Two HP 3000s, which we will call O-
machine (intended for OPEN access) and
S-machine (which the system management
wants SECURED) are linked via DS/3000.
A person has a userid and a group with PM
capability on O-machine and a plain
vanilla userid and group with only default
capabilities on S-machine. S-machine
management thinks that their machine is
secure, since only MANAGERSYS and
PUBSYS have PM capability on their
machine.

Now, there are several file system opera-
tions that bypass system security and thus
require privileged mode; for instance:

* FOPEN with the 4 low-order bits
of aoptions set to 15 (see ASIDE --
ALLOWING PROGRAMS TO
READ SECURED FILES), when
called from within privileged mode,
lets you read a file even when you
have no access to it.

* FOPEN with EXECUTE access (4
low-order bits of aoptions set to 6;
document in System Intrinsics
manual), when called from within
privileged mode, lets you read and
write a file if you have only execute
access to it.

* MUSTOPEN, a procedure identi-
cal to FOPEN in all respects except
that, when called in privileged
mode, it ignores a file’s lockword.

* FOPEN of a privileged file (a file
with a negative filecode, such as an
IMAGE database).

These are not inherently security violations
-- in fact, as the ASIDE -- ALLOWING
PROGRAMS TO READ SECURE'D FILES
section shows, they can be used to actual-
ly INCREASE vyour security. However,
they are not security violations only be-
cause they require PM capability to be
executed.

Now, consider our would-be security
violator. He has his eyes on the S-system
file FOO.JOBSYS, which he knows is a
job stream that contains an embedded
password (it could just as well contain any
other kind of sensitive data). He signs en to
O-system as a privileged user, and then to

Prepared by the Southarn California Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

the S-system via DS as a plain vanilla user.
Now, because, DS allows 2 prograim on one
system to open a file on another system (by
specifying the file’s device to be' the
dsline device followed by a "#", eg. "60#"),
our user writes a program on O-system
that opens file FOOJOBSYS in the “ignore
security mode” (aoptions 4 low-order bits .=
15) on S-system. Since the program is
running in privileged mode (remember, our
O-system user is privileged), the open suc-
ceeds, and the user can read the filel

Now note that the file system does not
check that the user on S-system must have
PM capability to wuse this security-
bypassing mode; the program need merely
be running in PM capability, regardless of
which system it is on!

This is one of the few genuine flaws in
MPE’s security system, and it’s nothing to
sneeze at. What it means is that

* JF TWO HP3000'S ARE CON-
NECTED VIA DS, AND A USER
HAS PM CAPABILITY ON ONE
AND AN ORDINARY LOGON ON
THE OTHER, HE CAN VIOLATE
THE OTHER'S SECURITY. ‘THUS,
IF ANY HP3000 IN A DS NET-
WORK IS BROKEN INTO OR LEFT
OPEN, ALL OTHERS ARE IN
GRAVE DANGER.

Thus, if you. want to keep one s&stem
secure, you must keep all systems hooked up
to it via DS secure as well.

One other issue, somewhat more arcane but
nonetheless relevant arises when usmg
privileged mode.

If a program which has PM capability calls
DEBUG when the user running it does not
have PM capability, even though the user
will be dropped into non-privileged
DEBUG, he can use it to break system
security.

Briefly, the user can modify some data in
the program’s stack or the program’s P
pointer (which' points to the current in-

struction being executed) to cause the

program to do something - other than what
is supposed to do when it performs its
privileged operations. One thing that ac-
tually happened to one of my programs is
that it called the WHO intrinsic, figured
out the logon user, account, and group, put
them into - global arrays, and then went
into privileged mode and got the logon
user, account, and group passwords and
wrote them to a‘stream file. This was per-

fectly kosher -- if a user managed-to sign

on, he already knows his logon passwords;

46-10

however, the program allowed the.user to
enter DEBUG even if he was
non-privileged. Although the program did
not call DEBUG when privileged, and the
user-was not put into privileged debug, the
user could modify the user, account, and
group id arrays in the stack to read, say,
"MANAGER", "SYS", and "PUB". Then,
the next stream the program built
would contain MANAGER.SYS’s passwords!

This is, as I said, a rather arcane and rela-
tively mfrequent problem; however, it is a
possible security flaw nonetheless and
should not be ignored. In fact, I'd like to
ask HP to correct their DBDRIVER
program, which is privileged and has a
/D" command which drops the user into
DEBUG whether or not he 1s privileged.

In the same vein, dynamically loading (via
the LOADPROC intrinsic) a procedure
from a user’s group or account SL and then
calling it should also ‘be forbidden to
privileged programs -- the called proce-
dure, even though it resides in a non-
privileged SL, can call GETPRIVMODE be-
cause the program calling it is privileged.
Again, rather arcane but still worth noting.

Thus,

* PRIVILEGED PROGRAMS
MUST NEVER CALL DEBUG- UN-
LESS THEIR USER IS PRIVILEGED,
AND MUST NEVER DYNAMI-
CALLY LOAD AND CALL
PROCEDURES FROM A USER'S
GROUP OR ACCOUNT SL UNLESS
THE USER 1S PRIVILEGED.

Now, I do -not intend to unfairly malign
PM capabﬂlty It has its uses, and in fact,
some programs must have it (such as the.
HP system utilities in PUBSYS or
many very useful contributed and
vendor-supported programs). However, and
I can not stress this enough, use of PM
must be watched very carefully if you
wish to keep your system secure.

IGNORANCE SECURITY

Many techniques of vwlatmg system
security described herein may appear
rather complicated and improbable; in fact,
they are. It is all too easy to say: "Well, my
users aren’t so smart ~- they’d never think
of pulling all those tricks". Unfortunately, it
is of such complacency that insecure sys-
tems are born. After all, if we could think
of these tricks, why can’t some smart guy
in your shop? 'What if he reads this paper?
What if one of his friends is a
sophisticated HP user? The assets of your

Prepared by the Southern California Regioenal User's Group

Proceedings: HP3000 IUG 1984

Anaheim

company are far too precious a thing to
entrust to the presumed ignorance of
your wusers; you - should rather improve
the security of your system, so that even 2
smart user will not be able to penetrate it
-~ and if your users aren’t that smart, all
the better.

DATABASE SECURITY

IMAGE/3000%s security system is
probably one of its most complex features
and also one of its least used. My first
impulse was to chastise the HP user com-
munity for not wusing this wonderful
security feature more, and to blame 99.44%
of all security violations on their failure to
do so, but then [realized that this is
not such a wonderful facility after all.

IMAGE/ 3000 security permits the database
creator to restrict access to each individual
data item and data set to only those users
who specify a certain password when
opening the database. Admittedly, this is a
very useful feature when you expect the
database to be accessed via QUERY --
then you can define exactly what a user
¢an do by what password you give him.
However, most databases are accessed by
application programs, . not through
QUERY, and most of the time it is the
program, not the user, that specifies the
password. So, unless you intend to reveal
certain database passwords to only cer-
tain programmers and thus protect your
database against your programmers, not
your users, you are probably fdar better
off implementing application security, i.e.
having your application figure out what a
certain user is authorized or not authorized
to do, rather than using IMAGE security.

* IMAGE/3000 DATABASE
SECURITY IS NOT PARTICULAR-

LY USEFUL EXCEPT FOR
PROTECTING DATABASES
AGAINST UNAUTHORIZED

QUERY ACCESS. IN FACT, SOME.
DEGREE - OF PROTECTION
AGAINST UNAUTHORIZED
QUERY ACCESS CAN BE GIVEN
BY USING DBUTIL'S "SET SUB-
SYSTEM" COMMAND TO DISAL-
LOW ANY QUERY ACCESS OR
QUERY MODIFICATION OF A
DATABASE.

DATA ENCRYPTION

If you want to secure your datz against un-
authorized .reading, you need not prevent
anybody from accessing it if, even if they
manage to access it, they won’t be able to
understand it. This 4s the principle of

46-11

encryption -- change the format of your
data so that nobody except for the
authorized people will be able to under-
stand it.

Usually, encryption algorithms involve the
use of so-~called "keys", Say that I want to
encrypt the phrase "NOW IS THE TIME
FOR ALL GOOD MEN TO COME TO
THE AID OF THEIR COUNTRY". I could
do this by choosing some number (say, 7)
and adding it to each letter of the sentence,
so that A would become H, B would be-
come I, C would become J, R (#18) would
become Z, S would become A, etc. Then,
the phrase would become "UVD PZ AOL
APTL MVY HSS NVVK TLU AV JVTL
AV AOL HPK VM AOLPY JBVUAYF", an
unreadable jumble of letters to anyone
who doesn’t know that to decrypt it, one
must subtract 7 from each character. Thus,
7 is the key and the encryption algo-
rithm is to add the key to each character.

Unfortunately, things are a bit more com-
plicated than that, primarily because with
some work, one can realize that the letters
A and 'V occur quite often, the combina-
tion. AO occurs frequently as well, and that
there are only so many possible two-letter
words (some of which must correspond to
PZ, AV, and VM) Thus, we could find
out what key letters correspond to, and thus
decode the entire sentence.

Fortunately, there are more sophisticated
encryption algorithms that are far harder
to decrypt. And, since the key need not be
stored on the computer, but only in the
user’s mind or some other safe place,
encrypted data can only be decrypted by an
authorized person.

Another, less general but nonetheless useful
technique for encrypting passwords is cal-
led “one-way encryption". Say that you
wish a user to enter a password into your
program when he is first set up, and then
have your program ask him for the pass-
word every time he subsequently logs on.
You do- not need to actually decrypt the
password ~— just encrypt it once at user
set-up time, store it in encrypted form, and
then, every time the user tries to log on,
ask him for a password, encrypt- his
answer, and compare it against the
encrypted real password. \

Thus, your encryption algorithm can map
the entire password into a single number
{by, say, adding the squares of all the let-
ters, each multiplied by the cube of its
position in the password string), thus
making it impossible to decrypt; and, the
encryption algorithm is much simpler than
two-way encryption algorithms that
need to have a corresponding decryption

®

Prepared by the Southern California Regional User’s Group

®

Proceedings: HP3000 IUG 1984 Anaheim

algorithm. Unfortunately, this technique is
limited to applications in which
decryption is never necessary, such as when
passwords are stored.

SECURITY

One-way encryption is easy to do; good
two-way encryption is harder ——- | know
of no HP programs that do it, but hope-
fully that will be remedied soon.

* IN GENERAL, ENCRYPTION IS
ANOTHER GOOD WAY OF
PROTECTING SENSITIVE DATA
FROM UNAUTHORIZED READING.

APPENDIX A: SUMMARY OF USEFUL HINTS

* THE USER 1S THE WEAKEST
LINK IN THE LOGON SECURITY
_ SYSTEM -- DISCOURAGE HIM
FROM REVEALING PASSWORDS
(by techniques such as personal
profile security or even by
reprimanding people who reveal
passwords -- they seem innocent,
but they can lose you millions).

* PASSWORDS EMBEDDED IN JOB
STREAMS ARE EASY TO SEE AND
VIRTUALLY IMPOSSIBLE TO
CHANGE -- AVQOID THEM.

* SOME FORMS OF ACCESS ARE
INHERENTLY SUSPECT (AND
THUS REQUIRE EXTRA PASS-
WORDS) OR ARE INHERENTLY
SECURITY VIOLATIONS. THUS,
ACCESS TO CERTAIN USER IDS
AT CERTAIN TIMES OF DAY, ON
CERTAIN DAYS OF WEEK,
AND/OR FROM CERTAIN TER-
MINALS (SUCH AS DIAL-IN CR DS
LINES) SHOULD BE SPECIALLY
RESTRICTED.

* MANY SECURITY VIOLATIONS
CAN BE AVERTED BY MONITOR -
ING THE WARNINGS OF UNSUC-
CESSFUL VICLATION ATTEMPTS
THAT OFTEN PRECEDE A SUC-
CESSFUL ATTEMPT. IF POSSIBLE,
CHANGE THE USUAL MPE CON-
SOLE MESSAGES SO THEY WILL BE
MORE VISIBLE.

* LEAVING A TERMINAL LOG-
GED ON AND UNATTENDED IS5
JUST AS MUCH A SECURITY

46-12

CONCLUSION

It 15 all too easy to get involved in the
implementation and perfection of an ap-
plication system, putting “little things" like
security on the back burner; unfortunate-
ly, this is precisely what accounts for the
alarming amount of computer crime that is
threatening wuws today. What is best is
that with application of some simple
guidelines and a little time and effort,
you could dramatically decrease your
chances of becoming a victim. No security
system will cut these chances to zero, but
if you have as much valuable data in your
machine as the average HP user has in
his, doing nothing can literally cost you
millions.

VIOLATION AS REVEALING THE
LOGON PASSWORD. USE SOME
KIND OF TIMEOUT FACILITY TO
ENSURE THAT TERMINALS DON'T
REMAIN - INACTIVE FOR LONG;
SET UP ALL YOUR DIAL-IN TER-
MINALS WITH SUBTYPE 1.

* A USEFUL AFPPROACH TO
SECURING YOQUR SYSTEM IS TO
SET UP A LOGON MENU WHICH
ALLOWS THE USER TO CHOOSE
ONE OF SEVERAL' OPTIONS
RATHER THAN TO LET THE USER
ACCESS MPE AND ALL ITS POWER
DIRECTLY.

* BLOCKING OUT MPE COM-
MANDS VIA UDCS WITH THE
SAME NAME WILL USUALLY
FAIL UNLESS THE COMMAND 13
SETCATALOG OR SHOW -
CATALOG OR IF YOU ALSO FOR-
BID ACCESS TO MANY HP SUB-
SYSTEMS AND HP-SUPPLIED
PROGRAMS. THIS SEVERELY
LIMITS THE USEFULNESS OF THIS
METHOD.

* REMEMBER THAT :RELEASE'ING

A FILE LEAVES IT WIDE OPEN
FOR ANY KIND OF ACCESS;
‘RELEASE FILES CAUTIOUSLY,
AND RE-SECURE THEM AS SOON
AS POSSIBLE.

* TRY TO MAKE IT AS EASY AS
POSSIBLE FOR PEQPLE TO ALLOW
THEIR FILES TO BE ACCESSED BY
OTHERS WITHOUT HAVING TO
:RELEASE THEM. THUS, BUILD

Prepared by the Southern Celifornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

ALL ACCOUNTS WITH
(R,W,X,A,L:ANY) SO THAT
ALLOWING ACCESS TO A GROUP
WILL BE EASIER.

* IJF A GROUP IS MOSTLY COM-
POSED OF FILES THAT SHOULD
BE ACCESSIBLE BY ALL USERS IN
THE SYSTEM OR BY ALL AC-
COUNT USERS, BUILD IT THAT
WAY. THIS WILL ALSO REDUCE
‘RELEASE’S.

APPENDIX A: SUMMARY OF USEFUL HINTS

* YOU SHOULD ONLY GIVE OP
CAPABILITY TO USERS WHO YOU
TRUST AS MUCH AS YOU WOQULD
A SYSTEM MANAGER, TO USERS
WHO HAVE NO ACCESS TO MAG-
NETIC TAPES OR SERIAL DISCS,
OR TC USERS WHO HAVE A
LOGON UDC THAT DROPS THEM
INTO A MENU WHICH FORBIDS
THEM FROM DOING :STORE'S OR
‘RESTORE’S

* YOU SHOULD ONLY GIVE PM
CAPABILITY TO USERS WHO YOU
TRUST AS MUCH AS YOU WOULD
A SYSTEM MANAGER.

* [F ANY USER HAS SAVE ACCESS
TO A GROUP WITH PM
CAPABILITY, OR WRITE AND
EXECUTE ACCESS TO ANY
PROGRAM FILE THAT RESIDES IN
A GROUP WITH PM CAPABILITY,
HE CAN WRITE AND RUN
PRIVILEGED CODE.

* *NEVER* :RELEASE A PROGRAM
FILE THAT RESIDES IN A GROUP
WHICH HAS PM CAPABILITY!

* IF TWO HP3000'S ARE CONNEC-
TED VIA DS, AND A USER HAS PM
CAPABILITY ON ONE AND AN
ORDINARY LOGON ON THE

BIOGRAPHY

* THE :ALTSEC COMMAND IS USE-

FUL FOR RESTRICTING ACCESS
TO FILES IN A GROUP TO WHICH
ACCESS IS NORMALLY LESS
RESTRICTED.

LOCKWORDS ARENT ALL
THEY'RE CRACKED UP TO BE.
OTHER APPROACHES SHOULD BE
PREFERRED.

OTHER, HE CAN VIOLATE THE
OTHER'S SECURITY. THUS, IF
ANY HP3000 IN A DS NETWORK
IS BROKEN INTO OR LEFT QPEN,
ALL OTHERS ARE IN GRAVE
DANGER.

* PRIVILEGED PROGRAMS MUST

NEVER CALL DEBUG UNLESS
THEIR USER 1S PRIVILEGED, AND
MUST NEVER DYNAMICALLY
LOAD AND CALL PROCEDURES
FROM A USER'S GROUP OR AC-
COUNT SL UNLESS THE USER IS
PRIVILEGED.

IMAGE/3000 DATABASE
SECURITY IS NOT PARTICULARLY
USEFUL EXCEPT FOR PROTECT-~
ING DATABASES AGAINST UN-
AUTHORIZED QUERY ACCESS. IN
FACT, SOME DEGREE OF PROTEC-
TION AGAINST UNAUTHORIZED
QUERY ACCESS CAN BE GIVEN
BY USING DBUTIL'S "SET SUBSYS-
TEM" COMMAND TO DISALLOW
ANY QUERY ACCESS OR QUERY
MODRIFICATION OF A DATABASE.

* IN GENERAL, ENCRYPTION IS

ANOTHER GOOD WAY OF
PROTECTING SENSITIVE DATA
FROM UNAUTHORIZED READING.

Eugene Volokh was born February 29, 1968 in Kiev, USSR, His family moved
to the US.A in 1975 In 1979 Eugene started his work with HP equipment.
Eugene is now a senior consultant at VESOFT, Inc, a company he cofounded
with his father, Vladimir Volokh, in 1980 (their products are MPEX /3000 and
SECURITY / 3000). This year Eugene graduated from UCLA with a B.S. degree in

computer science.

Prepared by the Southern California Regional User's Group

