Proceedings: HP3000 IUG 1984 Anaheim

PLAY IT AGAIN, KSAM

" GARY TODOROFF
DATAMASTER COMPUTER SERVICE

INTRODUCTION

Keys have long been a simple method of or-
ganizing and accessing data. For instance, a
hibrary’s card catalog gives multiple key access
by .author, title and subject; in the phone book,
the white pages are keyed -alphabtically by
name, and the yellow pages, by preduct or ser-
vice. Keyed Sequential Access Method (KSAM)
uses. the same simple approach based on the
concept of keys. Perhaps that’s - why KSAM
feels natuaral- and . familiar - to many
programmers.

KSAM HISTORY

A brief historical note will help to set the stage
as well as clear up some misconceptions. Per-
haps initially, in response to the marketirig op-
portunity and demand for compatability with
IBM’s System/3 minicomputer, KSAM was
rather hastily assembled to replace an even ear-
lier effort called RSAM: KSAM. was a bit
shakey at first. . : .

Problems were often encountered, such as end-
of -file pointers not agreeing between MPE and
KSAM. Guess-the-actual ~number~of -
~-records in the KSAM file became a not-so-
popular game played by many programmers.
Even more serious, KSAM files couid be left in
an ‘unpredictable state after- system failures,
with nobody the wiser. Folks accustomed to
the rock-solid dependability of ISAM (Indexed
Sequential Access -Method) on the IBM systems

of the: 1970° ¢ncountered some rude suprises .

with the early KSAM..:

However, except for one notorious "fix" to

KSAM (more: later), conditions have improved.

greatly. The' :original VIEW/3000 (now
VPLUS) used KSAM for-its form files, provid-
ing HP good incentive for a major overhaul of
KSAM back in MPE release 1918
KSAMUTIL, the HP utility used to build, study,
and fix KSAM files also received new features

Of course, real world situations do not always
lend themselves to simplicity, especially in data
processing. - Sometimes data structures and
their relationships are very complex. But if
certain: criteria are.met, KSAM is the logical
choice for a data processing application. In-
stead of adding to the complexity, KSAM may
simplify the approach with easy, direct
retrieval of information. I like to think that
KSAM stands for Keep Simple Access Methods.

‘to" help solve some of the old problems. Most
notable was the “crash flag" (which will let
KSAM automatically recover and correct a file
damaged by a system failure) File problems
are also quickly fixed with the KEYINFO
command in KSAMUTIL which will resolve
any key-file problems. File locking was
another early improvement to KSAM, enhan-
ced even more when dynamic locking became
available to RPG with the "LOCK" and "UN-
LOCK" operations in a more recent release.

- Overall, the improvements have been needed
and appreciated. But one “feature" which
overwrites KSAM records must be mercilessly
exposed! During all those past improvements,
KSAM was supposedly meodified to be more
consistent with IBM ISAM, specifically update
operations to a KSAM file when no record was
retrieved prior to a file update. For example,
.consider a batch file which is used to update a
KSAM master file. If the batch file is empty, a
record in the KSAM file may be overlayed
with blanks. Apparently, unless special precau-
tions are taken, the. KSAM file is rudely up-
dated while the logical file pointer is still relax-
ing at the first record awaiting where to go
next. With no input batch records and no place
better to go, WHAM, there go your empty
input batch record buffers, splattering

45-1

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

whatever used to be in the first record of the
KSAM file.

Especially with RPG programs, first records
can be overwritten. The condition has existed
for three years now, causing incredible
amounts of confusion, file repairs, reprogram-
ming, and possibly even causing undetected file
errors produced by programs which use to run
predictably and flawlessly. (Figure 1 shows a
sample RPG program in which the problem
could occur and the fix required). Known
Problem Reports (KPRs) have been submitted
to HP concerning the problem many times. So

KSAM
Disclaimers now aside, let’s proceed to the prac-
tical use of KSAM by outlining its strengths

for data base functions.

- Both keyed access and chronological

access may be used with KSAM files.

" While the key-file maintains the index,
records are added sequentially, resulting
in a sometimes useful chronological
record order. : : °

- KSAM files may be separated into file
extents, thereby not claiming dispropor-
tionate amounts of disc space when not
full of data. (IMAGE allocates all space
immediately and even backs up the
blank records to tape.)

far, the only acknowledgement is a warning on
compiler listings of programs which could en-
counter this situation. Until HP fixes this
problen, be forewarned!

(Late news from HP indicates that the above
problem may be solved by allowing "Update-
Protect-Checking" (UPC) in RPG version 5.08
to be relased with MPE V, S-MIT. UPC is en-
abled by placing a "U" in column 28 of the
.RPG Header specification. Using this new
feature, indicators would not need to be set on
in the calculations as shown in the RPG
program of Figure 1.)

STRENGTHS

- KSAM files may be filled right up to
End-of -File without sacrificing per-
formance, again resulting in more effe-
cient disc usage. .

- KSAM files do not require special -
utilities for loading and unloading data.
Simple FCOPY commands may be used
after a KSAM file is built. In fact,
FCOPY itself will build 2 KSAM file of
the same characteristics as the original-
KSAM file through a2 very simple use of
parenthesis in the FCOPY command.
For example:

FCOPY FROM=KSAMFILE;T0=(DATAFILE, KEYFILE)

FCOPY will create a new file called

"DATAFILE" which will be identical to-

and have the same key-file structure as
the original file, "KSAMFILE". :

- KSAM key fields may be updated
directly. .

- Deleted data is retreivable. Since only
the key is removed from the key-file,
the data file still contains the deleted
records which may be retreived later if
necessary. Again, using the FCOPY ex-
ample, deleted records may be recovered:
using:

FCOPY FROM=KSAMFILE;TO=NEWFILE ;NEW;NOKSAM

\column 2

The first two bytes of the deleted data record were overlayed when the record was deleted, but

otherwise the record is still intact.

- Keys may be defined as unique or with duplicate key values allowed. One recent feature to pos-
sibly increase performance with duplicates is the "RDUP" parameter of ‘the KSAMUTIL BUILD
command. RDUP allows for duplicate keys without maintaining the chronoligical order in
which duplicate key records were added to the key-file.

- Standard MPE file handling may be used in most cases with KSAM files. For example, file equa-
tions allow a KSAM file to be opened with mACC=0UT" thereby easily setting the file pointer to
the beginning of the file, deleting any previous data. Even the EDITOR may be used to mak

- occaisional or global changes to a KSAM file, for example: .

:EDITOR
JTEXT KSAMFILE,UNN

Prepared by the Southern California R_egiona! User's Group

Proceedings: HP3000 1UG 1984 Anaheim

JCHANGEQ “PARTND " TO “PART-NUM" IN ALL

/KEEP $NEWPASS K UNN
JEXIT

:FCOPY FROM=30LDPASS; TO=KSAMFILE

~ Perhaps one of KSAM’s biggest ad-
vantages is to allow a file to be
processed sequentially by key. Espe-
cially if listings by key are often
required either on paper or the ter-
minal, this provides a real advantage
over the multi-step process with IM-
AGE, which may involve extracting
data from a data set, sorting it and
finally listing it. Some wusers have
stored just key information in KSAM
files, with IMAGE used for storing the

actual data, providing an external
sequential by key access to IMAGE
data bases.

~ An easy method of jumping into a
KSAM file is allowed with partial key
or generic key access. From that point
in the file, records may then be
processed sequentially by key. Figure
2 provides a sample of how to do this
with RPG.

KSAM DISADVANTAGES

Before mentioning some special aspects of
KSAM, a few of the disadvantages should be
mentioned, too.

~ HP does not provide a QUERY-like
language for accessing KSAM files.

- Except for standard file lock words,
KSAM does not allow for file security
at the record and/or field level.

-~ Keys must be contiguous. Multiple
keys may overlap, but cannot start in
the same position.

- Without careful locking strategies,
concurrent record access may cause
problems.

KSAM UTILITY PROGRAMS

KSMQUERY from the Contributed Library
provides a "quick znd dirty" access to KSAM
files. Primarily intended as a file debugging
tool, KSMQUERY does open up files very sim-
ply for inspection and extracts records easily by

>FILE INVDICES

(specify file name)

- Interrelations in data sets are not au-
tomatically handled by KSAM , but
must be done within the application
software.

- KSAM opens an Extra Data Segment
for each file and user, which can in-
crease resource usage and require spe-
cial techniques for file sharing.

Of course, one usually finds a way around most
disadvantages, or at least some way to excuse
them. I won’t excuse any, but will mention
some of the software and techniques available
to overcome some of KSAM’s limitations.

key values of equal to, less than or greater
than. If for example, invoice number is a key,
and you want to see all records since invoice
lmlimbl.\:r 1000, the KSMQUERY syntax looks
1ke thas:

>RECS 50 (display up to 50 records)
>SEARCH GT (show records with keys greater than)
>=1000 (start search at key value, 1000)

KSMQUERY will then display records to ter-
minal or line printer.

KSMQUERY provides an additional capability
which is unique on the HP3000. By using the
"DUMP HEX" command, packed fields are very
easily read with the four bit "halves® of each

byte displayed in decimal form below each
character. Until I either lose two fingers or
gain six, octal and hexidecimal will never feel
comfortable, so it's a real pleasure with
KSMQUERY to read packed fields directly.
(See example in Figure 3) In fact, a couple of
times I've even used FCOPY to put a file subset

Prepared by the Southern California Regional User's Group

‘| Proceedings: HP3000 IUG 1984 Anaheim

into a quickly built KSAM file just to use the
HEX display feature, a very handy way to read
packed fields.

Another useful program from the Contributed
Library is KSAMRBLD. KSAM files can be

-modified by answering interactive prompts for '

blocking factor, file limit, and number of ex-
tents. It will even pick out an effecient block-
ing factor for you, then rebuild the file with
YOUr new sizes.

KSAM DEFAULT FEATURES

One of the advantages of KSAM is the way it
defaults to workable file structures if you don’t
provide the parameters. Obscure areas such as
key blocking factors will be taken care of au-
tomatically. In fact, the best approach is often
not to think too hard about all the various op~
tions. For example, the FIRSTREC option of
the KSAMUTIL BUILD command allows you
to override the normal first record equals zero

default. (To begin counting at "zero" rather
than "one" never ceases to amaze me; people
have counted starting with the number one
since recorded history. Then some computer
engineer decided to start counting with zero.
Future archeologists will no doubt puzzle over
this strange practice.) Nevertheless, use the
KSAM default of zero for consistency and

everything works fine.

MULTIPLE KEY USE

KSAM allows for an amazing sixteen possible
keys per record--most of my files don’t have
that many fields. I have always been curious to
try out so much horsepower, just to seé what
happens. Actudlly, two keys is the most Fve
ever used, which keeps me well within the
useal warnings to avoid using much more than
three keys per file. Of course, more keys could
be used, especially for files that are primarily
for inquiry, with updates being done only rare-
ly or where speed-and disc I/O are not impor-

tant, such as adding records in batch mode to

an archival file that is updated monthly. Add-
ing records with multiple keys can cause a
large amount of reshuffling the key-file, so
consider the avatlable resources carefully.

¢olumn
position.. 3 . 4

ALAAAAAPAINOAS

- 32

One of those occaisonal two-key files I have
used provides an interesting example of the
KSAM key features. A file of job records
needed to be accessed both by part-
number/job-number{a key made up of the two
fields) and by part-number only, but in date
order. The original sequential file was sorted
by date within part-number before copying it
into-a KSAM file. The job-number was not
used as a sort field, even though it will become
part of the KSAM key. But note that both
keys involved the part-number. Keys may
overlap but not start in the same position. To
solve that, a blank character was always placed
to the left of the part-number itself so that
one of the keys could start in that position.
The record layout was something like this:

8 ‘
/BLANK/PART-NO/JOB-NG/. . .data. .. /DATE/ - -

key #1 ~
AN,

AAAAAASAAA

key#2

The various steps to create this file are as follows:

:RUN SORT.PUB.SY3
INPUT JOBMPE
QUTPUT JOBSORT

KEY 3.4 (the part-no field)

KEY 32,6 (the date field in YYMMDD format)
END

:RUN KSAMUTIL.PUB.SYS

BUILD DJOB;REC=-80;16,F ASCII;DISC=150000,15:&
KEYFILE=KJOB;KEY=B,3,5, ,DUP;KEY=B,4,8, ,.DUP

EXIT
:FCOPY FROM=JOBSORT;T0=DJOB

45-4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Access by key #2 is rather straight-forward,
since records can be processed by part-number
and job-number keyed sequence. Key #1
provides a more interesting access. First, dupli-
cate keys are used. Since the DUP parameter
(as opposed to RDUP) was used in the

KSAMUTIL BUILD command, the chronologi- .

cal order of the key file was maintained as the
records were added to the KSAM file. There-
fore whenever records are accessed by key #1,
they are always in date order, (since the
original MPE file used date as a sort field) even
though the date field is not part of any key.
Also note that by starting key #1 with a blank
character one byte to the left of the part-
number, we overcame the limitation which
does not allow KSAM multiple keys to start in
the same position. Note too that key #1 starts

in postion three of the record, leaving the first
two bytes empty since KSAM uses that word as
the delete flag.

Still on the same file example, an interesting
mistake occurred when loading this file which
contained around 150,000 records. Due to a
typo, the sort was not done by the part-
number key field as planned. Thus the "sorted"
file was in random order from the standpoint
of the key. The file took over six hours to load.
After the problem was discovered, the file was
resorted correctly, and FCOPY accomplished
the load in about 50 minutes. (The computer
was 2 very lightly loaded Series 44) Draw your
own conclusions on how to order files before
batch adds or updates to KSAM files.

SETLL COMMAND FOR KSAM FILES IN RPG

One final example using the above file involves
a simple coding technique in RPG demonstrat-
ing how to sequentially process the file begin-
ning with a selected part-number. The RPG
calculation operation, SETLL (Set Lower Limit)

is used with the KSAM file defined as Input
Demand. Records are read and output for as
long as the part-number matches the one selec-
ted. (See Figure 2)

KSAM FILE SHARING AND LOCKING

Straying farther from the Keep Simple Access
Methods philosophy, let’s discuss file sharing
and locking. Again the examples will be given
in RPG. One of KSAM'’s disadvantages con-
cerns the use of Extra Data Segments {XDS} for
each file that is opened by each user. Since a
global control for data is not available, some
special techniques need to be used to insure
data integrity.

In a shared file environment, one file accessor
has a personal “snap-shot" of data and key-
structure stored in one XDS per user. The
danger is that a record may be retrieved and
changed while a second user has completed the
same, resulting in a modified key-structure
which no longer corresponds to the XDS in-
formation of our first user. When the first
user then updates the file, the wrong record
could be updated, since record pointers may no
longer be valid. (To explain fully would
require a lengthly discussion of the KSAM "B~
tree" used for indexing files. References are
given in the bibliography, since internal KSAM
structures are beyond the scope of this article.)

FILE STRUCTURE AND BLOCKING

Blocking factors for KSAM data files may be
approached in the same way as MPE files, that
is, try to use disc space effeciently by blocking
on sector boundaries. However, disc utilization
is not the only factor, especially if the KSAM

Locking not only needs to be employed, but
must also be done with the right technique to
insure that the current and accurate copy of
the key-file is in the XDS as the time the file
update is done. Primarily, this requires that
the file is read once to get a data record, then
read once more to re-position the file pointer
in case any changes were made to the key-file
by another user. By locking around both
operations, data will be updated properly.
Optionally, the file could simply be locked for
the entire inquiry and update operation. The
file would be unavailable to other users while
one user has a record displayed on the terminal.
This technique has drawbacks and could cause
definite problems amongst users unless, of
course, they all take their coffee breaks
together.

If extensive file sharing will be done with
K5AM, then please read HP’s Communicator
Number 21. Otherwise the simple solution is
to just avoid file situations that require KSAM
file locking and sharing.

file will most often be accessed randomly. A
large blocking factor for the sake of disc usage
could create a waste of memory by requiring a
large XDS to contain the data block. In a large
file, the chances are remote that the next

Prepored by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

randomly accessed record will be in the same
data block already in memory; large blocking
factores will not improve disc 1/O. Keep data
blocking factors small for files that are usually
accessed randomly.

If, however, the file will be processed sequen~-
tially most often, then consider the average
number of records that make up a "unit" of
data, for example the number of entries per
customer invoice. If that number is 15, then a
blocking factor of approximately that size
would be appropriate to avoid extra disc I/0 if
displaying an invoice for that customer. As
usual, the trade-offs are between disc and
memory usage, and should be judged by the
type of file being used.

Blocking factors also apply to KSAM key-~files.
Once again, 1 must defer to another article
which explains in detail how significant per-

formance improvements may be obtained
through the use of effecient blocking factors
for key-files. I strongly reccommend that you
obtain Jorge Guerrero’s article on KSAM
Design Guidelines. His paper provides one of
the clearest explanations available of the B-
tree structure, and explains how to use blocking
factors to keep B-tree levels to a minimum,
thereby decreasing disc 1/0 very significantly.
The tables included in Guerrero’s article go
way beyond anything provided in the KSAM
manual, yet are simple to use for optimizing
key-file blocking factors. If you are at all
concerned with KSAM file performance, those
key-blocking tables are a must. (See
Bibliography)

For further information, Appendix B of the
KSAM manuval is well worth reading. File
structures are covered in depth.

CONCLUSION

My favorite part in the KSAM manual is the
first sentence on page B-1, which provides a
good point for concluding:

"KSAM files can be used efficiently
without any knowledge of how the
files are structured or how file block -
ing and size is determined."

In other words, you don’t have to be an expert
to use KSAM on the HP3000. - The simple ap~
proach of using keys to retrieve data provides
information in a way as easy to understand as

45-6

the yellow pages. KSAM files are easy to
create and maintain. They are also relatively
effecient in their use of disc space. Various
utility routines let you manipulate KSAM files,
and the ease of defining and reading KSAM
files with RPG gives an especially high-level
approach to programming. If the best ap-
proach can be defined as the simplest approach,
then don’t allow things like data structures to
become complicated in the first place. For
keeping simple access methods, KSAM isa good
place to start.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

FIGURE 1. “Work arcund potential corruption of first record in
KSAM update file by conditioning the update with
an indicator set on in calculation specifications."

H .

H* A BATCH FILE UPDATES A KSAM FILE. BE SURE T0 SETON

H*x INDICATOR 90 IN CALCULATIONS TO PREVENT CORRUPTING THE
H¥ FIRST RECORD OF THE KSAM FILE IF THE BATCH FILE IS EMPTY

Hx
F* BATCH INPUT FILE
FBATCH 1P F B0 80 ‘ DISC

F¥ KSAM UPDATE-ADD FILE (COL-15="U" AND COL-66="A"}
FMASTER UC F 128 128R 6Al 3 DISC :

IBATCH NS 01

I 1 6 INKEY LI

I¥ | etc

IMASTER NS 02

I 3 8 KSKEY

IX, .. etc _

g: SETON INDICATOR FIRST TIME CALCULATIONS ARE DONE

C* NoQ SETON 20

¢ ‘ .

C: CHAIN TQ MASTER FILE TO BE UPDATED

C

cL) INKEY CHAINMASTER 66

Ck... etc

0% UPDATE MASTER FILE AT LEVEL BREAK L1 WHEN. INKEY CHANGES

CMASTER T Ne6 L1 S0

0% . output fields, etc¢
Note that the output is conditioned by KSAM file would be overlaid with blank field
indicator 90 which will only be on if buffers, since indicator 66 is not on and the
there were records in the BATCH file. If the L1 level indicator is set on along with the last
output was not conditioned by 90 and the record LR indicator.

BATCH file was empty, the first record in the

45-17

FPrepared by the Southern California Regional User's Group

Proceedings: HP3000 1IUG 1984 Anaheim

FIGURE 2. "The RPG Set Lower Limit (SETLL) calculation allows
a simple way to process a KSAM file sequentially
within a defined limit." . -

H
H* THIS PROGRAM READS A KSAM FILE SEQUENTIALLY WITHIN

n: LIMITS USING THE "SETLL" CALCULATION

F: KSAM INPUT-DEMAND FILE (CUL-15="Ih AND COL-16="D")

FJOBFILE ID F 80 80L 5AI 3 DISC

F* ~on ~ KEY STARTS COLUMN THREE
F* ~ ~ KEY IS FIVE BYTES LONG

F* ~ PROCESS BY LIMIT

F: OUTPUT FILE DEFINED ON LINE PRINTER
FOUTFILE 0 F 132 132 LP

IJOBFILE NS 01 o .

I 3 7 PARTH
1 3 5 PART3
I . etc S ‘ .

C* ACCESS TO KSAM IS “GENERIC" BY FIRST THREE BYTES
C* OF THE PART NUMBER. SET UP A PARTIAL KEY TO
C* USE AS KSAM FILE POINTER

C MOVE “123 " KEY05 5

C* KEY0S SETLLJOBFILE

C

g: DO READ LOOP UNTIL FIRST. THREE BYTES OF KEY DO NOT MATCH
C RLOOP TAG :

C READ JOBFILE 60 E-0-F
C N60 PART3 :COMP 123" : - 60 >

C N&60. . . EXCPT .

C Neo - GOTO RLOOP

Cx,.. etc :

0% QUTPUT IS TO PRINTER BASED ON "EXCPT" WHILE KEY IS
0: EQUAL TO "123" IN FIRST THREE POSITIONS.

0

OOUTFILE E NEo 01

0%, . .output fields, etc

45-8

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

FIGURE 3.

"KSMQUERY allows packed decimal fields to be read

easily by displaying each half of the byte in

decimal format."

Type the HEX command in KSMQUERY

before displaving a record. The

record will display on the ter-

minal 40 bytes at a time with
column indicators.

In the example below, "****" denotes a
birthdate field in bytes 35 to 38 of the

1...5 0....5....0...

1 ... 40 00001805SSMITH

.5

HENRY

record. The field is stored in packed
decimal format. By reading the bottom
two rows diaganolly, starting with the
lower zero, the date can be read as
"071256" The "g%l" on the first row is
"garbage" that comes from interpreting the
field as ASCIL

0....5....0....5
KM.q%lD

2333333335445422222222224445522244072642
0000018053D0948000000000085E29000BD015CF0

BIBLIOGRAPHY

HP COMMUNICATOR, NUMBER 21, MPE
1918, "TIPS ON INSURING KSAM FILE IN-
TEGRITY", P. 13

FOLKINS, DALE, HEWLETT PACKARD,
"KSAM - IT'S ALIVE AND WELL" CON-
FERENCE PROCEEDINGS, P. L-9

GUERRERO, JORGE, HEWLETT PACKARD,
"KSAM DESIGN GUIDELINES FOR OP-
TIMIZATION", UG COPENHAGEN
PROCEEDINGS, 1982

KAMINSKI, STEVE, "KSAM VS, IMAGE",
JOURNAL OF THE HP GENERAL SYSTEM
USERS GROUP, VOL 1 NO 6,
MARCH/APRIL 1978 PP. 16-18

As General Manager of Datamaster Computer Service, Gary Todoroff has been serv-
ing a diversified group of clients since 1975. Along with consulting in systems
management and programming, he also directs five other programmers in applications
on several HP 3000 computers and a few micro and IBM computers. Specialties in-
clude IBM to HP conversions, programmer productivity fools, and applicatons in
health-care, wholesale distribution, direct mail, and fund-raising. Most recently, he
has been especially involved with designing and marketing ORBIX Control Language,
an application supervisor system which also allows IBM System/ 34/ 36 software to
run directly on the HP 3000.

Based in Eureka, California between San Francisco and Portland, Gary is involved with
both the Bay Area (BAY RUG) and Northwest (NOW RUG) Regional User Groups. He
started HUMBUG, Humboldt County's own user group and is a supporter of RPGSIG,
which he hopes will encourage use of RPG and other high-level language use on the
HFP3000. Gary may be reached in Eureka at 707 /445-8425.

45-9

Prepared by the Southern California Regional User's Group

