Proceedings: HP3000 JUG 1984 Anaheim

Hub of Systems Development and Documentation

Stephen M. Butler
Weyerhaeuser Company

INTRODUCTION

Throughout the traditional application
development life cycle information about the
project is generated phase by phase in a series
of documents. Each phase has to adapt this in-
formation into its own format and documents.
In some cases, this is a complete rework of the
information and the way it is presented. The
best examples are the transition from
ANALYSIS to DESIGN and the documentation
from DEVELOPMENT to PRODUCTION.
Some claim that this last is neither valuable
nor useful in its current form!

Dictionary support for the various phases of
the application life cycle is not new. General-
1y, such support has been specific to each phase;
but, the interfaces still are paper documents.
Thus the dictionary support effort of earlier
phases are duplicated for each subsequent step.
Use of the dictionary for the interface will al-
low the subsequent phases to build upon the
earlier efforts rather than duplicate them.

This paper will first look at the types of dic-
tionary support used at each phase of the ap-
plication life cycle and what could be done to
use the dictionary for the interface between
these phases. Then the paper will focus on how
this - might be implimented using
DICTIONARY/3000. Following that will be a
recap of specific tools that will be needed.
Many of these do not exist today.

APPLICATION LIFE
DICTIONARY SUPPORT

" CYCLE--

This author has chosen to break the application
life cycle down into the following phases:

PLANNING
ANALYSIS

DESIGN

CODE
PRODUCTION
END-USER QUERY
MAINTENANCE
REPLACEMENT

This may not be the precise arrangement for
any given development; but, they provide a
common framework that the "reader can tailor
to his particular need. ANALYSIS

According to DeMarco, the most important
product of this phase is the specification docu~
ment. There are a number of ways to get there
two of which (Holland and DeMarco) will be
addressed here.

Holland’s top down approach focuses on the
processes occuring within the business. This
approach is primarily used by Weyerhaeuser to
define the logical business model. A given
business is divided into the main FUNCTIONs
needed to support that business. Each FUNC-
TION is divided into PROCESSes which are
further divided into ACTIVITYs. At this point,
the entity data requirements are defined for
each ACTIVITY.

DeMarco’s approach for "Structured Analysis
and System Specification" is primarily concern-
ed with DATA FLOWS and secondarily with
the PROCESSES that modify the data within
the DATA FLOW.

Both of these approaches are heavily graphics
oriented. They are also iterative. Thus, there is
a lot of maintenance to the graphic representa~
tion of the logical model being developed.

In the analysis stage the dictionary definitions
and known attributes of the items (FUNC-
TION, PROCESS, ACTIVITY, ENTITY DATA
FLOW, etc.) are continually being refined as
the analyst gains additional knowledge regard-
ing the project. Since the relationship of these
items to each other as shown in the graphic
representation is an attribute of the items, this
relationship should be maintained in the dic-
tionary. It then makes sense that the diction-
ary (or another tool making inquiry to the dic-
tionary) would draw the graphic
representation--be it the logical business

Prepared by the Southern Californie Regional User's Group

Proceedings: HP3000 UG 1984 Anaheim

model, the data flow diagram (DFD), or the
logical data structure diagram (DSD) or entity
relationship diagrams.

Dictionary use may be complicated during this
phase by the use of an analysis tool that sup-
ports one or more of the structured approaches
to system analysis. If that is the case, a facility
to transfer information bi- dlrectlonallx be-

tween the analysis tool and the dictionary is a

necessity.
DESIGN

This phase turns the logical model of the
analysis phase into a physical model. Thus the
DSD become databases and other files. The
DFD is turned into a FUNCTIONAL CHART
(STRUCTURE CHART, ORG CHART) which
is refined until the result is functionally valid
for the physical implementation -that is envi-

sioned. The STRUCTURED SPECIFICATION .

is not readily turned into a useful FUNC-
TIONAL CHART even when transaction .and
transform analysis are used. The output of the
analysis phase is logically oriented and many of
the physical aspects of the system are ignored.

Also ignored are the control paths, the excep- .
tion routines, etc., that the physical model must ‘

address.

The dictionary is updated with the additional
physical attributes of the system as they be-

come known. In addition, the normalized -

(hopefully) logical DSD is used to create the
physical DSD which is also maintained in the
dictionary. It would be advantageous if a tool

could be .used to make the . first cut at the

transformation from logical to physical data
structure.

The FUNCTIONAL CHART that is one of the
outputs of the design phase is a rather physical
representation of the final system of programs
and: procedures. Thus the actual names of the
routines, their relation to each other, and the
data elements used (files accessed) are known,

This information should be put into the DIC~

TIONARY in a form that makes updating fair-
ly easy. The charts could be one of the outputs

of the DICTIONARY or some other tool that -

would make inquiry to the DICTIONARY.
CODE

While changes continue to be made in the
design--and these should be updated in the
DICTIONARY version of the STRUCTURED
SPECIFICATIONS - and FUNCTIONAL
CHART--the major DICTIONARY support
requirements. for this phase include (but not
limited to): ‘
- Listing the detail . specifications for
procedures or modules the programmer is
coding.

- Code generation fdr the table handling
portions of the system.

- Code generation according to the detailed
design specs.

- Creation and maintenance of language
specific copylib or include files. It would
be better if the individual language com-
pilers would accept directives in the source
code from which the compiler would
determine what type of inquiry to make
into the DICTIONARY and which infor-
mation to copy from the DICTIONARY
into the source.

-~ Compile stream generator. Most, if not all,
of the information needed to compile a
program (or the entire system) is in the
DICTIONARY (or can be easily added).
This would negate the headache of main-
. taining a seperate set of job streams for
compilation.

- Continuing maintenance of the documenta-
tion regarding the logical and physical
aspects of the system.

PRODUCTION .

By this phase most of the DICTIONARY main-
tenance is done. There are several items that
are of use to this phase;

- Batch job stream documentation. Rather
than maintain an operator guide book that
documents each step of a batch job the
documentation should be in the dictionary
and made accessible to the operator.

- On-line help facility w:thuﬁ the DIC-
TIONARY (or documented where 1t is
maintained).

- User manuals maintained within the DIC- .
TIONARY (or documented where it is
maintained).

The argument is that all information regarding
the system should be documented in the DIC-
TIONARY. This may not be possible for all
types of information. -In that case, effort
should be made to document in the DICTION-
ARY where those additional items of informa-~
tion can be located. In addition, there should
be a minimum of redundant information both
within the DICTIONARY and between the
DICTIONARY and the additional items of
mformation.

MAINTENANCE

The DICTIONARY is now a repository .of in-
formation to help the maintenance crew do its
job. Inguiry can be made as to what ’things’
are affected if changes are made to a specific
thing". This phase becomes a mini-life cycle
for each change envisioned. The changes are
walked through the STRUCTURE.

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP 3000 IUG 1984

Anaheim

SPECIFICATION to get the impact on the
logical structure. Next the FUNCTIONAL
CHART is modified to locate the changes on
the physical structure. Finally, the related
documentation entries are updated to reflect
the change, and it is implemented using many
of the concepts noted above.

REPLACEMENT

The application life-cycle has now come full
circle. The DICTIONARY has one more major
function before the replacement system takes
over. It serves as the major source of informa-
tion to be downloaded to the analysis tools. Al-
50, many of the structures and other pieces of
information/documentation can be salvaged.
Like the phoenix rising from the ashes, the
DICTIONARY of the new system is an out-
growth and metamorphosis of its previous seif.
The following table documents the major items
that should be contained in the dictionary.

Planning

- Enterprise Model
* Function
* Process
* Activity
* Info. requirements
- Documents
- Entities ‘
- Subject databases
- Business data elements

Analysis

- Logical /Functional Spec.
* Data flows
* Data processes
* Logical files
(logical DSD)
- Logical data elements

Design

- Physical Spec.

- Transactions

- Modules

~ Physical file

~ Records

- Screens

- Reports

~ Physical data elements

Code

- Procedures

- Jobs

- Jobsteps

- Programs

- Processing data elements

Maintenance
- Additions, changes, and deletions

to above specs. and documents
- +/- data element changes

36-3

The data elements hold all these documents
together. They are the common thread pervad-
ing the entire life cycle. As such, it is essential
to document their evolution from the concep-
tual 'Business Data Elements' to the quantified
'Physical Data Elements’ and 'Processing Data
Elements’.

DICTIONARY /3000 IMPLEMENTATION

Understanding possible methods to impliment
the above ideas within DICTIONARY /3000
requires a careful investigation of what is
available within the DICTIONARY. The EN-
TITY USAGE CHART (Figure 1) shows the
conceptual arrangement of
DICTIONARY/3000. (For the internal ar-
rangement and physical layout see
DICTIONARY/3000 Internal Structure~-
Figure) 2; and DICTIONARY/3000 Schema--
List 1.

Just as DICTIONARY is the hub of the ap-
plication life-cycle, the ELEMENT entity is
the hub of the dictionary. The ELEMENT en-
tity is oriented toward the physical data ele-
ments. Every attribute of ELEMENT has an
HP defined usage--most of them tied rather
tightly with the RAPID products. The TYPE
attribute of ELEMENT can be left undefined
{which means the other physical attributes are
also undefined).

The FILE entity describes the different file
structures that are available on the HP 3000.
For some of these structures (such as IMAGE
database and VPLS form files) the internal
members are described as file types which indi-
cate which elements are used and in what or-
der they occur. Every attribute of the FILE
entity has an HP defined meaning.

The CLASS entity defines the security for the
ELEMENT and FILE entries. All security
structures of IMAGE are supported. If there is
no security defined at the FILE entry level for
a particular data set, then the security for that
data set is the resultant matrix of the securities
for the data elements contained in that data
set.

The TYPE attribute has no HP defined
meaning--rather, whatever is meaningful to
you. The field should be used to organize the
security classes according to some classification
of their usage. For example, the following
types would be for the indicated usage: PROG
- programatic access, the program is the end
user rather than using a password on behalf of
a user.

The concept is used by the RAPID com-
pilers and especially by INFORM. It
doesn’t matter what capability the user
has, the program itself needs this access in
arder to do its thing.

Prepared by the Souvhern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

MNGR -~ for the user who has ultimate
responsability for the entire
database. A program may even
have this hard coded but the end
result is that the program works
on behalf and at the behest of the
data base manager.

USER - level of access for some user. The
CLASS-NAME would further
define what user this password is
for. There may even be programs
set up for the user which have the
password hard coded in them.
MANT - maintenance level. For the per-
son or group that maintains a cer-
tain section of the data base.
Used for fixups, corrections, etc.
above and beyond the USER level.
Indeed, this may be the same as
MNGR for certain secnons of the
data base.

UTIL - a low level access for general pur-
pose utilities to do structure
checks, etc. These utilities would
never change the database and
would even have no predefined

XXXX - idea of the database structure.
send ideas to the author.

The GROUP entity (aka INFORM GROUPS)
defines the end user view for ad hoc reporting.
It has the extra capability to indicate what file
the associated elements reside in. It is only
when the entry is related to $MENU or one of
its children (grandchildren, etc.) that INFORM
will include it in a menu of groups. When not
in that structure, GROUP entries could be used
to document other types of end user views.
These would mainly be ordered lists of ele-
ments that reside on a report or other type of

document. Remember that screens are docu-
mented in the FILE entries. The TYPE at-
tribute is the only field for which HP has not
defined a meaning. As noted under the CLASS
discussion, the attribute could be used to indi-
cate that a document was being documented.
In addition, the TYPE could be used to classify
the INFORM GROUPS. That will be left as an
excercise for the reader.

LOCATION is little used (if used at all). Every
field has an HP defined meaning--though CPU
is not as HP oriented: as ACCOUNT and
GROUP. There is no TYPE field to help class-
ify the LOCATION. If there had been, it could
be used to indicate which LOCATION was
SOURCE, OBJECT, DATA, USL, etc. Such
cannot be done directly. A standard GROUP
naming convention will help. This will be ad~
dressed further under the PROCEDURE discus-
sion below.

There are two entities left (CATEGORY and
PROCEDURE) for which many of the
attributes have defined meanings. The usage of
these is not well defined and, in many cases,
not even attempted. It is in these that the
structures mentioned in the Application Life
Cycle section will be placed.

CATEGORY will document all the logical in-
formation. Things like the BUSINESS MODEL,
DATA FLOW, and LOGICAL DATA STRUC-
TURE are prime candidates. Each entry will
need a unique primary name that exists no
other place within the CATEGORY structure
of DICTIONARY. Thus a DATA FLOW mem-
ber cannot have the same name as that of a
BUSINESS MODEL member.

A more detailed look at CATEGORY shows
these attributes:

image CATEGORY - a twenty (20) character field that is the primary name of the member entry. For
the BUSINESS MODEL, the name is that of 2a FUNCTION, a PROCESS, an ACTIVITY, etc. This is up-
per case alpha-numenc

CATEGORY-PARENT - the name of a CATEGORY which will serve as a parent in the relationship
between two categories.

CATEGORY~CHILD - the name of a CATEGORY that is the child in the relationship between two
categories.

CATEGORY-NAME - a fifty (50) character long title for the CATEGORY. This is descriptive of the
CATEGORY entry without being part of the description. This is upper case alpha-numeric.

CATEGORY-RESP - a twenty (20) character alpha-numeric field that is the name of the person,
department, or other that is responsible for the information represented by the meta-data.

CATEGORY-TYPE - a four (4) character upper case alpha-numeric field used to indicate the clas-
sification of this CATEGORY.

NOTE: The DICTIONARY/3000 command to create a CATEGORY is CREATE CATEGORY. To

relate two categories together (as noted below) use RELATE CATEGORY. To associate an ELE-
MENT with a CATEGORY use ADD CATEGORY.

36-4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 UG 1984 Anaheim

A standard set of CATEGCORY-TYPE values are;

BUSINESS MODEL

BSPM -

FCNT -

ACTN -

INFO -

BUSINESS SYSTEM PLAN
MODEL. This is the highest level
of a BUSINESS MODEL. There is
one of these for each business
model in DICTIONARY. The
lower levels consist of functions,
processes, activities, etc.

FUNCTION within the BSP. This
is a child to a BSPM and parent to
ACTN.

ACTION within the FUNCTION.
As with the FUNCTION, the
CATEGORY named in this entry
is of this type.

INFO REQUIREMENTS. This
CATEGORY names an informa-
tion requirement of the action to
which this is a child.

The information requirements
may be associated with the entries
in the ELEMENT entity. This is
done by the ADD CATEGORY
command within
DICTIONARY/3000.

LOGICAL DATA MODEL

LDSD -

LDF -

LDEx -

LOGICAL DATA STRUCTURE
DIAGRAM. This is the highest
level for the LDSD. The rest of
the structure is made up of a
table of files containing elements.
This is the primary method of
showing relational (ie, 3rd/4th
Normal Form) data structures.

LOGICAL DATA FILE. These
are children of the corresponding
LDSD. They define the logical
data files within the data
structure.

LOGICAL DATA ELEMENT.
These are the children of the
LDF’s. The 'x’ defines the type of
logical element being defined.

P - This logical element is the
primary key. There is only one
primary key. It behaves the same
as any of the secondary keys but
has been chosen by the
analyst/designer to serve as the
primary way of accessing the data.

S - This logical element is a secon-
dary key. There may be more
than one secondary key; but, each
is capable of being the identifier as
is the primary key.

36-5

N - This logical element is not a key.

The data elements that make up each
LDEx are associated to the appropriate
category. This is the link back to the
central hub.

SUBJECT DATA BASE

SDB - SUBJECT DATA BASE. This is
the highest level for a given sub-
ject data base. It corresponds to
the BASE type in the FiLE entity.

SDF - SUBJECT DATA FILE. These are
the files within the subject data
base. They correspond to the
AUTO, MAST, or DETL type
entries in the FILE entity.

SDEx - SUBJECT DATA ELEMENT.
This is the low level. It is similar
to the low level of the LOGICAL
DATA MODEL in that the rules
for ’x’ above also apply here with
logical element changed to subject
element. The data elements
within ELEMENT that make up
each SDEx are associated via the
ADD CATEGORY command.

NOTE: At this peint the question is
raised--Why both a LOGICAL
DATA MODEL and SUBJECT
DATA BASE structures? The
former is a part of an APPLICA-
TION or BUSINESS SYSTEM; the
later is for the entire business.
Thus two more TYPES are:

APPL - This defines an APPLICATION.
It has one each of:

1. LOGICAL DATA MODEL
(LDSD).

2. DATA FLOW DIAGRAM (DFD)-
-yet to be defined.

3. FUNCTIONAL ORG CHART
(FOC)--yet to be defined.

4, other organization documents
defined by the user.

BUSS - This defines a BUSINESS. It has
one or motre of the following:

1. BUSINESS SYSTEM PLAN
MO)DEL (BSPM). (Usually only
one).

2. APPLICATION {(APPL).

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

3. SUBJECT DATA BASE (SDB).
4, others not yet defined.
DATA FLOW DIAGRAM

This requires two paraliel. decomposxtwns One
18 for the actual data flows and the other is for
the processes. The data flow will be docu-
mented in the CATEGORY entity. The process
will be documented in the PROCEDURE entity
{see below). The documentation for the process
will describe how to link these two organiza-
tions together.

DFD - DATA FLOW DIAGRAM. The
highest level for the data flow (or
BUBBLE CHART) documentation
within an APPLICATION (APPL).

DATA FLOW PIPE. The pipe
that runs between the processes.
This is a child of the DFD.

DATA FLOW FILE. A special
pipe that is a data store; or, as
Gane and Sarson state: "Data
flows are data structures in mo-

DFP -

DFF -

These attributes are available: -

tion; data stores are data struc-
tures at rest” This is a child of
the DFD or of a DFDB.

DATA FLOW DATA BASE. A
special data store (DFF) that con-
sists of many data stores. That is,
a DFDB can have DFF’s related to
it. This is a child of the DFD.

DATA- FLOW ELEMENT. A
decomposition of the DFP, DFF,
or DFDB. For DFF or DFDB one
may choose to use the ’x' extender
as 15 done for the LOGICAL
DATA MODEL.

The LOGICAL DATA MODEL is
the outgrowth of the DATA
FLOW structure. There will be
many similarities.

PROCEDURE documents the programs,
modules, and processes. The process half of the
DATA FLOW DIAGRAM goes here. Also in-
cluded are the FUNCTIONAL CHART as well
4as a description of the physmal system as
delivered to the user.

DFDB -

DFE -

NOTE:

PROCEDURE - a twenty (20) character upper case alpha-numeric field

that is the primary name of the entry,

PROCEDURE-PARENT ~ the name of a PROCEDURE which will serve as a
parent in the relationship between two procedures.

- PROCEDURE-CHILD - the name of a PROCEDURE that is the child in the

relationship between two procedures.

PROCEDURE-NAME - a fifty (50) character upper case alpha~numeric

long title for the PROCEDURE.

PROCEDURE-RESP - a twenty (20) character alpha-numeric field that
is the name of the person, department, or other that
1s responsible for the information represented by the

meta-data.

PROCEDURE-LANG - a ten (10) character upper case alpha-numeric
field that holds the language code that the procedure
is written in. These values need to be standardized

across the HP environment.

PROCEDURE-TYPE - a four (4) character upper case alpha-numeric
field used to indicate the classification of this

PROCEDURE.

A standard set of PROCEDURE-TYPE values
are:

business. There may be more that
one business documented in
DICTIONARY.

BUSS - This defines a BUSINESS. The -
PROCEDURE name maust match APPL - It has the same function for the
an identical CATEGORY name of PROCEDURE as in CATEGORY.
the satne type. It is used to hold There must be a common name of
those PROCEDURE entries this type in each. There may be
together that ©belong to the many of these for a given
36-6

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

business. Attached to this are the
process: half of the DFD,; the
FUNCTIONAL CHART, and the
SYSTEM CHART..

DATA FLOW DIAGRAM

DFD -

DFPL - .

DFIN -

DFOT -

DFIO -

DFEX -

DATA FLOW DIAGRAM. The
PROCEUDRE = name " for this
entry must have a. corresponding

entry for a CATEGORY of like

type.

DATA FLOW PROCESS LEVEL.
The PROCEDURE is the name of
a process bubble. The first level
DFPL are related to the DFD.

Lower level DFPL are related to -

higher level DFPL.

DATA FLOW INPUT. The PRO-

CEDURE name is a2 name of a
CATEGORY entry of type DFP,
DFDB, or DFF. This names the
data flow that is input to the
DFPL to which this .is. related.

The DFIN cannot - have .any -

children within the PROCEDURE
entries. This is because it is
defined within the CATEGORY
section of DICTIONARY /3000,

DATA FLOW OUTPUT. The
PROCEDURE name is a- name of
4 CATEGORY entry of type DFP,
DFDB or DFF. This names the
data flow that is cutput from the
DFPL to which it is related. Like

the DFIN, the DFOT cannot have -

any children.

DATA FLOW INPUT/OUTPUT.
The PROCEDURE name is the
name of a CATEGORY entry of
type DFP, DFDB or DFF. This
names the data flow that passes
both into and out of (named the
same) the DFPL. As with the
DFIN and DFOT, the DFIO can-
not have any children.

DATA FLOW EXTERNAL. This
PROCEDURE is either a source

or a sink or both. It is used in .

place of a DFPL when the
PROCESS is in reality a SINK or
SOURCE. This may have DFIN,
DFOT, or DFIO (not likely) as
children. They define the data
flows to and from the external

modify it until the results- are acceptable.
There may be more than one FUNCTIONAL
CHART for an APPLICATION.

FCHT - FUNCTIONAL CHART. The
PROCEDURE is the name of the
high level module (box) in the
FUNCTIONAL CHART.

FCMD - FUNCTIONAL CHART
: MODULE. The PROCEDURE is

the name of the module (any level

box) within the FUNCTIONAL

CHART. This is a child of the

FCHT or another FCMD.
FCDN - FUNCTIONAL. - CHART
DOWNFLOW. The

PROCUDURE is the name of the
data flow down to the FCMD of
which this is a child. (Compli-
cated sounding isn’t it! Relax, if
your FUNCTIONAL CHART -
doesn't show the data flow be-
tween module levels then don’t
use it} This FCDN is a child of
an FCMD. That FCMD receives
data down from its parent. This
FCDN is the name of that flow.
Associated to this FCDN are
ELEMENTS.

FCUP - FUNCTIONAL CHART UP-
FLOW. The PROCEDURE is the
name of the data flow up from
the FCMD of which this is a
child. That is, this FCUP is a child
of an FCMD. That FCMD sends
data back to its parent. This
FCUP is the name of that flow.
Associated to this FCUP are

- ELEMENTS (use the ADD PRO-
CEDURE command and give this
PROCEDURE - name when
prompted).

THE SYSTEM
Whaltever this is called, it is the finished

product of jobstreams, programs, subroutines,
etc. that is delivered to the user. ‘

S5YS - SYSTEM. This PROCEDURE is

. the name of the system. It is a
child of the BUSS procedure.

SUBS - SUB-SYSTEM. This PROCE-
DURE is the name of one of the
- sub-systems within the system. .

process (ie, SOURCE or SINK). FCTN - FUNCTION. This PROCEDURE"
- : is a function within the SUBS,

FUNCTIONAL CHART . ‘

: . ‘ JOBS - JOB - STREAM.. This PROCE-
The first level cut -of the FUNCTIONAL DURE is a job stream within the
CHART comes from transform and transaction FCTN.
analysis of the DFD. Thereafter, the designers

36-7

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

PROG -~ PROGRAM. This PROCEDURE is
a program within either the on-
line portion of the FCTN (ie,
FCTN procedure is the parent) or
within the job stream (JOBS pro-

cedure is the parent).

SUBP - SUBPROGRAM. This PROCE-
DURE is a sub~-program within a
PROG. This is written and is
compiled directly into the same
USL as is the PROG.

SLRT - SL ROUTINE (non-system SL).
This PROCEDURE is a sub-
program that is placed into the
account SL.

SLSY - SI. SYSTEM ROUTINE. This
PROCEDURE is a system level
routine.

FILE - FILE. This PROCEDURE is a file
{found in the FILE entity entries)
used by the PROG, SUBP, or
SLRT. The actual ELEMENT
entries used by the parent will be
associated with the appropriate
file. If there is no file, then the
elements will be associated with
the PROG, SURP, etc.

This last may seem like a duplication of what
the FILE entity entries show. To some extent
it is in that all entries here are in the FILE
entries also. The difference is that the proce-

dure does not use all the elements within a file.
This allows the DBA to document which ele-
ments from what files are actually used. These
are to be considered as the procedure’s
sub-schema.

DESCRIPTIONS

The DESCRIPTION entries for each entity,
relation, and association have different uses.

The description entry made during the
CREATE command of DICTDBEM describes the
entry in its general case. Documentation that
applies across the board to the entry is to be
entered here. This description is output during
the LIST, DISPLAY, and REPORT commands
of DICTDBM.

The description made during the RELATE
command describes the relation between the
two occurences of the entity. Anything
specific to the relation is to be documented at
that time.

The description made during the ADD com-
mand describes the association between the two
different entities. Document the specific in-
formation that relates to this association.

This may take some experimentation to under~
stand what is happening. Basically, each entry
¢an have three (3) descriptions. Some can have
more. For example, the FILE entity has the
following:

CREATE FILE - this description gives information about the file

in general. What its purpose is,

RELATE FILE - description gives information about the relation
between the two files, Any special considerations
when this data set is in this base (or this form
is in this view file) are documented at this point.

ADD FILE - describes the association between the element and
the file. Any special constraints for the element

when it is in the file.

ADD FILE-LOC -describes the association between the file and

the location.

ADD FILE-CLASS - and the documentation of the association of

this file with that class.
SUMMARY

The DICTIONARY must become the interface
between the many phases of the application
life cycle. With the information internally
maintained so that the graphic representation
can be produced the DBA is able to utilize tools
to insure a consistent description of the
developing system.

Likewise, the production support people have
at their fingertips the detailed information
regarding the system from initial conception
until final delivery. The run time manuals are
stored in the DICTIONARY to be retrieved on-
line as the need arises. The end user has access
to some help facility to gain the information
that normally would be hid on page x-y of the
user manual. Described above 1s 2 mechanism
to start down that road. With newer and
better tools available, the long victorian novels

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

that concern Tom De Marco will become a
thing of the past. The "STRUCTURED
ANALYSIS and SYSTEM SPECIFICATION"
(Tom De Marco) will become facility of the
DICTIONARY. When the programmer is
ready to code, all of the supporting informa-
tion, formats, files, etc. will be in the DIC-
TIONARY ready to be utilized.

BIBLIOGRAPHY

My many thanks to members of the Data Ad-~
ministration unit who gave their input. Espe~
cially to Larry Rolstad who must do the same
for the IBM dictionary.

Date, CJ. An Intorduction to Database Systems Vol 1, 3rd ed.

Addison-Wesley Publishing Co., 1981,

De Marco, Tom. Structured Analysis and System Specification

Yourdon, 1979.

Dow}ignsg,sJim. "RAPID is a Relative Term" MONTREAL PROCEEDINGS,

Larson, Orland. "Software Prototyping: Today's Approach to
Information Systems Design and Development”, MONTREAL

PROCEEDINGS, 1983.

Puckering, Gary,
PROCEEDINGS, 1983.

*¥xxk FIGURE SMBTXT-1 GOES ON THIS PAGE

*iokk FIGURE SMBTXT-2 GOES ON THIS PAGE

DICTIONARY/3000 Schema--List 1

$CONTROL BLOCKMAX=1024

BEGIN DATA BASE DICT;

"Data Dictionaries--A New Era”, MONTREAL

PASSWORDS:
} HPPRGUSE; <<HP programatic¢ use password»>
2 MANAGER; <<{MANAGER access--not realy total; but close>>
3 PROGRAMR; <<PROGRAMMER access»>
4 INFORM, <<INFORM group creator/maintainer>?»
S DOCUMENT:; <<DOCUMENTATION access for the documentarian>>
6 REPORT; <<REPORT access for those who want reports>>
<<about DICTIONARY c¢ontents. No relation »»
<<to usage of REPORT/3000. >
ITEMS:
CATEGORY, uz20 {6/1,2,3,4,5);
CATEGORY-CHILD, u20 {6/1,2,3,4,5);
CATEGORY -NAME , uso (6/1,2,3,4,5);
CATEGORY-PARENT, u20 {6/1,2,3,4,5);
CATEGORY-RESP, X20 (6/1,2,3,4,5);
CATEGORY-TYPE, U4 (6/1,2,3,4,5);
CLASS, Il {4,5,6/1,2,3);
CLASS-NAME uso {4.5,6/1,2,3);
CLASS-PASSWORD, X8 {3/1.,2):
CLASS-RESP, X20 (4,5,6/1,2,3);
CLASS-TYPE, u4 (4,5,6/1,2,3);
CONTROL-KEY, I (6/1,2,3.4,5);
CONTROL-OPTIONS, u3o (6/1,2,3,4,5);
DATE -CHANGE , ue (6/1,2,3.4.5);
DATE-CREATE, Ueé (6/1,2,3.4,5);
DESCRIPTION-KEY, 12 {6/1.2,3,4,5);
PDESCRIPTION-LINE, X50 {6/1,2,3,4,5);
ELEMENT, uz20 (6/1,2,3,4,5);
ELEMENT-ACCESS, uz {4.5,6/1,2,3);
ELEMENT-ALIAS, u20 {5.6/1,2.,3,4);
ELEMENT-ALIAS-C, Uso (6/1,2,3.4,5);
36-9

Prepared by the Southern Calijornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim
ELEMENT-ALIAS-P., u3o. - (6/1,2,3,4,5);
ELEMENT-CHILD, - - U20 {4,5,6/1,2,3);
ELEMENT-COUNT, - I - {4,5,6/1,2,3);
ELEMENT-DEC, I - (4,5,6/1,2,3);
ELEMENT-DISPLAY, I (5,6/1,2,3.4):
ELEMENT-EDIT, Xx30 {4.5,6/1,2.,3):
ELEMENT-ENTRY, X30 {4.5,6/1,2,3):
ELEMENT-HEADING, X30 (4,5,6/1,2,3);
ELEMENT-KEY, I2 (6/1,2,3,4.5);
ELEMENT -LENGTH, I (4,5,6/1,2,3);
ELEMENT -NAME , uso (4,5.6/1,2,3);
ELEMENT-PARENT, u20 (4,5,6/1,2,3);
ELEMENT-POSITION, Il (4,5.6/1,2,3);
ELEMENT-PRIMARY, I1 (4,5.6/1,2,3);
ELEMENT-RESP, X20 (4,5,6/1,2,3);
ELEMENT-SIZE, Il (4,5,6/1,2,3);
ELEMENT-TYPE, U2 (4,.5.6/1,2.3);
ELEMENT-UNITS, X10 (4,5,6/1,2,3);
FILE, U20 {(6/1.2.3.4,5);
FILE-ACCESS, u2 - (4,5:6/1,2,3);
FILE-ALIAS, us (6/1,2,3,4.5);
FILE-ALIAS-F, uie (4.5,6/1,2,3);
FILE-BLOCK, I (4.5.6/1,2,3);
FILE-CHILD, uz2o :(4,5,6/1,2,3);
FILE-KEY, 12 (6/1,2,3,4,5):
FILE-NAME, uso0 (4,5,6/1,2,3);
FILE-PARENT, u20 (4,5,6/1,2,3):
FILE-PARENT-KEY, I2 (5.6/1,2,3,4);
FILE-RESP, X20 (4.5.6/1,2,3),;
FILE-SIZE, 12 (6/1,2,3,4,5);
FILE-TYPE, U4 (4,.5.6/1,2,3);
GROUP, u20 (5.6/1,2,3.4);
GROUP-CHILD, u20 {5,6/1,2,3,4);
GROUP-NAME uso (5.6/1.,2,3,4);
GROUP-PARENT , V2o (5.6/1,2,3,4);
GROUP-RESP, X290 (5.6/1,2,3.4);
GROUP-TYPE, U4 (5.6/1,2,3.4);
IDENTITY-CHANGE , us {(6/1,2,3,4,5),
IDENTITY-CREATE, us (6/1,2,3,4,5);
LINK-VALUE, N {5.6/1,2,3.4);
LOCATION, u20 (6/1,2,3,4,5);
LOCATION-ACCOUNT, U8 (6/1,2,3,4,5);
LOCATION-CPU, us {(6/1,2,3,4,5);
LOCATION-GROUP, us (6/1,2,3,4,5);
LOCATION-NAME, uso {(6/1,2,3,4.5);
POSITION, K2 (6/1,2,3,4,5);
PROCEDURE , uzo (6/1,2,3,4,5);
PROCEDURE-ALIAS, ug (6/1,2,3,4,5);
PROCEDURE-CHILD, u20 (6/1.,2,3.4.5).
PROCEDURE-LANG, u1o (6/1,2,3,4,5);
PROCEDURE -NAME , us0 (6/1,2,3,4,5);
PROCEDURE-PARENT, U20 (6/1,2,3,4,5);
PROCEDURE-RESP, X20 (6/1,2,3,4,5);
PROCEDURE-TYPE, u4 (6/1,2,3,4.,5);
REPQORT, U6 (/1)
REPORT-LOC, u20 (/1)

REPORT -NAME , uso (71);

SETS:
NAME ; DATA-ELEMENT, MANUAL (4,.5.6/1,2,3);
ENTRY: ELEMENT (8),

ELEMENT-NAME ,

ELEMENT-TYPE,

ELEMENT-5IZE,

ELEMENT-DEC,

ELEMENT-LENGTH,

36-10

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984

ELEMENT-COUNT ,
ELEMENT-UNITS,
ELEMENT-RESP,
ELEMENT-HEADING,
ELEMENT-ENTRY,
ELEMENT-EDIT,
DATE-CREATE,
DATE -CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY;
CAPACITY: 303;

NAME: DATA-FILE,

ENTRY: FILE
FILE-NAME
FILE-TYPE,
FILE-RESP,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE
DESCRIPTION-KEY;

CAPACITY: 151;

NAME:. DATA-PROCEDURE,

ENTRY: PROCEDURE
PROCEDURE -LANG,
PROCEDURE -NAME ,
PROCEDURE-RESP,
PROCEDURE-TYPE,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE ,
DESCRIPTION-KEY;

CAPACITY: 11;

NAME: DATA-CATEGORY,

ENTRY: CATEGORY
CATEGORY-NAME ,
CATEGORY-TYPE,
CATEGORY-RESP,
DATE-CREATE,
DATE-CHANGE,
IDENTITY-CREATE,
IDENTITY-CHANGE ,
DESCRIPTION-KEY;

CAPACITY: 101;

NAME: DATA-GRGUP,

ENTRY: GROUP
GROUP-NAME ,
GROUP-TYPE,
GROUP-RESP,
DATE-CREATE,
DATE -CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY;

CAPACITY: 11,

NAME: DATA-CLASS,

ENTRY: CLASS
CLASS-NAME ,
CLASS-TYPE,
CLASS-PASSWORD,

Anaheim

MANUAL
(6),

MANUAL
(4),

MANUAL
(3).

MANUAL
(3).

MANUAL
(2),

(4,5.6/1,2,3);

{6/1.,2,3.4,5);

{6/1,2,3,4,5);

(5.6/1,2,3,4);

(3.4,5.6/1,2);

36-11

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

CLASS-RESP,
FILE-KEY,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE
DESCRIPTION-KEY;

CAPACITY: 67,
NAME: DATA-LOCATION, MANUAL {6/1,2,3,4,5);
ENTRY: LODCATION (2),

LOCATION-NAME ,
LOCATION-GROUP,
LOCATTON-ACCOUNT,
LOCATION-CPU,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY;
CAPACITY: 11;

NAME: DIC-CONTROL, MANUAL (6/1,2,3,4,5);
ENTRY: CONTROL-KEY (0),

DESCRIPTION-KEY,

FILE-KEY,

ELEMENT-KEY,
CONTROL-OPTIONS,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY -CHANGE ;

CAPACITY: 1;

NAME: LINK-FILE, AUTOMATIC (6/1.2,3,4,5);
ENTRY: FILE-KEY (1); .

CAPACITY: 101;

NAME: LINK-ELEMENT, AUTOMATIC (6/1,2,3.4,5);
ENTRY: ELEMENT-KEY (1),
CAPACITY: 79;

NAME: LINK-DESCRIPTION 6 AUTOMATIC (6/1,2,3,4,5);
ENTRY: DESCRIPTION-KEY (1};

CAPACITY: 611;

NAME: DATA-REPORTLOC, AUTOMATIC (/1);
ENTRY: REPORT-LOC {(1});

CAPACITY: 11,

NAME: ELEMENT-ELEMENT, DETAIL {4,5.6/1,2,3);
ENTRY: ELEMENT-PARENT (DATA-ELEMENT (POSITION),
ELEMENT-CHILD (!DATA-ELEMENT),
ELEMENT-PGSITION,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY,
POSITION:
CAPACITY: 11,

NAME: FILE-FILE, DETAIL (4.5,6/1,2,3);
ENTRY: FILE-PARENT { DATA-FILE {POSITION),
FILE-CHILD (IDATA-FILE).
FILE-ALIAS-F,
FILE-SIZE,
36-12

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Amnaheim

FILE-BLOCK,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE ,
DESCRIPTION-KEY,
POSITION;
CAPACITY: 150;

NAME :
ENTRY:

PROCEDURE-PROCED ,DETAIL
PROCEDURE-PARENT(DATA-PROCEDURE
PROCEDURE-CHILD (!DATA-PROCEDURE
DATE-CREATE,

DATE -CHANGE ,

IDENTITY-CREATE,
IDENTITY-CHANGE ,
DESCRIPTION-KEY,

POSITION;

CAPACITY: 11;

CATEGORY-CATEGOR ,DETATL
CATEGORY-PARENT (DATA-CATEGORY
CATEGORY-CHILD (!DATA-CATEGORY
DATE-CREATE,

DATE -CHANGE,

IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY,

POSITION;

CAPACITY: 150;

NAME: GROUP-GROUP,

ENTRY: GROUP-PARENT
GROUP-CHILD
DATE-CREATE,
PATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE
DESCRIPTION-KEY,
POSITION;

CAPACITY: 11,

FILE-ELEMENT,
FILE

ELEMENT
ELEMENT-ALIAS,
FILE-KEY,
ELEMENT-KEY,
ELEMENT-PRIMARY ,
DATE-CREATE,
DATE -CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY,
POSITION;
CAPACITY: 600,

FILE-PATH,
FILE
FILE-KEY
CAPACITY: 100;

NAME: FILE-SORT,

ENTRY: ELEMENT
ELEMENT-KEY

CAPACITY: 80;

NAME .
ENTRY:

DETAIL
{ DATA-GROUP
{ \DATA-GROUP

NAME -
ENTRY :

DETAIL
(DATA-FILE
{ IDATA-ELEMENT

NAME :
ENTRY .

DETAIL
{ IDATA-FILE
{ LINK-FILE

DETAIL
{ IDATA-ELEMENT
{ LINK-ELEMENT

(6/1,2,3,4,5),;

;POSITIDN

(6/1,2.3,4,5);

gPOSITIDN

{5.6/1.,2,3.4);

gPOSITIDN

(4.5.6/1,2,3);

;POSITION

{6/1,2,3.4.5);

):

{6/1,2,3.4,5);

).
),

36-13

).

)},

N,

.

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 IUG 1984

NAME :
ENTRY: PROCEDURE
ELEMENT
ELEMENT-ALIAS-P,
DATE-CREATE,
DATE -CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY,
POSITION;)
CAPACITY: 11;

NAME :
ENTRY:

\

CATEGORY
ELEMENT
ELEMENT-ALIAS-C,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY,
POSITION;,
CAPACITY: 200;

NAME: GROUP-ELEMENT,

ENTRY: GROUP
ELEMENT
ELEMENT-ALIAS,
FILE-KEY,
FILE-PARENT-KEY,
LINK-VALUE,
ELEMENT-DISPLAY,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY,
POSITION;

CAPACITY: 11,

NAME: CLASS-ELEMENT,

ENTRY: CLASS :
ELEMENT
ELEMENT-ACCESS,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE ,
DESCRIPTION-KEY,
POSITION;

CAPACITY: 800;

NAME: CLASS-FILE,

ENTRY: CLASS
FILE
FILE-ACCESS,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY,
POSITION;

CAPACITY: 11;

MAME :
ENTRY;

FILE-LOCATION,
LOCATION
FILE

PROCEDURE-ELEMEN, DETAIL

CATEGORY-ELEMENT ,DETAIL

Anaheim

{6/1,2,3,4,5);
(DATA-PROCEDURE (POSITION
{ IDATA-ELEMENT).

(6/1,2,3,4,5},
(DATA-CATEGORY (POSITION
(\DATA-ELEMENT),

DETAIL (5.6/1,2,3,4);
(DATA-GROUP {POSITION
(|DATA-ELEMENT).

DETAIL (4,5,6/1,2,3);
{ DATA-CLASS (POSITIO

N
(1DATA-ELEMENT), .

DETAIL (4,5,6/1,2,3);
(DATA-CLASS (POSITION
(1DATA-FILE),

DETAIL (6/1.2,3.4,5);
{ DATA-LOCATION

{ IDATA-FILE),

36-14

(POSITION

1.

h.

),

)},

)).

M,

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

FILE-ALIAS,
FILE-SIZE,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE ,
DESCRIPTION-KEY,

POSITION;

CAPACITY: 11;

NAME: PROCEDURE-LOCATI,DETAIL {(6/1,2,3,4,5);

ENTRY: LOCATION { DATA-LOCATION (POSITION M.
PROCEDURE { |DATA-PROCEDURE),

PROCEDURE-ALIAS,
DATE-CREATE,
DATE-CHANGE ,
IDENTITY-CREATE,
IDENTITY-CHANGE,
DESCRIPTION-KEY,

POSITION;

CAPACITY: 11;

NAME: DESCRIPTION-TEXT,DETAIL (6/1,2,3,4,5);

ENTRY: DESCRIPTION-KEY (!LINK-DESCRIPTION(POSITION 1),
DESCRIPTION-LINE,
POSITION;

CAPACITY: 1000;

NAME: REPORT-LIST, DETAIL (6/1,2.3,4.5);

ENTRY: REPORT-LOC (IDATA-REPORTLOC (REPORT N,
REPORT,
REPORT-NAME,

DATE-CREATE,
IDENTITY-CREATE;
CAPACITY: 11,

END.

Hub of Systems Development and Documentation

Stephen M. Butler Weyerhaeuser Company

BIOGRAPHY

Stephen M. Butler is the Sr. Techrical Specialist for the HP3000 within the I/S Data
Administration unit of Weyerhaeuser Company, His area of expertise for the com-
pany is with IMAGE and the RAPID products. He has been with Weyerhaeuser since
July, 1981

Steve has six {(6) years of hospital application development experience using both a
Honeywell 115 (1 yr) and the HP 3000 {5 yrs). He was the Director of Data Process-
ing during the last three (3) of those years.

In 1975, he obtained a BS degree in chemistry with very sirong minors in mathematics
and physics.

Steve is married and has three (3) children between the ages of two (last October) and
five {last March).

36-15

Prepared by the Southern California Regional User's Group

