Proceedings: HP3000 IUG 1984 Anaheim

198 4
HP3000IUG

ANAHEIM
CONFERENCE

PRESENTATION ABSTRACT

Title: Portable Development Between the HP 3000
and a Microcomputer Using Pascal.

Author: Kenneth C. Butler
Hanager, Technology
Imacs Systems Corporation

Abstract: Corportations, which are now facing the appearance
of wicrocomputers in their user community, are often discovering
that many requests for microcomputer applications require custom
programming. This usually means hiring contractors and accepting
systems written in languages specific to one microcomputer.
Supporting users with such systems becomes problematical when the
in-house data processing staff has no expertise in the language
chosen, and when data agminstration and auditing staffs attempt
to verify the proper use of corporate assets. With Pascal/3000
it is possible to develope portable applications between the HP
3000 ang microcomputers which use one of the common dialects of
Pascal. Using features of Pascal/3000 to construct a carefully
chosen subset of extenslons found In microcomputer Pascals,
programs can be written which compile on either the HP 3000 or
microcomputer with fev, i1f any, changes. It 1s also possible. 1in
some microcomputer Pascals, to construct intrinsics that mimic
many common MPE intrinsics. Finally, some microcomputers support
environments uncannily close to a *"single tasking HPE"
environment; ‘1.e. 64Kb separate code and data stacks: a
hierarchical file system whiuch can simulate"groups' and
"accounts®; and program and system code libraries.

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

19814
HP3000IUG

X
Portable Development Between

the HP 3000 and a Microcomputer

Using Pascal.

Kenneth C. Butler
Imacs Systems Corporation

1. Introduction

For many corporations the much heralded mic revolution s finally
amving. One way this happens i the gracual sition of personal desktop
computers by key departmental managers, who intended to use “primary” off the shelf
applications, like spread sheet and word processing programs. As these applications
prove successful, more microcomputers are purchaseq, are given to the professional
and secretarial level persons throughout a department, and more off the shelf
applications, like data base malaiprs,come into use. Somewhere auring this process
requests begin to surface for applications which demand just a littie bit more than the
off the shelf programs can provide. These requests may involve applications such as:

+ Extracting information from files and data bases from one computer (usually
the HP 3000 host) and transmitting It to another computer (usually the
microcomputer). Typically this Is first encountered with spread sheet users
needing current corporate data.

* Handling data in the unigue way a corporation goes business and which may not
be easy 10 implement using a standard package. For example, a simple gata
base of intemational sales orders might require extensive currency conversion
based upon the specific date of each transaction rather than the overall
balance of an account.

* Installing a complex, but small capacity, aata processing system for some
service department, An example of this might be an Inventory control system
for a stock room; this system might include vendor information for reordering
stock ang customer information for “billing” other corporate departments for
useage of the supplies.

It {s at this point that the corporate data processing staff bacomes involved, often for
the first time. Other than jgnoring the situation, which happens 1n a larger percentage
of the cases than you might supposs, the dp staff can use several approaches to
gealing with the situation:

* Let the users become programmers and develop thelr own applications.

* Hire contractors who are experts in the varlous microcomputer systems to do
the development.

34-2

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Both of these approaches usually mean accepting systems written in languages or
data management systems which are specific to one microcomputer or family of
microcomputers. It also usually means a system which has no commonality
with the HP environment that the corporation is using. Supporting users with such
systemns becomes problematical when the in—house data processing staff has no
expertise in the language or systems chosen, and when data stration ang
auditing staffs attempt to verify the proper use of corporate assets.

wnat is 1deally needed Is a way for the corporate dp staff 10 become directly involved, -
using tools that they have ready access to in the HP environment. Features needed in
these tools include:

* A common language should be found on both the HP and the microcomputers,
$0 that a primary or “kernel™ system can be cdeveioped on the HP ana then
transported to the microcomputers.

* A nhigh degree of portability should be supported so that the same application
can be developed for different target microcomputers.

¢ The tools on the microcomputers should allow extremely low-level access to
the basic file system of the microcomputer and to its hardware, so that
portions of an application which must be machine specific may be easily
devleilopgd, kept isolated, and have a standard “interface” with the kemel
application.

To meet these requirements we might try to use a highly flexible DBMS package, like
dgBase 11, or Condor, but the prablem here is nc HP 3000 support for these types of
microcomputer DBMS, Or we mignt try using COBOL, which exists in several
microcomputer implementations, but the problem here is the general lack of
low-level access, which becomes critical when we are dealing with screen handling
and data communications. We can rule out BASIC because of the highly specific
implementations found on each computer. In fact, the one common language which
seems to fit best is Pascal.

This paper will examine HP Pascal/3000 and several common microcomputer Pascal
dialects to lgentify areas of simllarities and differences. The microcomputer dlalects
tobe covered are: _

* Apple /// Pascal
* Pascal/MT+(CPM/80 version)
* I8 PC Pascal

The depth of coverage of the microcomputer dialects will vary, corresponding with my
famillarity with them, and the extent that [have actually used them. In the case of
Pascal/3000 and Apple /// Pascal, 1 have used both extensively and have “ported”

ams of varying complexity between these two versions. I am not quite as
familiar with Pascal/™MT+, having only occasionally worked with it. My knowledge of
IBM PC Pascal is currently quite Hgnt and mostly comes from examining its

mﬂo:}umntat!m but I have attempted to include it because of the wide interest in this
ect.

34-3

FPrepared by the Sowthern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

in these dialects, I will attempt to specify a few general rules for
mrmﬁ portabliity in the foliowing areas: :

* Data types and packing
* Procedures, functions, and statements

I will aiso examine the several specific topics which seem to be of concemn when
developing a portable application: :

. String handiing
*Flle access
* Screen handling

* Heap management

Then I will briefly look at constructing iniﬁnsics in tne varlous Pascals to improve the
fit of non-standard features. The issue of separate compilation will be addressed
here, .

Finally, I will look at the basic operating systems that these dialects use to 100k for
common environmental features with MPE.

2. An Overview of the Pascal Dialects

Pascal was tevised by Niklaus wirth in 1968, and was primarlly intended for two

: t0 teach fundamentals of programming as a systematic discipline, and to
implement programs in a reliable and efficlent way. However, the language as
originally defined (Jensen & wirth, 1974) lacked many features needed In a general
purpose systems and applications programming tool. These missing features were in
the following areas: interactive flle operations (l.e. to terminals and communications
lines); random access to disc flies; the handling of arrays which might vary in size
auring program execution; and the separate compilation of program segrents.

All of the Pascal dialects examined here have extended the language beyond the
original wirth definition to provide for these missing features. while there are at
least two major standards organizations (ANSI and ISO) drafting standards for Pascal,
and while many of the dialects to be examined are “based” upon one of the proposed
standards, all of the Pascal dlalects examined here reflect slightly different
approaches to the same extensions. In aodition, the UCSD Pascal system, which has
become a machine independent "standard” of its own, has set the standard for handling
strings which many other Pascals follow closely.

HP Pascal/3000
Developed and marketed by HP, this conforms o the proposed ANSI standard with

extensions. It is the most extended of the languages covered. Enormous sets, arrays,
the retumn of structured gata from functions, are all things to be wary of.

34-4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Strings and string intrinsics have been provided which provided relatively close
compatibllity with the UCSD string implementation. -

Low level support of the operating system is provides by MPE intrinsics In the
SYSTEM llbrary.

mwwmuaﬂonofoooels supported and modules may be bound to the program
the SEGMENTER, or may be placed In a library for resolution at run time.

Code and data stacks are separate, with 64Kb avallable in each. Various kings of
system overhead can shrink the data stack, as with other languages on the HP 3000.
Using MPE intrinsics, it is possible to allocate aoditional data segments and data may
be moved into and out of the data segments onto the normal data stack.

Apple ///Pascal

This version of Pascal, like the version found on the Apple // family and to some
Oumem the Lisa, is based upon UCSD Pascal version 2.0, and is marketed by Apple
r. _ _

Low level support of the operating system Is provided in two ways; through bult-in
UNIT I/0 procedures, and through an external library of SOS 1/0 intrinsics.

Separate compilation is fully supported by the UNIT concept, which Is sligntly
different than the method found In the other dialects. One major aifference is the way
data types and varlables may be declared In a UNIT and then referenced Dy the
gmmrogran'mgmtne%Taslfmynau;:eenaeclared%ll%anyintr(ﬁ%‘emgrm

1y led units may be bound in a separate linking step y are
“regular” units) or may be piaced in a library for resolution at execution time (If they
are “Intrinsic” units). Program segrments may be declared which overlay memory.

Code and data stacks are separately maintained. On an Apple ///, there is a full 64D
avallable In each. Certaln kinds of system overhead, such as flie blocks, shrink the
cata stack, but buffer space for screen text and graphics are maintalned separately
from the data stack. By using SOS memory management calls, it s possible to allocate
aoditional data segments and move data into and out of these segments onto the
normal data stack.

Pascal/MT+

Developed and marketed by Digital Research, this conforms to the proposed ISO
standard with some limitations and extenslons, '

This has word and byte extensions and also has many bit orlented features. Numerous
extensions are designed to increase cornpatibility with UCSD Pascal. These include
the implementation of STRINGs and string Intrinsics, which are 1dentical to UCSD,
the provision for BLOCK 1/0, and UCSD style HEAP management support, which
requires two short user written routines.

Low level support of the native operating system is provided through various system

library intrinsics. One feature unique to this dialect is the ability to code assembly
language directly in the source of the Pascal program by using the INLINE option.

34-5

Prepared by the Southern Californio Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

Separate compilation is extensively supported, but separate code segements must be
bound by a separate linker program; the concept of an intrinsic library resolved at
execution time is not supported. Separate code segments may overlay portions of
memory.

Code and data stacks are Not separated and Come out of the same address space (about
S6KD on a CPAM-80 system).

IBM Personal Comguter Pascal

Developed by ‘Micrsoft and marketed by IBM, this conforms to the proposed ISO
standard with some limitations and extensions.

This has extensions for word and byte ha'ﬂllrlgtnataredesig'eutowork'closetotne
machine”, Support for strings is the most different of the dialects examined. There
are actually two types of strings; STRING, which is not varlable in length, and
LSTRING, which is variable in length, String Intrinsic support is patterned after
UCSD, but Is not exactly equivalent as some intrinsics work only on LSTRING, and
sorme on a combination of STRING and LSTRING. ,
Low-level access to the operating system is provided by various llbrary moaules,
which require linking to the user program before execution.
Separate compllation Is also supported, but separate modules must be linked prior to
execution.

3. General Notes on Portability

In spite of the differences between the various Pascal dialects, 1t Is relatively easy to

se a portable subset. When specifying a portable subset, a good rule of thumb
might seem /7 /ts an extension, legve /¢ aul but we shall see that often the extensions
to Pascal are highly compatible and the greatest differences actually occur in the
fundamental implementations of the language itself. And where extensions are
necessary or desirable and do not seem particularly compatible, it is often possible to
develop modules in each of the dialects which perform very similarly.

Data Types

Tne “standard™ Pascal data types are BOOLEAN, CHAR, INTEGER, and REAL.
Extensions to simple data types found in microcomputer dialects include BYTE,
WORD and various ADDRESS types, and STRING. With the exception of STRING,
these extended data types should be avolded. In all of the dlalects consldered, the
CHAR data type Is functionally equivalent to BY TE when used with the ORD ana CHR
functions for perforrning arithmetic. ' ‘

Extended numeric data types also exist, such as LONGREAL, LONG INTEGER, and
BCD REAL, and often thelr use cannot be avoided, as when greater precision
arlthmetic is neeced for commerclal arithmetic.

Rules:

« Avoid use of the BYTE data type. Insteaq, use elther CHAR or a subrange of

34-6

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

0..255.

* Avold use of WORD or ADDRESS ¢ata types. These are not particularly useful
as numeric data types and are intended primarily for direct manipulation of
memary, a technique that will be expressly forbiaden!

¢ when using INTEGERS, create a 16~bit integer subrange in Pascal/3000 and
use this to maintain compatibility with microcomputer Pascals.

* when using REALS, use the 32-bit dgata type In Pascal/3000. An exception to
this might be when using 80-bit reals in Apple /// Pascal, or If 8087 support
(80-bit real) Is avallable on an MS-DOS machine. However, using extended
precision on microcomputers usually means doing all arithmetic with
procedure calls rather than with normal assignment statements,

* Limit ENNMERATED TYPES to 255 elements. This Is 10 conform w0 a
limitation on Pascal/MT-.

* Limit the range of SUBRANGE types to -32768..32767.

* Limit SETs to 255 elements. If you are working mostly with Apple Pascals,
then this may be increased to 512 elements, but MT+ only supports 255.

* Avold placing SETs as a component of an array of a record when using
Pascal/MT+, otherwise the data stack may be consumed by unused portions of
the record. Only HP and Apple Pascals allow packing to the minimum rurmber
of bits, but even here the structure will be “padoed™ to the next word level;

* Restrict all usage of “conformant” array types to modules which are intended
10 duplicate the functions of one Pascal in another dlalect. An exception 10
this is the STRING type.

¢ Limit the maxdmum size of STRINGS to 255 characters.

+ when commercial arithmetic requires more precision than INTEGER allows,
use:
LONGREAL tn Pascal/3000,
LONG INTEGER in Apple /// Pascal,
REAL BCD numbers in Pascal/MT+,

In IBM PC Pascal there s no support for signed numbers greater than 6 cigits.
However, an external module glving 8087 support may be avallable.

* Isolate all routines using high preclsion numeric types and be prepared to
totally rewrite for each dialect.

Packing

The original definition of Pascal Included the concept of "packing™ data Into a format
that required the smallest amount of actual machine storage that could represent an
1tem of data. An example can probably best {llustrate how this might be used.

34-7

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

For example:

0 t level:

var FOPTIONS : packed record
DOMAIN :0..3; 14:2}
ASCII_BINARY 0..1; 13:1}

DEFAULT_DESIGNATOR : 0..7; 10:3}
RECORD_FORMAT :0..3; 8:2}

COTL : 0..1; 7:1
TAPE_LABEL 1 0..1; 6:1
NO_FILE_EQUATE :0..1; { 5:1

reserved :0..63; 0:5

end; {16 bits total}

requires only 16 bits of storage! while a construct like the example given is mostly
useful for interfacing to a native operating system, no doubt other uses for this will
also seem desirable. Unfortunately this Is one area of greatest weakness in most
microcomputer Pascals. You may declare the above in HP or Apple Pascals and
produce the desired effect, but not in IBM PC or MT+ Pascals. However, IBMPC and
MT+ partially make up for this by supporting bit level manipulation elther directly, in
the case of MT+ with its bit-oriented intrinsics, or indirectly through SETS (1.e., var
BITS : set of 0..15). In addition, MT+ ana IBM PC Pascals will automatically allocate
storage for CHAR arrays and Integer subranges to the minimum number of bytes
required, rather than to the nearest word. .

All Pascals allow you to aec/are PACKED variables. However only HP and Apple
Pascals actually perform packing.

Rules:

* Avolddefined records designed to pack components into a single word or byte,

* If you must use such structures, try to Isolate thelr usage into a few easlly
modifiable procedures. _

* Do declared structures and arrays as PACKED; even when one version of
Pascal may treat the declaration as a comment, other versions, which support
packing, may require the declaration to perform properly.

Procedures and Functions

Most Pascals place littie restriction on the size of a procegure or function, but Apple
Pascal limits the maximum size of a procedure to about 1200 16-bit words of p-code.
In practice this may be several pages: of source code, so this is not as great a
restriction as it may seem. There are aiso limitations on the number of procedures
and functions that may be declared in a single compiled mogule; this number may vary
from 127 to 255 gepending upon the release number of the Pascal.

One of the more interesting feawurss of Pascal/3000 is the abllity to returmn a

structured data type, 1ike an array or a record, from a function. Unfortunately, none of
the microcotnputer Pascals examined here support this, and this feature should never

34-8

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

be used!
Rules:

* Keep PROCEDURES and FUNCTIONS reasonably smatl; a limit of two to three
pages of source code shouid keep you within most limits. -

* Keep the number of PROCEDURES and FUNCTIONs within each separate
compllation unit to less than 128,

* Wwhen using Pascal/3000, do not declare functions which return structured data
types.

Statements

It Is possibie, in all of the Pascal dlalects discussed here, to obtain the actual memory
location of declared variables. In some Pascals it is also possible to perform
arithmetic directly on pointer types. Using such techniques should be hignly
Testricted, at best, If not totally forbiaden.

various extensions are available in some Pascals for use with boolean expressions.
For example, in many Pascals all parts of a boolean expression are evaluated, even
after the “"outcome” has been presumably getermined.

For example:

function INCR (A, B: integer) : integer;
begin
INCR :=A +B;
end;

1f (AMDUNT > 1000) and (INCR(AHOUNT, 100 - »54300)

will &waysperform the call to “INCR" Some programs, use this “side effect” to
atvantage, but extended boolean operators like “&" for "AND" and “{" for "OR" may
terminate the evaluation of an expression before the side effect is Invoked: this effect
is similar to Invoking the "PARTIAL_EVAL" compller option in Pascal/3000. These
operators should be avolded. -

NOTE: when using 1BM PC Pascal /o assumptions should be maae as to whether all
parts of 8 boolean expression are evaliated sormetimes all parts of an expression may
be evaluated or sometimes the optimization process may cause evaluation of an
operand to be skipped. For this reason, if IBM PC Pascal is to be one of the targetted
versions ?f an application, you should definitely avold creating expressions designed
touse a sloe effect.

Some Pascals (such as IBM PC Pascal) support the CYCLE ang BREAK statements,
which were "imported” from the C language, and provide extended control of FOR and
WHILE loops. These should be avolded, In Pascals which do not have these
statements, CYCLE and BREAK may be converted as follows:

34-9

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 JUG 1984 Anaheim

Example:
Simulating BREAK and CYCLE with GOTO:

FORI :=1TONDOD

BEGIN

IF MONTH[I].AMOUNT = O

EHgN {CYCLE} GOTO 1 {the next iteration of the loop}

LSE

BEGIN
TOTAL := TOTAL +» HONTH[I].AHOUNT;
IF TOTAL >= LINIT
THEN {BREAK) GOTO 2; {the next statement}

END;
1: END; {THE NEXT ITERATION OF THE LOOP}
2: ... {THE NEXT STATEHENT}

In the FOR statement, limjtations should be placed on the control-variable, even if a
particular Pascal dlalect does not require it. The control-variable:

* should be an ordinal type.
* shouldnot be a component of a structure,

. ;srmld be locally declared at the same level as the FOR statement which uses
t

* should not be a reference parameter to a procegure or function.

Note that while Apple /// and IBM PC Pascals are relaxed about this, Pascal/3000 and
Pascal/MT+ are not.

In the CASE statement, limitations should be piaced on the case selector variable, and
the case constants:

* thecase selector should be an ordinal type (CHAR 1s also acceptable)

* the case selector should not be a component of a packed structure (an element
from a PACKED ARRAY OF CHAR is usually safe).

* case constants should not be specified as a subrange, L.e, “A'."Z".

* the range expressed by the smallest to the largest case constant should not be
excessive, as many Pascals bulld a “jump table” of case constants as part of the
object code.

Rules:

* Do not use polnter arlthmetic and tricky pointer types designed to allow direct
manipulation of memory.

¢ Avold extensions Lo boolean operators.

34-10

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

» Avold reliance upon “side-effects” from the evaluation of boclean
expressions. '

* Avoldstatements "imported” from another language, like BREAK ana CYCLE.
* whenusing the FOR statement, limit the scope of the control variable.

* when using the CASE statement, limit the complexity of the selector varlable
and limit the range implied by the case constants.

* Wwhen using the OTIHERWISE part of a CASE statemnent, some Pascals may use
mRWISE'or'ELSE“,MafewPascals,masApple // Pascal have no
ent.

4. A Fev Areas of Specific Concern

In practice, 1 have found the following areas to be the most difficult when
P for portabllity. This Is because, unlike the general Implementation
guidelines which can be governed by limiting or omitting specific features, the
following areas usually can not be simply omitted and specific changes must be made
when moving from one Pascal to another. In some cases, the best solution will be to
aevelop custom library routines for each dialect.

String Handling

strings are, In effect, variable length packed arrays of CHAR. This data type Is most
useful for handling terminal inputs and outputs, but is virtually required when gealing
with TEXT files, where the length of an input or output 1ine will vary in length, In
practice, you will find that extensions for STRINGs are the most compatible
extensions among the varjous Pascals.

Because HP Pascal/3000 allows the retum from a function to be a structured data
type, like STRING, it is easler to prepare routines in Pascal/3000 to perform the same
string functions as in microcomputer Pascals.

Converting numerical data to string (or character) format is highly non-standard,
usually involving "writing” a varlable into a string. No Pascal contalns egiting
features similar to the PICTURE clause of COBOL. One of the first custom modules

trwu?tsmulu probably be written for each Pascal dialect is an "EDIT” package to handle
S,

Rules:
» Attempt to conform to the basic UCSD string intrinsics. In Pascal/3000 it will
be easiest to prepare a module that Is syntactically the same as these
intrinsics. Note that HP string functions are a superset of all the others.

* In IBM PC Pascal, be aware that there are Zwo types of strings, a distinction
that does not exist in the others.

* Develop a module with a standard interface 1o handle “editing” of numerical
data Into strings, and write a version for each Pascal dialect.

34-11

Prepared by the Southern Cah‘}ornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Micro-equivalents to HP Pescal/3000 string intrinsics:
setstrlen -nomicrocomputer equivalent
str - will become COPY

strappend -similar to CONCAT
strdelete -willbecomeDELETE
strinsert -wilibecome INSERT

strlen = will become LENGTH
stritrim -nomicrocomputer equivalent
strmax - -simllarto SIZEOF
~strmove -similar to COPY used within INSERT
strpos - will become POS
strread -nomi equivalent
strrpt - N0 exact valent; FILLCHAR might be used

strririm -nomicrocomputer equivalent
strurite -noexactequivalent;STR might be used

Flle Access

Pascal/3000 provides for the most varled (and sometimes most useful) extensions to
file access over the orignal wirth definition. In most cases there are equivalent ways
of doing the same in microcomputer Pascals, but occasionally there will be a
feature that will be difficult to duplicate, or should be avolded altogether.

Opening files:

All of the Pascals allow actual flle designators (1.e., flie names) to be associated witha
formal Pascal flle designator, usually as part of an “open” procedure; i.e. RESET,
REWRITE, and (sometimes) OPEN. Normally the “open” procedure which is usedona
flie will indicate the type of access desired for that file;1.e, read, write, or read-wrlte
(wnich Is usually equivalent to “direct” or random access). In Pascal/3000 this Is
gefinitely the case, but in microcomputer Pascals, this is not exactly an accurate way
of looking at things; rather, the type of open procedure really determines whether a
file already exists (RESET) or if the file is new (REWRITE). This last point will be
elaborated In the section under "Temporary flles”,

Examples:
‘Openinga flle for direct access:

open (HYFILE, "data.ptest.dev”); {Pascal/3000}
reset (MYFILE, “dev/ptest/data”); {Apple /// Pascal}
assign (MYFILE, "B:data"); {Pascal/NT+}
reset (HYFILE). ‘

Direct access:

The direct access to files Is an extension that is nearly the same in all of the Pascals
examined. Access Is always by record number, and record numbers always start with
zero. The only real concem here is that Pascal/3000 has extenced the READ and
WRITE procedure to-permit them to be used with any type of file, including direct

34-12

Prepared by 1the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

access. Nommally READ and WRITE can only be used on TEXT flles,and GET and PUT
must be used on all other file types. when using Pascal/3000 you should avoid the
extended usage of READ and WRITE.,

Examples:
Locating and reading a direct access flle:

seek (MYFILE, RECNOD); {Pascals3000}
get (MYFILE).; ' :

seek (MYFILE, RECNO); - {Apple /// Pascal}
get (MYFILE); '

seekread (HYFILE, RECNO); {Pascal/uT+}

Appendingtoa flle:

One would imagine that appending to an exsiting flle would be a basic operation
included in all Pascals. This tums out.not to be the case. Only Pascal/3000 supports
an append access moge (by opening a file with APPEND). In other Pascals 1t may be
necessary to open the file (with RESET) and read through the file untll EOF is reached,
or even to open Ziwpflles (one with RESET and one with REWRITE) and copy from one
into the other until EOF ; then you may start appending to the second flle. Historically,
this situation came about because the microcomputer operating systems allocated
disk space on a contiguous basis, and an append operation could concetvably overwrite
the physical file following the one you are appending to.

Sensing end of flle:

Normnally sensing end of flle is not a probiem, but in PascalMT+ if a “typed”
non-TEXT flle Is being read then you cannot rely on the standard EOF function. This
is because end of flle information in MT+ s based on the number of sectors used by a
file, not the exact number of bytes. In Pascal/MT+ 1t mayneneoessary to use a
special enc-of-file record.

Closing flles:

CIosl a flle seems straightforward enough, but there are a few conslderations to be

en jnto account. There Is the issue of saving a flle, or deleting it. Also, most
Pascals permit you to “reopen” a flle with RESET, which closes the flle and then
reopens it reposmoned to the beginning. Varlous close options are most Important
when gealing with temporary flles, a topic which will be covered next.

Examples:
Closing a flle and deleting jt: _
close (MYFILE, purge); {Pascal/3000}
close (HYFILE, purge); {apple /// Pascal}

close (MYFILE, IORESULT); {Pascal/nT+}
purge (MYFILE); ‘

34-13

Prepared by the Southern Californie Regional User's Group

Proceedings: HP3000 UG 1984 Anaheim

Temporary flles:

All of the Pascals support some form of a "job temporary™ flle. Normally temporary
files are created by opening a flle which does not exist with S WRITE, but there are
minor variations to this in each Pascal.

In Pascal/3000 a temporary flle may be opened by omitting the fllename in the
REWRITE statement, bugt in this case the file can not be saved. If a fllename is given,
then elther the fite shoulo not exdst, or thete should be a flle equate issued before
executing the program making the new flle TEMP, Here the temporary flie may be
saved by using the SAVE option with the close statement.

In Apple /// Pascal, a flle opened with REWRITE is a&/waysternporary, preserving te
contents of any existing flle. Hers, the file must be closed with the LOCK option to
make it permanent ana delete the old file.

In Pascal/MT+, temporary flles are opened with REWRITE with the flle name

ommitted. The file Is assigned a special “system"™ name with a numerlc suffix. Closing

t?' rm?le will not delete It, so presumably it may be renamed after the program
nates.

Rules:
* Beprepared to customize all opening and closing of flles.

* Be prepared 10 customize direct access of flles, but gon't be afrala to fully
utilize this.

* When using Pascal/3000, avold using the extenced versions of READ and
WRIPTSWhicn permit these to be used onnon-TEXT type files, Instead use GET
andPUT.

¢ Avold extensive use of IORESULT. If you fina life easier by checking the 1/0
status, deflne a series of constants, which can be changed to sult each
particular operating system, and compare IORESUL T against these.

» Wwhen using "typed” non-TEXT flles in Pascal/™MT+, do hot rely on the EOF
function; Instead use a speclal record to mark the end of the flle.

* If you wish to append to an existing flle, you will have to develop a custom
module for each of the microcomputer dialects. In some cases this may
require the reaaing of a file until EOF becomes true.

* If you must use 10w level access of disk flles, develop amoaule with a common
Interface, but be prepared to write a specific lernentation for each
computer. A possible exception to this mignt be BLOCK I/0 in MT+and Apple

* If you require keyed access, the only Pascals that attempt this are Pascal/3000
angd Apple /// Pascal and then only with external intrinsic support. No doubt
similar packages might be found for PC andMT +.

34-14

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Micro-equivalents to HP Pascal/3000 1/ intrinsics:

append ~ no equivalent

close = -same,withsome variations
eof - same; may vary with non-TEXT file types
eoln - same

fnum - no equivalent

get - same

linepos -noecuivalem

maxpos - no equivalent

open - will become RESET
overprint -noequivalent

page - same

position -noequivalent :
prompt - become a simple WRITE;
put ~same

read - used for TEXT files only
readdir -noexactequivalent
readln - used for TEXT files only
reset - same, with some variations
resrite -same,with some variations
seek - same; may becomne SEEKREAD or SEEKWRITE
write = used for TEXT files only

writedir -noexactequivalent
writeln -usedfor TEXT fllesonly

Screen Handling

Normal Pascal 1/0 was not designed for use with interactive terminals. All Pascals
here have circumvented certain problems by defining special file types for
interactive type devices. Normally this is transparent to the programmer If the -
standard files INPUT and OUTPUT are used. However, no provision ww
been made for anything more sophisticated than reading and writing ables In

serliial fashion. For most applications, this “character mode" approach will work quite
we L]

However, if you wish to design “screen mode” interaction you will have to resort to
p a custom module for each associated “terminal type™ for each Pascal.
This module should use the same procedure calls in each version, and may include

functions like;
Home_Cursor ~home Cursor to screen upper left
Clear_EOS - blank to end of soreen
Clear_EOL ~ blank to end of current line
Goto_XY (Col, Row) -move cursor toRow,Col
Insert_Char ~insert a blank at the cursor
Insert_Line - Insert ablank line at the cursor
Delete_Char - delete the character at the cursor
Delete_Line - delete the line the cursor is on
and so forth...

34~-15

Prepared by the Southern Colifornic Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

A good model for such a package may be found in the UCSD Screen_Ops unit, however
most users will have no trouble desi areasonable list for themselves. There are
really only two conslderations. First, whatever you devise, use it consistently,
otherwise it will loose its value as an internal standard. Second, be wary of using
techniques that Interact at the character (or keystroke) level. while character based
interaction will work effectively on all microcomputers, It will not work particularly
well on the HP 3000. This Is because the HP 3000 is designed to normally pass input
from a terminal read upon the receipt of a carriage returmn, and while this may be over
riadgen by an FCONTROL option, character by character on even a lightly loaded
system Is normally slower than most people can type.

Rules:

* whenever possible, use normal Pascal 1/0 for screen Interaction. wnile this
will limit you to 1ine and prompt oriented screens, this will always be the most
portable solution.

¢ Avoid character based Interaction. Wwhile this may work well on
microcomputers, MPE does not support this without frequent and annoying
delays between the typing of a character and its appearance (o the requesting
program,

* Keep the screen oriented routines isolated so they can be customized for
different terminal or console types. On HP computers (the 3000, 120, and 150)
one can probably assume that an HP terminal is being used. On the Apple /7/
use the .CONSOLE driver. On the IBM PC running PC-DOS 2.0 or higher, use
the ANSLSYS driver.

Heap Management

Sometimes It is advantageous to allocate work dynamicatly while a program |s
executing.- This may be used for handling a previously unknown number of varlables,
or used pernaps because this feature allows for the elegant handling of "linked lists”
and other complicated structures. All Pascals support this: each new occurrance of a
variable is created using the NEW procedure, which allocates space for it on the
"HEAP", a specially reserved area of the data stack. Items aoded to the HEAP can
only be accessed through pointers, and normally the prograrmmer has no knowledge of
exactly where in memory a variable mignt resice.

Many programs can function if simply glven the ability to create ltems when needed.
Problems relating to portablility occur if a program also must perlodically remove
items from memory to free space. wirth Pascal gefined DISPOSE as the procedure
which removes an item from the HEAP. However, this presents a problem when space
misst be compacted from the holes left in memeory by disposed items. Two strategies
have emerged for handling this. Some Pascals perform “garbage collection” on the
heap when NEW requires it. Other Pascals, such as Apple Pascals, require the
prograrmer to perform this chore, by MARKIng a position in the HEAP, then using
RELEASE to shrink the stack to a prior state. The two strategles are generally
incompatible. Fortunately Pascal/3000 supports them both. Pascal/MT+ also will
support both methodas, but IBM PC Pascal only supports NEW and DISPOSE.

34~16

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Rules:
* NEW Is standardly implemented. However, not all Pascals support tagged
* - Getting things off the heap is not stancard. while DISPOSE is inHP, PC, and
MU+ Pascals, Apple /// does not support this feature. while MARK and
RELEASE is In P and Apple Pascals and can be useg in MT+ with a short user
routine, IBMPC Pascal cannot support this feature.
5. Constructing Common Intrinsics

All of the Pascals discussed here allow program segements to be complled separately
from a main program, and included using a separate “linkage" program. In fact,

virtually all microcomputer Pascals have implemented various “standard” features of
Pascal as library modules, which must be specifically included withina progra'n If tne
features are to be used.

However, Pascal/3000 and Apple /// Pascal also allow the separate compllation of
"intrinsic® procedures, which may be placed in library code flies and bound t0 a
program when the progran is executed.

wnileadetaudiswsslmofnowtruslsmlnmnoftnePascalalaleotslsbeyuu'

the scope of this paper, a few examples using Apple /// Pascal andg SOS intrinsics can
illustrate the general concept.

Many MPE intrinsics have similar SOS counterparts; such as:

FOPEN S0S_0Open

FGETINFO S0S_Get_Info

FREAD S0S_Read

FREADDIR SO0S_Set_Mark followedby sos _Read
FPOINT S0S_Set_MHark

FYRITE SOS_write

FYRITEDIR SOS_Set_Mark foliowedby SDS_write
FCLOSE S0S_Close

GETDSEG SOS_Request_SEG

FREEDSEG SO0S_Rel_Seg

while the parameter lists vary extensively between MPE and SOS intrinsics, It is
entlrely feasible to construct a "HPFILES" UNIT in Apple /// Pascals which 1ooks and
performs similar to MPE intrinsics. One may wish do this because using SOS intrinsics
directly in Apple /// Pascal s faster ang uses less stack space than the built-In
Pascal 1/0 functions, and it aiso is easier o auplicate Pascal/3000 feawres lke
APPEND access 0 a file If one resorts to SOS flle intrinsics. No doubt a close

familiarity with similar low-level support in Pascal/MT+ and IBM PC Pascal could
produce similar results.

6. KMicrocomputer Environmental Similarities to MPE

Some microcomputers support environments uncannily close to a “single tasking

34-17

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

MPE” environment; L.e. 64Kb separate code and data stacks; a hlerarchical flie system
which can simulate “groups” and *accounts*; and program and system code libraries.

Program data and code stack sizes in Apple /// Pascal and 1BM PC Pascal meet or
exceed those available under MPE. For Apple // and CP/A-80 systems, expect less
than half the amount available under MPE. However, both of these Pascals have
operating. systerns comming in common useage which support at least 128Kb
(Pro-DOS and CP/M+), so expect about three quarters of the space.

The flle systems with greatest compatibility with MPE are MS-DOS (version 2.0 and
higher) and Apple /// SOS (and soon, Pro-DOS on the Apple //e). Unlike MPE, which

only two levels of file directories, MS-DOS and SOS support nearly unlimited
directory levels. (There Is a practical Iimit of the length of a file pathname which may
be specified whena flle Is opened.) _

The ability to combine separately complled routines is avallable on the HP andinall

of the microcomputer Pascals covered here. The approach used Is virtually the same;

gwe programm like the segrmenter Is avallable to combine modules into a new runnable
. .

The library facilities closest to MPE are found only in Apple Pascals, and in the UCSD
p-System. Unlike MPE, which supports three levels of librarles, system, account, and
group, Apple Pascals support only two levels, system and program. However the
program library may be a lst of lbrary file names, which means that an Apple
program Hbrary can effectively be up to flve separate lbrary flles, which may reside
under any accessable directory structure.

7. conclusion

Depending upon the complexity of an application, the same kemel program can be
implemented with littie change on an HP 3000 and a microcomputer. However, iIf the
same program must run on several different microcomputers then some modification
for each microcomputer will be required (perhaps as much as one or two months).

The key point one should have formed from this paper is that one must adopt a long
range strategy so that once a basic set of restrictions, techiniques, and modules are
speciufleg and developed for each microcomputer, they may be reused in future
applications.

As a final comment, here is my ratings of the degree of compatibility between the
Pascal dlalects covered here, from highest to lowest:
' eHP Pascal/3000 to Apple Pascal
~ sHP Pascal/3000 to Pascal/MT+
' e Pascal/3000 to IBMPC Pascal
» Pascal/MT+ to IBM PC Pascal
* Apple Pascal {0 Pascal/MT+
* Apple Pascal to IBMPC Pascal

34-18

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

BIBLIOGRAPHY

“Pascal User Manual and Report”, second edition,
Kathleen Jensen and Niklaus witrth,
© 1974 by Springer-verlag

“Pascal/3000 reference manual”,
© 1981 by Hewlitt-Packard Company

"MPE Intrinsics reference manual®,
© 1981 by Hewlitt-Packard Company

"KSAM/3000 reference manual®,
© 1981 by Hewlitt-Packard Company

“IBM PC Computer Language Series Pascal Compller™t,
©1981 by IBM,

“Pascal/MT +, language reference manual™t, release 5
©1981 by Digital Research

"SpeedProgramming Package User's Gulde™t, release 5.2
©1982 by Digital Research

"Apple /// Pascal Programmer’s Manual®, volurmnes 1 & 2.
© 1981 by Apple Computer

"Apple /// Pascal Technical Reference Mawal”,
© 1983 by Apple Computer

*SOS Reference Manual”, volumes 1 &2,
© 1982 by Apple Computer

"RPS Programmer’s Manual”™t,
© 1983 by Apple Computer

“The Pascal Handbook®,
Jacque Tiberghten,
©1981 by SYBEX InC.

+ Manual not avallable separately; requires the purchase of a software product.

34-19

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

1 968 4
HP30001UG

ANAHEIM
COMFERENCE

AUTHOR BIOGRAPHY

Author: Kenneth C. Butler
Manager, Technology
Imacs Systems Corporation

Title: Portable Development Between the HP 3000
and a Hicrocomputer using Pascal.

&lography: Kenneth C. Butler is the Manager of Technology for
the Imacs Systems Corporation, where he 1s leading a research
and developement program involving the use of microcomputers. He
received his bachelor's degree in psychology from Hicnigan State
University in 1968. After a tour of guty in the Air Force, ne
has worked in the field of data processing since 1972, starting
as an IBHM Assembly language programmer 1in a downtown LoS AngQeles
service bureau. His first exposure to an on-line system was 1in
1977, when he became the system manager of a Tandem Non-Stop
system. Between 1980 and 1983, he was employeed by the Twentieth
Century-Fox Film Corporation, where he was the system manager for
four 4P 3000°'s and acted as the primary technical applications
specialist for the TCF Branch On-Line System, one of the first
large systems to use the Transact programming language. He
became actively involved in offlice automation and the corporate
use of microcomputers while at Twentieth Century-Fox, and owns
his own personal computer.

34-20

Prepared by the Southern California Regional User's Group

