Proceedings: HP3000 IUG 1984 Anaheim

v

Programming Techniques
for Zero-Defect Software

‘Bruce Toback
Infotek Systems

In_troduction

All non-trivial software has bugs,
. == Anon. ’

Genesis: This oft-duoted saying was quoted
once too often to the author by none other

than his Hewlett-Packard SE, referring to
MPE. Inasmuch as the I am a daily user of this
non-trivial software, it occurred to me -that
perhaps I should examine the underlying foun~

dations of that which .is presently the art of
programming. After all, part of my job is to

write non-trivial software.

This saying is as much a bias on the part of
most programmers and system designers as it is
a fact of the computing world today. Is there.a
cause-and -effect relationship?

It be fixed in the mext revision,
-~ Original author unknown. -

Perhaps because software is so "easy” to change,
this saying has become almost the watchword
of the software industry. Mass-produced
hardware products may go through two revi-
sions in a year, and these trivial. Software
products may go through two revisions 2
month, some of them major. This flexibility en-
genders the "next revision" syndrome: It’s OK to

leave a problem in the code this time around -

cuz we’ll get it next time., And "next time" is

only a few weeks-away, anyway. Enhancements

work this way, of course: enhancements are es-
sentially fizes to problems in the initial system

definition. Barring- some -mutation in the .
human genotype permitting clairvoyance -

and/or precognition, the need for enhance-
ments will always exist; there will likely also
exist some doubt as to whether a particular
change constitutes a "fix" ("it doesn’t perform
the way I said it should") or an "enhancement"
("it doesn’t perform the way I reaily need it to
inow]"). {Anybody who has had their "Problem

Report" come back marked "Enhancement -

Request" will understand this dichotomy.)

Get it right the first time, -—-
" Everybody at one time or another

I have yet to encounter a professional - any
professional - whe does not quote this saying
frequently. It tends to become less frequently
quoted as deadlines approach, particularly
software release deadlines. Strict adherence to
this principle need not mean missing deadlines:
one need only bend the definition of ."right"
slightly to insure that this does not happen.
"Enhancements” change something over which
the programmer has little control: the defini-
tion of a defect. (Actually, politically savvy
programmers can get quite a bit of-control over
the definition of a defect, but that is a subject
for another paper.) “Fixes" change only those
things over which the programmer has control.
Fixes should always be right the first time.

The phrase "first time," as used in this paper,
needs some clarification. An iterative process is
inherent in almost any creative endeavor.
{Programming, for better or worse, is still a
creative endeavor.) "First time," as used here,
means the first time anyone except the
programmer is asked to use or evaluate the
product. ("Programmer," as used here, means
not oniy the individual actually doing the writ-
ing, but managerial support, librarians, and
others whose primary task is to create and sup-
port the software products that others will use.)

Zero defect software requires not only good
program construction, but good problem defini-
tion, testing, and repair facilities as well, Sys-
tems should be capable of tolerating program
errors in one module without causing a "defect”
visible to the user. In addition, with the use of

. redundant design and checking, systems can

and should be capable of repairing problems
caused by some program(ming) errors. (The era
of the "no-flat" program is at hand.)

Prepared by the Southern Calijornia Regionel User's Group

Proceedings: HP3000 1UG 1984 Anaheim

A Word about Modules
Definition

Many definitions of a software "module” have
been used in the past, with the definition usual-
ly set up to suit the point being made. For this
paper, 2 "module” will be a piece of code with a
single well-defined function, and a set of well-
defined input and output variables. Input and
output variables are not limited to function ar-
guments, of course: they include data set and
file records, user-input parameters, forms, and
other entities that the program can manipulate.
In FORTRAN, PASCAL, and SPL, input and
output variables include global or COMMON
area values that are used or modified.

This paper will not specify the form of the
module: it could be an entire program, a lexi-
cally defined unit such as a procedure or sub-
routine, or simply a particular group of
program lines. : .

Understam_lable function

Relative to writing zero-defect software, the
primary purpose of a module is to provide a
well-defined function that can be tested
thoroughly. It is almost impossible to test a
piece of a program, regardless of its lexical
structure, whose function is poorly defined. By
doing this, once a piece of code has been
determined to perform its specified function, it
can be used forever as a "black box:" its purpose
and its effects ouiside its defined purpose will
be dependable and well-understood.

In~line testing

Testing is important because no technique
published to date results in perfect code the
first time. (Programmers, like engineers, build
and perfect prototypes of their designs before
(one hopes} committing them to production. A
successful zero—-defect methodology will recog-
nize this and not rely on first-time perfection.)

One function of a module is to provide a
suitable unit for in-line testing. In-line testing
of a large, straight-line program is very dif-
ficult, since a the function of any lexical entity
larger than a statement is hidden in the over-
sized structure of the program. (Which part of
the spider web is fhis thread holding together?)
Some programmers, when faced with an over~

gized structure, determine that in-line testing
is useless, and fall back on the technique of
repeatedly removing program lines and rerun-
ning the program until they come up with an
understandable result, then replacing lines un-
til. they understand the function of each
removed line and find the faulty one (or ones).
Carried to its extreme, this technique leads to
rewriting the entire “"module” If the same
structure is used in rewriting as was used in the
original writing, a career loop results.

Interpretation of Test Results

If a piece of a program performs an incom-
prehensible function, or has too many inputs
and outputs, interpretation of test results be~
comes nearly impossible. This is because one
technique of testing may be to vary one of the
inputs and watch the resuits on the output. If
53 outputs must be watched, and their move-
ments interpreted in light of the single input -
change, one may get the feeling that a certain
amount of random variation is involved. In
such situations, the tester tends to get the feel-
ing that "this output looks right; it must be
OK" and the test session ends. If inputs and
outputs are ill-defined, this latter test method
is often the only usable one.

Complete Testing

A piece of code with an ill-defined function
tends to inhibit complete testing of itself, since
it is difficult to know exactly what constitutes
"complete" testing of something whose function
is unknown. In addition, a set of input or out-
put variables that is too large inhibits complete
testing, simply because testing all possible com~-
binations of inputs (including those which the
definition of "right" precludes as illegal) will be
too time-consuming. (The assumption is that
some deadline eventually needs to be met)
With 2 small enough set of input and output
variables, and a sufficiently well-defined func-
tion, not only can all possible combinations of
inputs be tested, but all possible values as well.
(In practice, modules for which all possible in-
put values can be tested tend to be trivial, since
the testing program needs to be at least as
complex as the module under test in order to
know all the right answers!)

BITE

BITE is an acronym from the ever-fertile
acronym fields of defense hardware. It stands
for Built-In Test Equipment, and provides a
way of testing equipment without special addi-
tional equipment. For hardware, the built-in
test equipment generally consists of some

generalized testing tools such as multimeters,
and some specialized testing tools designed to
measure critical operating parameters of the
equipment being used.

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

The same concept can be applied to software:
built-in test "equipment" can be included in
production programs, to be activated by a
programmer, a tester, a support person, or
(perish the thought) a customer under the
direction of a support person. The test function
can be used in three ways. First, of course, it
can be used to debug a prototype module
before it is released to production. Second, it
can be used during sysiem integration to
determine the location of a problem, both to
the module involved, and to the portion of the
module which may be in error. Finally, it can
be used to diagnose production programs which
have failed in some fashion, either by produc-
ing “incorrect" answers, or by unexpectedly
aborting. (More on “"expected" aborts shortly.)
BITE can come in either of two varieties:
monitor and diagnostic.

Mutually Suspicion

The concept of mutually-suspicious modules is
a general rule in operating system design,
where reliability and security are of para-
mount importance. (This is an example of a
self-fulfilling expectation: everybody expects
operating systems to be absolutely reliable and
secure. Why not all application systems as
well?) Mutual suspicion means that modules do
not rely on their callers for input checking. (is
the date being sent to the date conversion
routine valid?), nor on the modules they call
for output checking (does the record you [cal~
led routine] said 1 [calling routine] wanted real-
ly exist?). Monitor~type test "equipment". is

used to implement this kind of mutual -

suspicion,

Monitors

In general, pieces of any system should attempt
to monitor other parts of the same system.
Monitors can be ‘divided into two rough
categories, cheap and expensive. The activities
being monitored can also be divided into two
rough categories: ¢ritical and non-critical.

Cheap monitors:are those which cost almost
nothing to use. (They may take considerable ef -~
fort to implement, although this is unusual for
a really cheap monitor) An example of this
kind of monitor is a statement which checks to
see If the program is about to divide by zero.
Division by zero will (or should) almost always
result in an unexpected program abort because
it is mathematically undefined. In most cases,
the real-world operation being represented by
the division is also undefined if its divisor is

zero. (What is the cost per item if you don’t -

have any items?) A monitor will check for this
and perform any appropriate action. Remem=~
ber that it is not énough to assume that the
system definition (the definition of “right")
precludes this: the program in this case should

check the system definition. Cheap monitors
monitor an operation every time it is
performed.

Expensive monitors are those which can cost a
lot to use. Examples of this kind of monitor are
those which check to insure that a summary
field in a master record matches the total of
the individual detail records. Naturally, the
module which takes care of the detail records
always takes care of the summary. Doesn’t it?
One way to check this is to call another module
which performs the very weltl-defined opera-
tion of adding all the details and comparing it
to the summary. But since this may involve
going through a ‘large number of database
operations, it is an expensive monitor: not one
which you want an interactive {and impatient)
user to wait through every time he or she ent-
ers a purchase order item, for example. Expen-
sive monitors therefore need to be "triggered"
by some event, either from within the system
or outside it. Sometimes the monitor may be
outside the software, as when the computer
operator instructed to run a data base integrity
check every day just before backup. Indeed,
"expensive" monitors should always be trigger-
able manually, just as a check on automatic
triggers.

Monitors can be triggered by the system itself
in 2 number of ways. One way is to trigger the
monitor every time an infrequent operation is
performed. For example, in the MPM/3000
manufacturing system, a check of inventory
summaries for a part is triggered every time
the user does a physical count on that part. The
trigger may be periodic, ie., every » times an
operation is performed, the monitor is trig-
gered. The monitor may be probabilistic, ie.,
triggered 5% of the time a particular operation
is performed. Finally, the monitor may be
time-triggered: run every hour, for example.

Very expensive monitors generally need to be
controlled by some of the same techniques used
to control diagnostic test routines, in addition
to their normal triggers.

Damage reporting

What happens if a monitor determines that an
error has occurred? This usually depends on the
severity of the error and its likely effect on the
remainder of the system.

In all cases, the failure should be logged. This
can be done using the MPE logging system, or
the circular file (as distinguished from the
more usual “round file") facility provided by
MPE and some other operating systems. The
implication is that even if an error is deter- .
mined to be correctable, its existance must be
logged: there is 2 defect 1n the software, even if
it didn't cause a defect in overall system
operation.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

Obviously, correcting the error is the most -
desirable option. This implies that one part of

the system is deemed by the system designer to
be more trustworthy than others (this situation
rarely occurs), or is defined by others. Examples

of the latter include recording the total -

amount of a purchase order; the total field is

always defined by the sum of the amounts in -
each ‘line item, regardless of whether the .

amount in each line item is correct. (If this
were not o0, correcting the line item error
would cause a problem with. the summary.)
Correcting the error should be done only if
determination of the correct value is not more
complex (or identical in method or complexity)
than ltl'u: process which originally generated the
error! o oo ‘ o

Sometimes correcting the error is not possible.
This is usvally the case with “"cheap" monitors:
the monitor would not have caught the error if
the software which supplied the parameters to
the monitor had been working. In this case, the

designer, and sometimes the software, must

make a determination as to the corisequences of

continued operation with the data error in ~
place. Sometimes, a default value can be sub-

stituted (i.e, a divide-by-zero caught in the act
can be made to have a result of zero} that will
be as acceptable as the original data. Other
times, part or all of the system must shut itself

down (gracefully), let the user know what has .

happened, save as much context as possible for

later analysis, and then terminate. This is -

where a problem detected by the monitor is
declared critical or non-critical. A non-critical

problern may simply shut down a single func- . -

tion of an overall system, e.g., it may prevent

further entry of purchase orders. A critical -

problem will require shutdown of the entire
system. Note that at this point, the zero-defect
methodology “is no longer involved with
preventing defects; it is concerned now with
damage control.

Diagnostics

The other type of built-in test “equipment" is
the diagnostic. In some sense, the compilers and
the operating system already provide diagnostic
tools: when a program aborts, MPE prints the
location within the program at which the abort
occurred, and if asked, will display the data in
the program’s stack at the time of theabort.

Severa! problems arise when using the "default“. '

diagnostics. First, they are very unfriendly: the
“stack display” is recognized throughout the
HP3000 world as a sign that the programmer
blew it. Second, they are not very informative:
they can be interpreted only by the program-
mer, if at all, and present. the death of -the
program as a singular event, without even an

invitation to autopsy. Finally, they are useful

only in the event of a program abort; they
cannot be used to diagnose a logic error.

If you are one of the few users that program in
FORTRAN or SPL, HP provides a subsystem
called TRACE/3000, invoked through the use
of the $TRACE compiler command. If you
know about this subsystem, you are one of a.
select few: many HP SE’s are not even aware of
its existence. TRACE/3000 was credted in the
days when the HP3000 was to be an engineer-
ing ..~ number-crunching machine, ~ and -
FORTRAN was to be the primary language.
Things have not quite turned out that way.

TRACE/3000 is documented in the

TRACE/ 3000 manual. It is not terribly useful,

with an obtuse command language and an un-

educated support staff. It does not operate with

COBOL, COBOLII, RPG, BASIC, APL, PAS-

CAL, or TRANSACT.

Program tracing outside of TRACE/3000,
however, is a common and useful technique.
Typically, though, there are a number of disad-
vantages to its use. First, trace messages can
typically be activated and deactivated only at
compile time. In some languages, the only way
to do this is to comment out or physically
remove the statements. Commenting is not a
well-controlled process, and physical removal
of the trace logic is not conducive to retaining
the same set of trace messages the next time
the module is tested. A better way is to use
conditional compilation (for any language ex-
cept BASIC) to add and remove tracing state- -
ments- (and other diagnostics as well). HPs
compilers have two commands that implement
conditional compilation. {Remember that a
compiler command tells the compiler to per-
form some action itself, and does not directly
affect the operation of your program. Examples
of compiler commands are $TITLE (tells the
compiler to title your listing), $PAGE (tells the
compiler to skip a page and perhaps add a new
title), and SCONTROL (tells the compiler to
perform various other actions.) ‘ .

The compilers provide ten switckes which can
be set and tested by the compiler. These are
typically used not only for controlling diagnos-
tics, but for including or not including features
in a software product.’ Compiler switches are
named Xr, where n is a digit from zero to nine.
They are set with the $SET compiler command: ..

$SET X1 = ON
or
$SET X2 = OFF, X5 = ON

These settings can then be tested (by the com- -
piler, remember) with the $IF command: L

Prepared by the Southern California Reglonal User's Group

Proceedings: HP3000 IUG 1984 Anaheim

$SET X1 = ON

$IF X1 = ON

DISPLAY "ADD-ITEM: TOTAL-COST is now ",

TOTAL-COST.
$IF

In COBOL, this may be redundant, because the
PROCESS DEBUG statement may be used. The
method works well for other languages,
however, as well as for COBOL implementa-
tions in which PROCESS DEBUG is not
included.

The problem with this type of tracing is that it
1s available only after recompilation of the sys-
tem. This is fine if there will be an opportunity
to duplicate the problem with a different
program. During testing, this method of
debugging is not particularly desirable, since
either two versions of object code (one with
and one without the trace messages) must be
maintained, or alternatively the program must
be recompiled (possibly after changing the

77 TRACE-FLAG PIC $S9(4) USAGE COMP.

" CALL "GETPARM" USING TRACE-FLAG.

" IF TRACE-FLAG IS NOT ZERD

compile switches) in order to trace its activity.
In addition, in some cases the trace messages
themselves may have an effect on the execu-
tion of the program. '

A method through which diagnostics may be
selectively enabled or disabled at run-time
seems a better alternative. (You might still
want to eliminate the diagnostics in the
"production” version to save object code space,
but this may be of limited value.) One way to.
do this is with a debug flag that is set by the
INFO or PARM parameters on the RUN com-
mand. The program can then test the debug
flag to determine whether or not to print trace
messages: . ‘

DISPLAY "ADD-ITEM: TOTAL-AMOUNT now “,

TOTAL-AMOUNT.

GETPARM is a library routine which obtains the run PARM for

a program. (It is available in the contributed library.)

This can be extended to provide multiple levels of tracing:

IF TRACE-FLAG IS NOT ZERO

DISPLAY "ADD-ITEM: TOTAL-AMOUNT now",

TOTAL-AMOUNT .
IF TRACE-FLAG IS GREATER THAN 3

DISPLAY "ADD-ITEM: Item amount was

ITEM-AMOUNT .

Thus, the programmer (or the tester) can select
a particular level of trace detail. (The
programmer must, of course, be fairly astute in
determining what “appropriate levels" should
be.) This greatly facilitates the use of tracing
during the "prototyping" and system test phases
of program development.

(Hewlett-Packard uses this method for V/3000
and some other products: try running
FORMSPEC with PARM=1 sometime.)

One problem with this method of doing things
is that all modules are traced at a given level,
when in fact we are usually (one hopes always)
concerned with trazing a specific module. We
may in fact wish to use trace messages from
more than one module in order to check inputs

to and outputs from the module under test.
One way to do this is by having a separate
trace flag for every module. The problem, of
course, is assigning values to all these trace
flags when the program is run. Other than sim-
ply asking the user/tester about it from within
the ?module under test, is there a way to do
this?

By using JCW'’s (job control words), we can set
up symbolically a separate trace flag for each
module independently. For those modules we
don’t want to trace, no job control word is set
up:

:SETJCW ADDITEM=1
:SETJCW DISPLAYORDER=4
:RUN PDSYS

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984

Anaheim

In the program, then, ADD-ITEM and
DISPLAY-ORDER can interrogate job control
words ADDITEM and DISPLAYORDER,
respectively, to see if they should be traced.

ADD-ITEM.
MOVE "ADDITEM " TO JCW-NAME.

CALL "FINDJCW" USING JCW-NAME,

TRACE-FLAG,
JCW-STATUS.

IF JCW-STATUS IS NOT ZERO
MOVE 0 TO TRACE-FLAG.

A similar set of statements at the beginning of
each module can be used to define the trace
level for that module, (The example, by the
way, is contrary to the principles of Zero-
Defect Programming. Can you see why?)

By using this method, then, the programmer,
the tester, or (perish the thought) the user can
selectively activate various levels of tracing -
of diagnostics - to determine what the program
is doing at any given time.

Symbolic Debugging

Conclusion

Program bugs need not be a part of every non-
trivial software system. With proper care in
construction of the software, and with the as-
sistance of some simple programming and test-
ing assists, bug-free software can be delivered
to the end user every time. (I recognize that
some of these methods are impractical for use
in debugging interrupt-driven I/0O drivers, but
very few applications include thesel)

To summarize the techniques presented here:

1. Divide your programs into well-defined
modules - logically if not lexically. Make
sure that each has a name.

2. Include “"cheap" monitors to check inputs
to each module every time it 15 used.

3. Include "expensive" monitors to check sys-
tem data base integrity at intervals as
frequent as the user will tolerate,

4. Provide for a method for logging errors
discovered by vour monitors. Use the

28-6

This is done with the FINDJCW intrinsic. (The
defaul)l, if no JCW is set, will usually be "don’t
trace."

Symbolic debugging techniques such as tracing
can be extended to include other concepts.
Using a control-Y trap, it is possible to allow
the programmer or tester to execute a special
purpose debugging subsystem. Such a subsystem
may be command-driven and may be used to
print various record values, to display the
status of open files, or to run various "expen-
sive" monitors on demand. For large systems,
this technique is invaluable and well worth the
amount of work it takes to implement. Typical-
ly, such a subsystem will require between five
and 10 percent of the code required for the en-
tire system.

softest failure mode you can without
jeopardizing system integrity.

5. Provide a method for repairing as well as
logging all repairable errors.

6. Provide a trace facility that can be used
by the programmer, the tester, the
support person, or (perish the thought)
the user. Try to make the facility usable
"on demand) rather than waiting for
specific action by a programmer or
librarian.

7. If your system is large enough, provide a
debugging subsystem to print values of
various records, to run your “expensive"
monitors on demand, and to print infor-
mation about execution of the program.
Mzake this subsystem accessable o=
demand if possible.

8. Don’t be satisfied with fixing it in the
next release!

Prepared dy the Seuthern California Regional User’'s Group

