Proceedings; HP3008 IUG 1984 Anaheim

- Performance Programs and The Measurement Interface

Bryan Carroll
MA-COM

There are times when each of us needs the
capabilities of one or more of the performance
programs. Programs such as OPT-and SOO are
used to monitor the performance of individual
programs or of the entire system and are wide-~
ly used in HP3000 environments around the
world. - These performance programs and others.
like them are often misunderstood, and, -in
some cases, information ‘derived from the
programs ¢an be inaccurate. This paper will at-
tempt to interpret the data from these
programs starting with the MPE Measurement
Interface. : :

The Measurement Interface is a data gathering
facility of the HP3000 that has evolved from
one operating system release to the next. Its
immediate predecessor, MMSTAT, could collect
much of the same data but did not make the
data available to user programs in a usable
format. The only -procedure provided by
MMSTAT required a dedicated tape drive and
a great deal of time to produce meaningful
reports. The Measurement Interface that has
been released with MPE IV has made data, in
the form of event counts, available to
priviliged mode programs. MMSTAT had
provided a trace of events, each of which could
be distinguished from the preceeding and suc-
ceeding events in time. Now, with the
Measurement Interface, any time dependent:
relationships must © be determined
programmatically.

In order to ensure that good data is collected
from the system, some design goals must be es-
tablished. These goals must include a minimum
of system resource drain and easy access by a
performance program. HP seems to have
provided both of these goals in their design of

the Measurement Interface as well as a sound
base from which to expand. This base takes the
form of a system extra data segment which
holds the measurement data. This method of
implementation could provide a stable base
which would not have to change from one
operating system release to the next.

The Measurement Interface control informa-
tion is kept in a system extra data segment that
is created and initialized by INITIAL when the
system is booted. The data segment is not
required to be in bank 0 but is locked and
frozen to ensure that it is always in core. The
locked and frozen requirement allows the sys-
tem to access it much more quickly causing
much less system overhead. The access time is
similar to a load or store instruction since there
will never be a segment fault. (A segment
fault is caused by accessing an extra data seg-
ment that is not in core but out on disc in vir-
tual memory) :

The Measurement Interface makes use of some
memory locations, other than those in its extra
data segments. The Interrupt Control Stack
(ICS) has three -words reserved for the
Measurement Interface, one word for flags and
the other two for holding a pause time. Four
words in the System Global (SysGlob) area of
bank O are used to hold some flags and the ab-
solute memory address (bank and offset} of the
control extra data segment. The Process Con-
trol Block Extention (PCBX) for each process
reserves four words to hold times and flags for
that processes activity. Each of these places in
memory is used to compute pause times or
counts to later be stored in the appropriate
Measurement Interface extra data segment.

L Three Types of Statistics Gathered

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

There are presently three different types of in-
formation that can be enabled and disabled
selectively or as a group. These three are
Global, Input/Output, and Process related
statistics. Each type of statistic is kept in a
separate extra data segment which is also lock-
ed and frozen in place to speed access. The con-
trol extra data segment, established by INI-
TIAL, contains pointers to all other extra data
segments and is also used to hold the Global
statistics when they aré enabled. A counter is
kept for each type of statistic to determine
when to build an extra data segment and when . -~
one can be discarded. The counter is incre-
mented each time the Measurement Interface
15 initiated by a program, such as OPT, and
decremented each time the same type of
program terminates one or more types of statis-
tic gathering. This will prevent one program
from deleting a Measurement’ Interface extra
data- segment while another program is-still .
using it. The control extra data segment, also
called the - Measurement Information Table,
contains pointers and work space for the.shared .
clock Interface and space is.also reserved for a
future HP performance program - called
TRACER.

Global statistics are futher subdivided . into
classes, although only one class is,-curi'ently-_
defined. Each class is then.subdivided into sub-
classés which are dwlded mto groups. -

Subclass 0 of the Global statistics is used to
hold the counters for system wide CPU pauses,
swaps and other. dispatcher/memory manager
activities. These numbers can -be very helpful
in determining the overail performance of your-
machine. These numbers can indicate possible
problems such as thrashing, CPU overload, Disc °
bottle necks and similar problems. All other
statistics ‘are limited to speclflc processes or:
pieces of hardware.

Subclass 1 G]obal stat:stlcs focus 'OR dlSG ac-
tivity. There is one group .entry for each disc
configured on your system. There are counters:
for blocked and unblocked reads and writes as
well as for memory manager reads and ‘writes. .
All of the numbers collected in this subclass are -
in terms of physical disc I/0 -and no. mforma-
tion can be derived about logxcai 1I/0%: "

Lmeprmter and .Magnetlc Tape actuuty con- -
sume the-last two subclasses, subclass 2 and 3
respectively.-There is one group in each of the
subclasses for :each lineprinter or tape drive .
that is configured into the system. Within each
group there are three counters. The numbers of
device reads, device writes and control opera-

tions are kept for each device for consistency.
The counter for lineprinter reads is not used
but exists for uniformity between devices.

The Input/Output statistics are kept as class 14
statistics. These statistics include information
about all types of 1/0. The groups are each 16
words long and contain copies of either the
Input/Output Que (10Q) entry or Disc Request
Que (DRQ) entry for disc 1/0. The device
drivers add ‘dnd deleté .entries to this table
directly. This type of statistic is very dynamic
and would require some analysis before it could
be presented in 2 usable format. Due to the
dynamic nature of this type of statistic, the
table would have to be frozen while it was
either analyzed or copied to another place for
analysis. A sampling interval becomes very im-
portant during analysis of this statistic and
would require some study-of the machines
hardware and some experimentation to choose
correctly. Choosing a sampling interval too
long would allow. entries to-appear on the list
and then .be. removed before they were
analyzed. A sampling interval chosen- too short
may not allow enough activity to happen on
the system for.proper analysis. The speed of all
active 1/0 devices»should be considered in
determmmg a samplmg 1nterva.l .

Class 15 statistics are known as process statis-" -
tics. This group of statistics can be viewed as a
table. indexed .by the. process identification
numbsar (PIN) of each active process. The first. .
entry, entry 0, is an overhead entry and con-.

tains global information about the operating .

system release. level :and the time sampling

began. Each entry contains 52 words of process

specific information including processing times.
and some. I/O counts. It is impertant to note
here. that. the counters are initialized to zeros

when the ‘extra data segment is created, or

when the entry is added to the table. If a-
program had accumulated some CPU time or

disc §/O’s prior to enabling process statistics,

these times and counters will not be included

in the figures presented by the Measurement

Interface: It is also important to note that your

program -that uses the Measurement Interface

may not have been the program that actually

initiated the statistics gathering. The statistics

gathering begins when the first program that

requires the Measurement Interface requests it

to start and .will not -terminate until ALL

processes using the statistics have disabled ac-

cess to the Measurement Interface. All the

times and counters in the process statistics re- -
late only -to a single process and include count-
ers, CPU time, disc I/Q%, pause times for ter-
minal reads and disc 1/0.

ol

II. Access Routines for The Measurement Interface

28-2

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

There are five (5) intrinsics defined ‘by Hewlett
Packard for use with the Measurement Inter-
face. One of these routines is not vet imple-
mented and another routine, although written
and included in the MPE Kernels, is not used.
The routines as they stand now are not com-
plete enough to use without a user written
retrieval routine. The five routines..are:
STARTSTATISTICS, STOPSTATISTICS, UP-
DATESTATISTICS, GETSTATIST]CS and
GETPROCSTATS C

The STARTSTATISTICS routme is used to en-

able one or more classes'of statistics for gather-

ing. The appropriate bits are set in the System
Globa y area to communicate to MPE which
classes of statistics are enabled for data gather~
ing. If a class of statistic is being enabled that
had not previously been enabled, the necessary
system extra data segment(s) is built, frozen and
focked in place. The Data Segment Table num-
ber (DST) the bank number and the offset are
put in the Measurement Interface control extra
data segment for future references. The en-
abled counter for each class of statistic being

enabled jis incremented. If a new data segment

is created for a class of statistic, it is initialized
to the appropriate values. Starting statistics on
a heavily loaded system (one with many active
processes) could require a significant amount of
overhead. During initialization of process
statistics, the initialization routine must obtain
& program name, session or job number and the
current state of each process. This procedure
could cause many disc accesses. Continual
starting and stoping of statistics gathering at
the process level (class 15) should be minimized
because of this overhead.

STARTSTATISTICS is an integer procedure
with one parameter. The routine will return
one of four possible values indicating success or
failure. A value is not returned to indicate that
statistics gathering has been active prior to this
call to STARTSTATISTICS. You will be unable
to determine from this routine whether or not
statistics have just begun or if statistics were
being gathered prior to your " call to
STARTSTATISTICS. The one parameter is.a bit
mask indicating which class or classes of statis-
tics to start. ‘

STOPSTATISTICS will disable one or more
classes of statistics gathering. The class enabled
counter is decremented for the requested class.
If the counter is then zero, meaning there are
ZEero remaining accessors to this class of the
Measurement Interface, the corresponding sys-
tem extra data segment will be deleted. The
bit in the System Global (SysGlob) area cor-
responding to the class of statistics being dis-
abled will be reset to reflect the termination of
statistics gathering for this class. If
STOPSTATISTICS is not called prior to process
termination, (ie. if the program aborts or the
programmer forgets to code a
STOPSTATISTICS!) the system will call

STOPSTATISTICS for the process: This should
prevent the Measurement Iriterface from being
active while no process has it enabled, ensuring
a2 mintmum of system overhead.

This routine, like STARTSTATISTICS, has only
one parameter but it is not an integer proce-
dure. There is not a return value so the condi-
tion code should be checked to determine the
success or failure of the routine. The parameter
is a bit mask that corresponds to the bit mask
used f or STARTSTATISTICS :

There is a System Internal Resource number
(SIR) reserved for the Measurement Interface.
This SIR should not be locked by any user
programs. Its use is reserved for the START
and STOPSTATISTICS routines only.

The UPDATESTATISTICS routine is written
and exists in the KernelC segment of MPE. This
routine was written to update the statisticsin a
given class, subclass and group but.is currently
not used by MPE. The statistics are currently
updated only by inline code throughout the
operating system. There is ‘2 secondary entry
point to this routine that will bypass all pa-
rameter checking. This entry point will ex-
ecute faster bacause of the elimination of
paramenter checking but is still much slower
than inline code. The inline code is faster but
Hewlett Packard will pay the price of speed in

- supportability. Any changes to the Measure-

ment Inierface will require extensive changes
to the- MPE Kernels updating the data. This
routine should never be called by a user
program. If a user program was allowed to up-
date the statistics, the data would become
meaningless. K

‘Access to class O statistics (Global Statistics) is

accomplished through the GETSTATISTICS

. routine. This routine will do parameter check-

ing and validity checking of the ¢lass and sub-
class. There is an entry point, FGETSTATIS~
TICS, that will excute faster by-skipping the
parameter checking but, it is more -likely to
cause errors (because of not checking para-
meters) This entry point should only be used
after a program has been debugged and you are
satisfied that your program is working proper-
ly. The request for statistics may be as small as
one word or as large as the entire table. This is

. the orily routine provided by Hewlett Packard

to retrieve data from the Measurement Inter-
face and will only work on class 0 statistics.

The GETPROCSTATS procedure has not yet
been implemented. It is planned for this
routine to access the process (class 15) and I/0O
(class 14) statistics in a manner similar to the
GETSTATISTICS routine. A secondary entry
point, FGETPROCSTATS, is planned to speed
execution by eliminating parameter checking.
A substitute routine would not be difficult to
write and I will provide one upon request.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

All five. (5) routines used to access the fairly safe routines to use.
Measurement Interface programmatically :
require . privileged mode to execute and are

IIL Inline Code Updates The Measurement Interface

Currently, all updating of the Measurement In- ing KernelC, KernelD, Hardres and the device

terface data is done through inline code in the drivers. Figure 1 shows some examples of Q-
operating system. This code appears in many MIT KernelC inline code used to update the
places throughout the MPE source code includ- Measurement Interface statistics.

j

1140000 01720 3 END; <<08485>>
1142000 01721 . §
1144000 01721 ASMB (ZERC, 02RO} ;
1146000 1722 2 - TOS.DISPRUNNINGFLAG:=1;
1148600 01723 DISPTORWAKENSG =105 <22=>DISPATCHER RUNNING,NOT PRAUSED>>
1150000 01724 ABSOLUTE I:PEB] =T :
21152000 01726 TRI.M & Ll ﬁnne TO ¢ - DON'T WANT CLOCK INTERRUPFING>>
21154000 01727
21156000 01730
21158000 01730 2
1160000 01730 2 <«
1162000 01730 2 WHO WAS RUNNING LAST?
1164000 01730 2 >»>
1166000 01730
1168000 01730 asrmresr);
1170000 01731 1F <> THE .
1172000 01732 gECIN <R pnocess LIAS RUNNING>>
21174000 01732 IF §0=-1 THEN
21176000 01734 BEGIN «svsnzn JUST COMING UP>>
21178008 01735 4 ASHB (DEL
21180000 01736 4 INITI0{Z]] <<INITIRLIZE SYSTEM DISC>>
1182000 01740 4 STARTCLOCK (0,00) ; <<GET CLOCK HOVING>> <<01770>>
1184000 01742 4
196000 01742 3
88000 01745 3 IN
90000 01745 4 LASTFROCINX : 2105 -SYSBASE ;
92000 01750 4 LASTSTKSYSBASE [NX:=1CS" sf:osntsv_lz)vusrsvsanssmx-
94000 01754 4 IF GCLASSENABLEDIASK CLASSO THEN
95000 01781 4 BEGIN _<<HEASURE PROCESS BURST EVENT AND DURATION»>>
21198000 01761 § 105 : =MEASSTATXDSBANK
21200000 01764 § 105 : =HEASSTATXDSBASE
21202600 01767 § 105 : nros~cosuao'szckt|.m=r+c "LAUNCH; <<RAY ,¥>>
04000 01772 § ASHB (LS
1206000 01773 5 T05; =r05¢
1208000 Q1774 5 ASHE (SSER él << CUN & OF LAUNCHES>> .
10000 01775 § T08: -Tos LAUNCH+C ' CPUPROCESS | <<RAY ., V>>
12000 01777 § ASHE (LD
214000 02000 5 nsnarzsko ﬁcu.x).
16000 02002 § f
éggg g g g H Esne SDER; dnsl.). <<CUit CPU TIME ON PROCESSES>>
222000 02005 4 1F. ucn.ﬁsssnnm.eunnsx cn.assns THEN ce018]25>
24000 02012 4 GIN < TIHE & NUFBER OF LAUNCHES>> <<01812>>
21226000 02012 § Tus-:nsnsnucxnsannn . : <<01812>>
21228000 02015 5 165 : =MERSFROCXDSBASE ; <<01812>>
0000 02020 $ 108 =105% { (LASTPROC 1 M+ SYSBASE - RBS(PCBP)]/PCBSIZE]’ <<01812>>
32000 02026 5 CLASSES 'SUBOSIZE +CP ' LAUNCH <<01812>>
34000 02031 5 usmau.san{ <<01812>>
16000 02032 § {r::oT0S+ <<Q18]2>>
38000 02033 5 Ao (SSE & <e01812>>
40000 02032 § TUS:=T05-CA! LAUNCH+CPCPUTINE ; <<01§12>>
212420 Q2036 S RSHE LOEA) ; <<018125>
244000 02037 § 1518 (ZERO;RCL <<Q1812>>
46000 02041 5 A3MB {DROD snsa 6ueu.). <<Q18}2>>
48000 02044 § D ; <<01812>>
0000 02044 4 END; :
52000 02044 3 END
Figure |
28-4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

IV. Performance Programs

The Measurement Interface is only one step in
a three step procedure to obtain an accurate
picture of the performance of any machine.
These three steps are the collecting of data
(measurement Interface), the logging of the
data and the presentation of -this data in an
understandable format (performance program).

The logging of the data is performed internally

by each performance program. Large disc files

or tape files are not used to log the data collec-
ted by these performance programs. For our

discussion, the logzing of data will be included

(iin the discussion of the means of presenting the
ata.

The performance programs available on the
HP3000 are mostly contributed programs
whose authors are unknown, whose source is
‘unavailable’, or for some other reason, are un-
supported. These programs are needed and until
QPT (On Line Performance Tool) was released,
they were the only user runable programs
available for system performance monitoring. |
was able to find eight (8) separate performance
programs for comparison and discussion. I have
chosen this group of programs to represent
both the most used performance programs and
the largest variety of programs. The programs I
have chosen are: SO0 - four different versions,
MOO - a takeoff from SOOQ, OPT - HP's On
Line Performance Tool, Surveyor ~ another
performance program, and Porpoise - a Boeing
library program. The source code to OPT was
not made available at the time of this writting
and will be excluded from some of the
discussions.

Each program periodically updates a process
display screen, except for Porpoise which dis-
plays a single line of CPU statistics. The pur-
pose of this part of the discussion is to compare
and contrast the process displays of the various

programs from a viewpoint of reliability and
accuracy. Some of these programs will use the
Measurement Interface and others will not.
Each program will use system level routines at
different levels. It is hoped that this discussion
will give you the information needed to deter-
mine the best performance program or
programs to meet your needs. I do not intend to
critique or recommend performance programs,
but to give you the information necessary to al-
low you to examine them for yourself.

All of the selected programs use privileged
mode at some point in their processing. Sur-
veyor runs in privileged mode for the entire
span of its run while all the others will execute
privileged mode instructions as they need it. A
few programs try to improve their response
times as well as to provide more timely data by
raising their own priority. This is sometimes
necessary to compete with high priority system
processes or more likely high prionty
applilcations. MM 3000, for example, runs its
monitor at priority 100 or higher in the AS
que. Table ! lists the programs which use these
intrinsics (GETPRIVMODE or GETPRIORITY).
The programs which do not list GETPRIV-~
MODE as an intrinsic, gain privileged mode
through a user written procedure.

All programs except for one version of SOO use
various MPE undocumented routines. These
routines are written for the operating system
to use and, for éne reason or another, were not
released as supported MPE intrinsics. Many of
these routines require privileged mode.
Documentation for some or all of these
routines may be obtained from a ’helpful’ HP
SE or by attending some system level courses
taught by HP SE’s. A brief statement about
each of these routines may be found in the Ap-
pendix. Consult Table 1 for those programs
which use undocumented routines.

Program Name Initial Max Running Dangerous System
Stack Stack Intrinsics {Undocumented)

Routines

1) so0 (1) 71878 9508 GETPRIVMODE none

2) S00 (2) 4549 8744 GETPRIVMODE ATTACHIO

3) S00 (3) 12135 13764 GETPRIVMODE DMOVE
EXTIN'
INEXT”

4) S00 (4) ' GETPRIORITY ATTACHIO
CHECKLDEV
GENMSG
GET 'DSDEVICE
GET'DSXREF

28-5

Prepared by the Southern Califorpia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

PROCFILE
RESETDB
SETSYSDB

GETPRIORITY ATTACHIO
GETPRIVMODE CHECKDISC
CHECKLDEV
GENMSG '
GET 'DSDEVICE
GET 'PAGE
GET'SIR
LOCK 'DFS‘'DATA'S
. RESETDB :
- SCAN'PAGE.

- SETCRITICAL
STARTSTATISTICS
STOPSTATISTICS
SETSYSDB
UNLOCK 'DFS'DATA

ATTACHIO
FGETSTATISTICS
FINDDEVICES
GENMSGU
. INEXT'
+- PROCFILE

. 'STARTSTATISTICS
. .STOPSTATISTICS

. THISCPU

5) Moo 2121 7480

6) OPT - 3639 9660 GETPRIVMODE

: Sysiem .
(Undocumented)
Routines

e e e S e e e e m, T —— o — e — e ——————— =y -

Dangerous
Intrinsics

Program .lNa'me- ‘Initial Max Running
Stack Stack

GETPRIORITY :DELAY ‘
FINDDEVICES |
GETSTATISTICS
STARTSTATISTICS

" 7) 'SURVEYOR. = 1068 8840

8) PORPOISE 13 3827 GETPRIVMODE . GETSTATISTICS
o o : STARTSTATISTICS

STOPSTATISTICS

Table 1

Figures 2 thibuﬁh: 8 show a sample of accounting or billing purposes. There

the process display of each of the per-
formance programs. The first column
appearing on most displays is cumula-
tive CPU time. All programs except
Surveyor display this statistic. . This
number is kept in two places in the
system, but all of the programs obtain
this number from the same location,
the PCBX area of the processes stack.
This place seems to be the most reli-
able one since this location is used to
update the numbers found in the
*Report” command upon process ter-
mination. A copy of this number is
also put in the logfiles to be used for

28-6

is no reason to suspect any inaccuracy
in the other location that supplies
this number. This other location is in
the Measurement Interface process
statistics. The first: location where
cumulative CPU may be found, in
the PCBX area of the stack, is a better
choice for this type of display be-
cause it supplies a cumulative CPU
time since the process began. The
Measurement Interface can only
provide the number of CPU seconds
that have been wused since the
Measurement Interface has begun.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984

Anaheim

152
152

202
152

152

152 -
162
152
152

SON OF QVERLORD VERSION 1V
FILE "+ USER CPU STACK
NAME -NAME TIME ¥% Q J/S% SIZE
c.1. TEST .GNET 5 0C 825 4520
cC.I. : - MGR . PAYROLL 2 0 C S26 6008
QUERY .PUB .8YS MGR .PAYROLL . 2 0 C 827 16732
TEST .PUB .PAYROLL MGR .PAYROLL 17 2 C 86 8340
C.I. ACTUAL .EPS 3 0CS125 2696
C.I. : CONSOLE .OPERATOR 1 0 C Sl03 4744
XXFCS .EARLE = .EPS GENERAL .EPS 252 0 C s1e 25852
QUIC302 .PUB . .- .QUASAR - CASH .EPS 16 0 C S138 10896
XXFCS .EARLE " .EPS GROUPX .EPS 214 0 C 8713 25852
COBOL .PUB .SYS MGR .DESIGN - 24 19 ¢ Sl140 29940
MBQ JUTIL .8YS - MANAGER .SYS 26 0D JI19 5904
XXFCS .EARLE .EPS GROUPM .EPS 936 0 C S119 26620
XXFCS .EARLE .EPS - GROUPX .EPS 960 0 C S45 25724
S001 .TOOLS - .TECH BRYAN .TECH] 2 C s43 8796
RELATE .PUB .CRI ACTUAL .EPS 50 ¢ C 892 19492
TP3000 .PUB .CCC PSR .PAYROLL 20 1 C 5131 8916
C.1. ' AWAYNE .LABOR 4 0C S129 5336
MAILROOM.HPMAIL .SYS MAILROOM.HPOFFICE -1 0D JIM 85212
C.I. : MGR .PAYROLL 1 0CS7 4752
TEST .PUB " .PAYROLL MGR L PAYROLL - 219 t C 811 8340
TEST .PUB 1PAYROLL MGR .PAYROLL 80 2C 39 8340
XXFCS .EARLE ~ .EPS SALES .EPS 401 0 C 380 25596
TP3000 .PUB . .CCC ENTRY .PERSONNL 1 0C 35133 7380
XXFCS .EARLE .EPS MACOM EPS 170 0 C 5100 25724
TIME USED: 4.726 CPU SEC; 17.189 ELAPSED SEC. 27.494% UTILIZATION.
CHANGES TO STATUS LIST
c.I. MGR .PAYROLL ADDED .
TP3000 .PUB .CCC MGR .PAYROLL DELETED.

Figure 2 S00 version 1

SON OF OVERLORD VERSION 1D :
FILE USER CPU STACK
NAME NAME TIME % Q J/S% SIZE
c.I TEST .GNET S 0E 825 4920
c.1 ACTUAL EPS:- 3 0L Ss125 2696
C.I CONSOLE .OPERATOR 1 ¢ L S103 4744

TIME USED: 0.000 CPU SEC; 2.253 ELAPSED SEC. 0.000% UTILIZATION.

'Figure 3 800 version 2

28-7

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1IUG 1984 Anaheim

*k SOM OF OVERLORD *¥ Version 1G ¥¥ MPE IV C.C)1.AQ. (30 Sec. delay)

File name User name - CPU CPU % J/SH Stack
R.0.Q Q.e time 00 Q@ size Pin
CI{RUN MIS030.PUB) TEST LGNET 5 .00 C 525 4920 14
CI(RUN QUERY.PUB.SYS) MGR .PAYROLL 2 .00 C S26 5200 15
QUERY.PUB.SYS MGR .PAYROLL 2 .00 C S27 16732 32
TEST.PUB.PAYROLL MGR .PAYROLL 17 .00 C 36 8212 33
CI(SHOWDEV BANKMUX2) ACTUAL .EPS 3 .00 C 8125 2696 53
CI{RUN SPOOK.PUB.SYS)} CONSOLE .OPERATOR 1 .00 C 5103 A744 58
XXFCS.EARLE .EPS GENERAL .EPS 252 .00 C 816 25852 59
XXFCS.EARLE .EPS GROUPX .EPS 214 .00 C 573 25852 63
COBOL .PUB.SYS MGR .DESIGN 43 10.27 C S140 28916 70
QUIZ104.PUB.QUASAR AWAYNE . LABOR 2 .08 C 5129 4608 86
MBQ.UTIL.SYS -) MANAGER .SYS 26 .00 D J19 .. 5904 87
XXFCS.EARLE .EPS GROUPM _EPS - 996 30.64 C 5119 26620 98
XXFCS.EARLE .EPS GROUPX .EPS 085 37.03 C 845 25724 101
S003.TOOLS.TECH BRYAN .TECH 1 2.19 C $43 13052 11
RELATE.PUB.CRI ACTUAL .EPS 50 .00 C 892 19492 119
TP3000.PUB.CCC PSR .PAYROLL 21 .00 C S131 8916 13N
MAILROOM.HPMAIL.SYS MAILROOM.HPOFFICE 1 .00 D J41 5212 142
CI{RUN TEST) MGR .PAYROLL 1 .00 C 87 4752 153
TEST.PUB.PAYROLL MGR .PAYROLL 220 .00 C 811 8212 167
TEST.PUB.PAYROLL MGR .PAYROLL 82 2.58 C 89 8340 173
XXFCS.EARLE .EPS SALES .EPS 401 .00 C Ss80 25596 175
TP3000.PUB.CCC ENTRY .PERSONNL 1 00 C 8133 7380 182
XXFCS.EARLE .EPS MACOM .EPS 170 .00 C 5100 25724 187
<< 23 Displayed 312656 >>
<« 0 Not displayed 0 >
<< 23 Total active PCBs - 312656 >>

Time used: 1)1.274 CPU sec.; 13.638 Elapsed sec. B82.666% Utilization.
Changes: 0 Added 0 Deleted { 4:18 PM)

Figure 4 SO0 version 3

SO0N OF GVERLORD IV VERSION BG.15/85.Vi MON, NOV 14, 1983, 4:19

U MODE DELAY = 60 HIGHLITE= BRYAN .TECH
:COMMAND OR PROGRAM USER NAME CPU % Q We J/S5# STACK XDS C
‘RUN MIS030.PUB TEST .GNET 5 C Bt 525 4920 31568 0
:RUN QUERY.PUB.SYS MGR .PAYROLL 2 C Bt 526 5200 3348 0
QUERY .PUB .5YS MGR .PAYROLL 2 C Bt S27 16732 0 28172
TEST .PUB .PAYROLL MGR .PAYROLL 17 C Bt S6 8212 2380 0
S004 ?T00LS . TECH BRYAN . TECH | Ca.S43 8044 85992 3
:SHOWDEYV BANKMUX2 ACTUAL .EPS 3 C Bt 5125 2696 18912 5532
:RUN SPOOK.PUB.SYS CONSOLE .OPERATOR 1 C Bt S103 4744 6068 0
XXFCS .EARLE .EPS GENERAL .EPS 252 C Bt S16 25852 1528 0
XXFCS .EARLE .EPS GROUPX .EPS 214 C Bt S73 28852 6220 0
MBQ UTIL .8YS MANAGER .S8YS 26 DT JI9 5904 3252 12892
XXFCS .EARLE .EPS GROUPM .EPS 996 C Bt S119 26620 15208 0
XXFCS ._EARLE .EPS GROUPX .EPS 1015 CA 545 25724 9388 0
RELATE .PUB .CRI ACTUAL .EPS 50 C Bt S92 19492 8452 0
QUIZ104 .PUB .QUASAR AWAYNE .LABOR 0 C Bt S129 4304 0 3124
TP3000 .PUB .ccc ENTRY .PERSONNL 0 C bs S133 5332 1948 0
TP3000 .PUB .CCC PSR LPAYROLL 21 C Bt S131 8916 15972 12520
MAILROOM HPMAIL .SYS MAILROOM HPOFFICE 1 DQ J41 5212 1864 7452
TP3000 .PUB .CCC MGR LPAYROLL 0 C bs §7 5140 12180 7812
TEST .PUB .PAYROLL MGR .PAYROLL 220 C Bt S11 8212 13732 23976
TEST .PUB .PAYROLL MGR .PAYROLL 84 C Bt 59 8340 2380 0
XXFCS _EARLE .EPS SALES .EPS 401 C Bt S80 25596 10552 0

28-8

Prepared by the Southern Californie Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

:COBOL PFLSR021_FLSSRCE.U MGR .DESIGN 1 C Bt S140 5296 8492 0
XXFCS .EARLE .EPS MACOM .EPS 170 C Bt Si00 25724 31212 0
MIS030 .PUB .GNET TEST .GNET 10 CA 525 30796 588 0
1500:e

Figure 5 300 version 4

MO0 (Mistress of ‘Overlord) Version (RW)} MON, NOV 14, 1983, 4:20
FILE NAME (COMMAND) USER NAME CPU % Q WC J/SH# STACK XDS CODE
¥ RUN MIS030.PUB TEST LGNET 5 0 C BT 825 4920 31568 0
:RUN QUERY.PUB.SYS MGR .PAYROLL 2 0 C BT S26 5200 3348 0
QUERY .PUB .SYS MGR .PAYROLL 2 0 C BT 827 16732 0 28172
TEST .PUB .PAYROLL MGR .PAYROLL 7 0 C BT S6 8212 2380 0
:SHOWDEV BANKMUX2 ACTUAL EPS 3 0 C BT S125 2696 18912 5532
:RUN SPOOK.PUB.SYS CONSOLE .OPERATOR 1 0 C BT S103 4744 6068 0
XXFCS .EARLE .EPS GENERAL .EPS 252 0 C BT Steé 25852 1528 0
XXFCS .EARLE .EPS GROUPX .EPS 214 0 C BT S73 25852 6220 0
MOD ?TOOLS .TECH BRYAN .TECH 0 1 CA 8543 8160 2904 1
MBQ UTIL .8YS MANAGER .SYS 26 0ODT J19 5904 3252 12892
XXFCS .EARLE .EPS GROUPM . EPS 996 0 C BT S119 26620 14960 0
XXFCS .EARLE .EPS GROUPX .EPS 1016 0 C BT S45 25724 10536 0
RELATE .PUB .CRI ACTUAL .EPS 50 0 C BT S92 19492 8452 0
QUIZ104 .PUB .QUASAR AWAYNE .LABOR 1 5 C bS 5129 12672 1408 5608
TP3000 .PUB .CCC ENTRY LPERSONNL 1 0 C BT 5133 9044 6384 0
TP3000 .PUB .CCC PSR LPAYROLL 22 Y C BT S131 8916 15972 12520
MAILROOM HPMAIL .SYS MAILROOM . HPOFFICE 1 O D P J41 5212 1864 7452
TEST .PUB .PAYROLL MGR LPAYROLL 221 Y C BT St1 8340 13732 23976
TEST .PUB .PAYROLL MGR PAYROLL 85 1 C BT 89 8340 2380 0
XXFCS .EARLE .EPS SALES .EPS 401 0 C BT S80 25596 10552 0
:COBOL PFLSRO2F.FLSSRCE U MGR .DESIGN 1 0 C BT S140 5296 8492 0
MIS030 .PUB .GNET TEST .GNET 10 0CA 825 30796 588 0
TP3000 .PUB .CCC MGR .PAYROLL DELETED.

Figure 6 MO0

USER SUMMARY REPORT
WORKING SET INFO

PIN USER.ACCT PROGRAM NAME (command) CPU % PRI CSTSZ STKSZ DSTSZ
32 MGR.PAYROLL user program file 2237 0 152 7360 16732 0
33 MGR.PAYROLL user program file 17415 0 152 0 8212 2132
59 GENERAL.EPS user program file 252537 0 152 0 25852 0
87 MANAGER.SYS user program file 26308 0 202 12176 5504 768

101 GROUPX.EPS user program file 1032 8§ 27 152 0 25724 10536

119 ACTUAL.EPS user program file 50687 0 152 0 19492 2648

125 AWAYNE . LABOR user program file 7636 0 153 5608 4656 6664

126 ENTRY.PERSONNL user program file 1735 0 152 0 9044 6328

131 PSR.PAYROLL user program file 22876 1 152 12520 8916 15844

138 BRYAN.TECH OPT.TOOLS.TECH 637 1 152 1832 114582 0

142 MAILROOM HPOFFICE user program file 1231 0 202 0 5212 0

167 MGR.PAYROLL user program file - 222861 2 152 23976 8340 13732

173 MGR.PAYROLL user program file 86510 2 152 0 8212 2132

175 SALES.EPS user program file 401055 0 152 0 25596 1176

194 TEST.GNET user program file 10986 0 200 0 30796 588

28-9

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

CONTINUE EXECUTION? (YES/NO) no

Figure 7 OPT

4:24 PM ELAPSED 00:01:25

DISC WAITS Memory Garbage Garbage
Idle Busy MAM User & MAM User allocation collection allocation
88% 10% -~ 0% 0% 1% 0% - 0% 0
DRIVE- 1 2 3 4
Rfsec- 0 0 0 O
W/sec- 0 0o 0 0
i Q& %Tot WAIT STATES...... Disc
Program name ' J/S# PIN Cpu Abs Dsc Bio Trm Imp Pre IO Swp Ovr
QUERY .PUB .. 8YS 827 €32 0% 0% 0% 0% 99% 0% 0% 0 0 0
XXFCS .EARLE - .EPS -~ 816 (59 0% 0% 0% 0% 99% 0% 0% o 0 0
MBQ JUTIL .8YS8 J19 D87 0% 0% 0% 0% 0% 0% 0% 0 o0 0
SURVEYOR .TOOLS .TECH 43 Lo0 21% 0% 0% 0% 99% 0% 0% 6 0 o0
QEDIT .PUB "ROBELLE S25 Co91 0% 0% 0% 0% 99% 0% 0% 0 0 0
XXFCS .EARLE . .EPS 545 Cl101 76% 0% 0% 0% 0% 0% 0% 2 ¢ 0
RELATE ..PUB .CRI S92 Cl19 0% 0% 0% 0% 99% 0% 0% 0 ¢ 0
QUIZ104 .PUB " .QUASAR S129 Cl125 0% 0% 0% 0% 99% 0% 0% 0 0 0
TP3000 .PUB - .CCC 5133 Ci26 0% 0% 0% 0% 99% - 0% 0% 0O 0 0
TP3000 .PUB .CCC S131 C1a 0% 0% 0% 0% 99% 0% 0% 0 0 0
MATLROOM .HPMAIL . SYS J41 . DI42 0% 0% 0% 0% 0% 0% 0% ¢ 0 0
TEST .PUB - .PAYROLL S9 Cl73 0% 0% 0% 0% 99% 0% 0% 0 0 0
o 0 0

f?ECS .EARLE .EPS . 380 CI75 0% 0% 0% 0% 99% 0% 0%

Figure 8 Surveyor

%#Idle #MMI %Dscl %Both %PCPU ¥Mam %Grbg %0vhd
93.5 0.0 35 00 2734 0.0 0.0 0.3
97.4 ¢.0 11 0.0 1.3 0.0 0.0 0.2
9.4 0.0 21 00 2.2 0.0 0.0 0.3
94.9 0.0 1.9 0.0 2.8 0.0 0.0 0.4
61.7 0.6 27.7 0.7 81 0.2 0.0 1.8
76.7 0.2 16,8 01 49 0.1 0.0 1.3
5.8 0.0 2246 0.2 161 0.1 0.0 2.3
15,0 .0.0 20.7 2.8 S4.0 0.2 0.0 7.5

0.0 1.0 30.2 7.3 53.4 0.5 0.0 .81
2.2 0.3 31.8 2.2 58.0 0.1 0.0 &.5
1.6 1.5 41,7 2.9 476 0.1 ¢.0 4.8
0.7 0.9 8.7 0.2 386 0.0 00. 3.9
20,7 0.2 51.0 3.9 205 0.1 0.0 3.7
4.9 0.0 311.3 0.2 239 0.0 0.0 3.7
0.0 0.0 62.2 2.7 28.2 0.1 0.0 6.9
0.2 0.1 65,0 26 265 0.2 0.0 5.6
2.3 0.0 51.7 1.4 3%.4 0.1 0.0 9.2
28-10

Prepared by the Southern California Regionol User's Group

Proceedings: HP3000 IUG 1984

Anaheim
26.5 0.2 43.6 1.5 23.
36.2 1.5 26

0.2 31.1
[PORPOISE]: & '

Figure 9 Porpoise

The next item on most of the perfor-
mance programs is the percent of the
CPU a process used during the last
interval. An interval is defined in
each of the performance programs
as either the time between charac-
ters input from the keyboard or the
configurable time in seconds known
as the delay time, whichever is short-
er. The delay time isused as a ter-
minal read timeout and will allow
the program to wait only the specified
amount of time before automatically
issuing a carriage return to the pend-
ing read. SURVEYOR computes this
number by holding the cumulative
CPU milliseconds used on the last
Measurement and subtracts that num-~
ber from the cumulative number of
CPU milliseconds up to the most
recent reading. Both of these num-
bers come from the Measurement In-
terface. The difference of these
numbers is then divided by the to-

SURVEYOR:

;o

o0

- N

tal amount of CPU milliseconds ex-
pended on all processes during the
interval. This difference is then mul-
tiplied by 100 to obtain the percent of
total time allocated to processes taken
by this process. The other performance
programs differ in their division.
The others divide the difference of
cumulative CPU times by the elapsed
clock time during the interval. This
procedure gives a substantially dif-
ferent number which is the total
amount of time during the interval
that the process was being serviced by
the CPU. Another difference be-
tween SURVEYOR and the others is
that the other programs obtain their
cumulative CPU times from the PCBX
area of each processes stack. The
sum of the percent of CPU column in
SURVEYOR should always be at or
very near 100% while the same sum
from the other programs would never
be 100% and most times not close.

%CPU = ({Cumulative CPU now - Cumulative CPU last interval} /
Total CPU spent on processes} ¥ 100.9)
Other performance programs:
%CPU = {(Cumulative CPU now - Cumulative CPU last interval) /
Total elapsed time since last interval) % 100.0)

The que and priority columns
should be discussed together. A
general understanding of the MPE
que structure is required to understand
what is presented in the QUE and
Priority columns in the performance
programs. The MPE scheduling que
allows the System Manager to assign
a minimum and maximum priority to
the three circular ques, C, D and E.
The two linear ques have a fixed
priority range of 1to 100 for A and
100 to 150 for B. (see Figure 10)
A low priority number indicates a
high priority.

The highest priority process request-
ing CPU will be serviced the next
time the ™ dispatcher reviews the
scheduling que. Before a process may
request the CPU, all of the resources

28-11

required by that process must be
available. This means that any data
or code segments needed must be in
core. Each time a process uses its slice
of CPU time, its priority is decre-
mented until it is at the bottom of its
que or until a terminal read is issued.
When a terminal read is issued, the
process jumps to the top of its que.

A process may be pushed out of its
que to a higher priority when a higher
priority process is impeded on a
resource that your process has lock-
ed, most likely a SIR. Assume you
are running in the CS que say at
priority 160 and have the system
directory SIR locked. If you are
being serviced by the CPU and a
system process running at say priority
50, wants to lock the system

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

directory SIR, the system will see this
conflict and push your priority up
to priority 50 until you unlock the
system directory SIR. A process
with privileged mode capability may
also call the GETPRIORITY intrinsic

and move itself or one of its son
processes to a priority out of its que.
These are the only two cases that [
know of where a process may be run-
ning out of its assigned que. This
may explain some situations where

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

QUES

CBASE
C
DBASE
} CLIMIT
|

Figure 10

EBASE

DLIMIT

PRIORITIES

ELIMIT

processes in the CS que are running at priority S0.

The que data is kept in the PCB
and also in the Measurement Inter-
face. The priority is only kept in the
PCB. Surveyor gets its que infor-
mation from the Measurement Inter-
face while all others obtain their in-
formation from the PCB. One version
of SO0, version 1, could misrepresent

Priority

< 150

151 - 176
177 - 201
202 - 220
221 - 239
240 - 249
> 250

These assighments will most likely be
different from the limits set on your
machine and consequently the readings
from this program will be inaccurate.

28-13

itself with its que data. This author
apparently realized the potential of a
process running out of its assigned que
and decided to assign a que based on
prioirty. In doing so he fixed the que
limits by hard coding them into his
program. The limits he decided on are

as follows:
Que .
B . (No A que)
Cc
Sub C
D
Sub D
E
Sub E

The stack size of each process is only
found by using the PCB and the DST

Prepared by the Southern Colifornia Regional User's Group

Proceedings. HP3000 IUG 1984 Anaheim

tables. First the PCB is searched for
the stack DST number (word 3 bits
1:10), The DST table is then searched
for this entry. The first word of the
DST entry contains the size of the
data segment divided by four (4) to
save space. The value for stack size,
or any segment size, should always be
a multiple of four (4).

The current code segment size and the
extra data segment size found in
SO0 and MOO are related. The Seg-
ment Locallity List (SLL) is a list of
the resources required to be available
(in core) for the process to request the
CPU. One version of SO0 and MOO
check the SLL for each process to
determine the size of all code seg-
ments or extra data segments listed
in the SLL. The SLL is a very
dynamic table changing every time
a process switches code segments,
builds a new extra data segment or
opens a file requiring a new extra data
segment. The data collected from the
programs SOOQ, and MOO from the
SLL can be very valuable but it must
be understocd that these figures will
not necessarily include all code seg-

ments or extra data segments used by
a program, only those required for the
process to run.

The program name/command name
column found in a version of SOO
and MOO requires some knowledge of

- the command interperter stack. The

program name may be obtained from
a system routine named PROCFILE.
The currently active PIN number is
required as input to the routine. The
most recently executed command in
a command interperter process is a
little more difficult to obtain. This
command name is stored at DB+1 in
the command interpreter stack and
may be changed by future releases of
the operating system. It is a helpful
bit of information for those nrograms

.-that wish to find it.

Disc I/O information is only
provided at the process level by Sur-
veyor and can be very valuable.
This information is collected from the

- Measurement Interface and is per-

sented in terms of disc I/Q’s per
elapsed second.

V. Subjective Comments About Performance Programs

SO0 - Version 1

Version One of SO0 is a well writ-
ten program. Block comments are
used prior to most routines and do
a satisfactory job of explaining the
objectives of - the routines, The
program is very readable and could
probably be supported fairly well by
gsomeone familiar with SPL. The
program is clean in its design-and runs
fairly efficiently except for the Que
column which was described previous-
ly. The program tries to derive the
Que by obtaining the current ab-
solute priocrity and trying to fit it to

a previously defined Que structure, -

This could result in substantially-inac-
curate results in the Que column. The.
dangerous code is isolated and for the
most part is used only when absolut-
ly needed. A good DST retrieval
routine is needed to make any of the
performance programs work well, and
this program has one of the better
ones. With the understanding of what
the program is trying to accomplish, I
feel I could rely on the output-of this
program with the exception of the Que
column.

28-14

SO0 - Version 2

Version Two of SOO seems to be a
predecessor to both Version One and
three. This program has many of the
same block comments in many of the
same named routines but seems to
have been written for pre-MPE 1V
systems. The program only allows
for 2 maximum of 128 process iden-
tification numbers (PIN’s. The
DST retrieval routine is also much
longer and more complicated. The
routine makes an attempt to go out to
virtual memory on its own to retrive
data from an absent data segment. 1
am not sure if this method is still
required or not. I have crashed the
system several times with a System
Failure #16 (DST Violation/Interval
Interrupt) trying to access an extra
data segment in virtual memory
without using disc I/0 calls, but there
are versions of SOO that seem to work
without these calls. I suspect there is
an error on my part somewhere, but I
havn’t found it yet. This program is

as reliable as Version One except for

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

the handling of the Que column. This
version takes the que data straight
from the PCB entry and does not try
to make it fit a predefined Que struc-
ture. For pre~MPE IV machines this
version would be the best and maybe
the only choice.

500 - version 3

Version Three of SOO seems to be an
enhanced - Version One. It contains
many: of the sime Troutine names and
comments but goes a little: farther
' than Version One. This routine is bet-
ter documented and therefore would
be easier. and quicker to support.
There are some warnings-in the com-
piled version that 1 obtained but they
don't ‘seem to affect the perfor-
mance of the program. The program
replaces the DST retrieval routine
used in Version One with a cail to
another procedure which then calls a
system level (undocumented) routine
named DMOVE to transfer data from
extra .data segments to-the users stack.
I assume that this routine would be
- more reliable being a system routine
but I have no prior experience with
the- routine. The way in which the
programmer implemented the new
routine is a little costly in terms of
procedure calls but may have been
left that way for history. This version
-seems to be very reliable, and it seems
: to ‘be remarkably similar to the ver-
sion of SOO included .on the Robelle
contributed library.

SO0 ~ Version 4

Version Four of SOO represents a sub-
stantially different version of SOO.
The program seems to be an entirely
new program, and not a clone from
some original SQO like the previous
three wversions seem to be. The
program does not jump into a process
display but prompts with 'SOG?, The
commands to get the process display
are not apparent and it will be ini-
tially frustrating for the user expect-
ing the familiar SOO process dis-

play. This wversion provides many -

more options than are available on
other versions of SCO and is aimed at

the more involved and sophisticated .

user. The code is also more complex
and harder to read and support.
Many higher level constructs, such as
using split stack mode to switch to the
system globals area, are used making
it all but unsupportable by a "mere
mortal" programmer. The comments

28-15

from Version

- FREE2 PUBSYS,

are also rather sparse, but it is a
very efficient program. The DST
retrieval routine is taken directly
One of SOO and
seems to be reliable. The program
will allow you to do almost anything
including running programs like
changing your
own priority, and initiating the
SEGMENTER? The program has a
help (?)-facility and each option ap-
pears to be safe enough for the average
user to try. The program is more dif-
ficult to wuse but allows more
flexibility and provides . about the
same reliability.

MOO

The program MOO claims to be a
modified version of SOO. and has
some similarities. This version is
more an extention of SOO .than a
modified version. The Measurement
Interface was mcorporated for some
I/O statistics and routines were added
to allow the running of other
programs like Spook. New routines
have been added to do things like a
FREE2 - display -or LISTEQX. The
program is fairly well commented, but
like. Version Four of SQO, the .con-
structs are more difficult to follow.
The code is very sharp and effi-
cient,. and -in my experience it has
been very reliable. The program would
be difficult to support but it.can be
done by most mortals. The program
only stays inside privileged mode long

- enough to get what it needs which

makes it fairly safe.

Surveyor

Surveyor could have been written as
a demonstration program for the
Measurement Interface. It follows the
constructs of the Measurement In-
terface very closely. The program is
initialized in privileged mode and
remains there during its entire execu-
tion. This has the potential to cause

.problems although I have never seen it

happen. The program has two dis-
plays, either a tables display, similar
to Tuner4, or a process display that is

, very different from SO0, OPT or
., MOO. The process display is the

only display that] have. seen which
displays both CPU statistics and 1/O
statistics on the same screen. The
program presents the data necessary
to determine resource hogs in a fairly
concise and readable format. The
program uses a large section of the

Prepared by the Southern Calijornia Regional User's Group

Praceedings: HP3000 IUG 1984 Anaheim

stack in the DL to DB area to swallow
all of the process statistics in one bite
while keeping its stack size reasonable
{under 10K). The code is a little short
on comments but is fairly well struc-
tured, and seems to be efficient
enough. A modification to the
program using only privileged mode
when it was required would make me
‘feel more comfortable, but it has not

. caused us any problems Jyet. Since all
of the process related data comes
directly from the Measurement Inter-
face, 1 feel I can rely on the data
from the program as much as I can
rely on the Measurement Interface.
I have no reason to doubt the data
coming from the Measurement
Interface.

Porpoise

‘Porpoise is another program that could
have been written to ‘demonstrate the
~-Global Statistics gathering of the
Measurement Interface. The program
has a fancy driver but really has only
" one display and that is global CPU re~
lated statistics. The program is ex-~
cellent for gathering CPU activity
to be later consolidated and perhaps
- graphed. All of the data comes
directly from the Global Statistics
(Class 0) and is as reliable as the
Measurement Interface. The code is
clean and short enough to be easily
read. Many of the routines used to
make the driver fancy are part of
the Boeing account library allowing
the code to be shorter. The code is

very well documented and should be
easy to support.

OPT

OPT is Hewlett Packard’s On Line
Performance Tool written to supply a
long needed supported version of a
performance monitoring program.
OPT is slowly gaining acceptance
with the user community as enhance-
ments are made to make it more
usable. The Q-MIT version of OPT,
version 10, has about equaled what
has ‘been available with SO0, MOO
and Surveyor all along. Futher com-
ments, analogous to the ones made
of the other performance programs,
are unavailable at this time because

the source has been unavailable.

Summary

All of the programs do a good job
at what they were designed to do. I
don't think the value of any one of
them c¢an be raised above the others
without describing specific cir-
cumstances. All of the programs with
the exception of Porpoise, have no dis-
tinguishing marks that could indentify
either a company or an individual as
the author. Our company has made
use of Surveyor, OPT, and a supply of
our own home grown utilities to
monitor our systems. I trust I have re-
lated enough information for the
reader to determine which programs
are best suited for each situation in his
or her shop.

Appendix

*okx ATTACHID *ok

The ATTACHIO routine is the primary IIO routine used by
the I/0 system,

DOUBLE PROCEDURE ATTACHIO(I'LDEV, I'QMISC, I'DSTX, I'ADDR.
I'FUNC, I'COUNT, I'PY, I'P2, I'FLAG);
VALUE I° LDEV, I'QMISC, I' DSTX, I'ADDR,
- I'FUNC, I'COUNT, I'P1, 1'P2, I'FLAG;
INTEGER I'LDEV, I'QM'ISC, 1'DSTX, I'ADDR,
JI'FUNC,. I'COUNT, I'P1, 1'P2, I'FLAG;
OPTION PRIVILEGED, UNCALLABLE, EXTERNAL;:

Xk CHECKLDEV *¥%

28-16

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

The CHECKLDEV routine does checking on the type of
device of a given logical device. (ie. DS Device.)

PROCEDURE CHECKLDEV {DEV);
VALUE DEV;
INTEGER DEV;
OPTION EXTERNAL;

¥XX CHECKDISC *xx

The CHECKLDEV routine will return global information
about the requested disc.

PROCEDURE CHECKDISC (LDEV, INFO);
VALUE LDEV;
INTEGER LDEV, INFO;
OPTION EXTERNAL;

Appendix

¥k DELAY %k

The DELAY routine is identical to the PAUSE intrinsic
except the parameter is a double word millisecond.

PROCEDURE DELAY(TIME) ;
VALUE TIME;
DOUBLE TIME;
OPTION EXTERNAL;

%k DISKSPACE Xk

The DISKSPACE routine will return disc freé space
information about the requested disc,

INTEGER PROCEDURE DISKSPACE(LDEV,NSECT,PDISKADR);
VALUE LDEV NSECT;
INTEGER LDEV;
DOUBLE NSECT ,PDISKADR;
OPTION EXTERNAL;

XXX DMOVE 30Kk

The DMOVE routine will move data from a users stack to a
system extra data segment or from a system extra data
segment to the users stack.

LOGICAL PROCEDURE DMOVE(DSTTABMUM, TABSTARTPTR,NUMWRDS USERTABPTR,
TOFROM, PARMNEQS) ; i
VALUE DSTTABNUM NUMWRDS , PARMNEQS , TABSTARTPTR, TOFROM, USERTABPTR;

28-17

Prepared by the Southern Colifornia Regional User's Group

Proceedings:-HP.‘SOOO IUG 1984 Anaheim

LOGICAL DSTTABNUM, TOFROM;
INTEGER NUMWRDS ,PARMNEQS ,TABSTARTPTR,USERTABPTR;
OPTION EXTERNAL ,UNCALLABLE, PRIVILEGED;

Appendix

%k¥ FINDDEVICES *%xX

The FINDDEVICES routine will return all the logical
device numbers of a particular type. (ie. Type = 1 will
return all logical devices that are discs.)

PROCEDURE FINDDEVICES(TYPE,TARGET 'ARRAY);
VALUE TYPE;
INTEGER TYPE,
INTEGER ARRAY TARGET'ARRAY;
OPTION EXTERNAL;

KK GENMSG Kokk

The GENMSG - routine will format and display an error
message on $STDLIST. Parameter substitution is allow in
the message.

INTEGER PROCEDURE GENMSG{MSET ,MNUM,MASK,P1,P2,P3,94,P5,
-~ DEST,REPLY,OFFSET,DST,CNTRL);
VALUE MSET,MNUM, MASK,P1,P2,P3,P4,P5,DEST,REPLY,OFFSET,DST,CNTRL;
LOGICAL MSET,MNUM MASK,P1,P2,P3,P4,P5,DEST,REPLY,OFFSET, DST CNTRL
OPTION VARIABLE, EXTERNAL ;

¥k GETSIR #okk

The GETSIR routine will lock the requested System
Integrity Resource number. The routine will wait for
the SIR to become free if it is locked.

LOGICAL PROCEDURE GETSIR{SIR};
VALUE SIR;
LOGICAL SIR;
OPTION EXTERNAL;

Appendix

Kk GETSTATISTICS %k

The GETSTATISTICS routine will return Global statistics
information from the Measurement Interface.

INTEGER PROCEDURE GETSTATISTICS(CLASS,SUBCLASS,STARTINGITEM,
WORDCOUNT , TARGET ' ARRAY) .
VALUE CLASS, SUBCLASS, STARTINGITEM, WORDCOUNT;
INTEGER CLASS SUBCLASS, STARTINGITEM NORDCOUNT
INTEGER ARRAY TARGET’ ARRAY
OPTION EXTERNAL;

28-18 .

i Prepared by the Southern Califernia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

KKK GET'PAGE *X¥.

The GET'PAGE routine is a disc paging routine,

INTEGER PROCEDURE GET'PAGE (PAGE) ;
VALUE PAGE;
INTEGER PAGE;
OPTION EXTERNAL;

XKk GET'DSDEVICE X%

The GET'DSDEVICE-rodtine will return DS 1nformafion on a
given logical device.

INTEGER PROCEDURE GET'DSDEVICE (LDEV);
VALUE LDEV;
INTEGER LDEV;
OPTION EXTERNAL;

*x% GET'DSXREF ***

The GET'DSXREF routine will return a DS device Cross
reference for a given active process

INTEGER PROCEDURE GET 'DSXREF (PIN);
VALUE PIN;
INTEGER PIN;
OPTION EXTERNAL;

Appendix

¥k LOCK'DFS'DATA’ SEGMENT okk

The LOCK'DFS'DATA'SEGMENT ‘routine will leck the Disc
Free Space table.

INTEGER PROCEDURE LOCK'DFS’'DATA'SEG { LDEV);
VALUE LDEV;
INTEGER LDEV;
OPTION EXTERNAL;

¥¥% PROCFILE Xk

The PROCFILE. routine will return .the fully qualified
filename of the executing process. -

PROCEDURE PROCFILE (PIN, NAME);
VALUE PIN;
INTEGER PIN;
BYTE ARRAY NAME;
OPTION EXTERNAL;

28-19

Frepared by the Southern California Regional User's Group

Proceedings: HP3000 UG 1984 Anaheim

Kk RELSIR %%k

The RELSIR routine will release a previously locked
System Intregrity Number.

PROCEDURE RELSIR(SIR,FLAG);
VALUE SIR,FLAG;
LOGICAL SIR,FLAG;
OPTION EXTERNAL;

%k RESETCRITICAL &k

The RESETCRITICAL routine will enable the process to
abort without causing a system failure should an
abnormal situation occur,

PROCEDURE RESETCRITICAL(C);
VALUE C,
LOGICAL C:
OPTION EXTERNAL;

Appendix

*XkX RESETDB XXX

The RESETDB routine will reset the DB pointer for your
process back to your processes stack.

PROCEDURE RESETDB (DBX):
VALUE DBX;
INTEGER DBX;
OPTION EXTERNAL;

%*¥X SCAN’PAGE XkX
The SCAN'PAGE routine will scan a disc page obtained
with GET'PAGE.

INTEGER PROCEDURE SCAN'PAGE;
OPTION EXTERNAL;

k% SETCRITICAL *¥x

The SETCRITICAL routine will cause the system to fail if
the process meets an unexpected situation which would
normally cause the process to abort. This routine is
used to ensure all items in a list are completed.

LOGICAL PROCEDURE SETCRITICAL;
OPTION EXTERNAL;

¥k SETSYSDB Kk

28-20

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

The SETSYSDB routine will set the DB pointer for your
stack to point to the System Globals area.

INTEGER PROCEDURE SETSYSDB;
OPTIGN EXTERNAL;

Appendix

*¥kk STARTSTATISTICS *%xX

The STARTSTATISTICS routine will enable. any one or all
of the statistics gathering types of the Measurement
Interface. ‘ ‘ .

INTEGER PROCEDURE STARTSTATISTICS{CLASSMASK);
VALUE CLASSMASK ;
LOGICAL CLASSMASK;
OPTION EXTERNAL;

XIk STOPSTATISTICS %%k

The STOPSTATISTICS routine will disable any or all of
the statistics gathering types of the Measurement
Interface.

PROCEDURE STOPSTATISTICS(A);
VALUE A;
LOGICAL A;
OPTION EXTERNAL;

*x% UNLOCK'DSF 'DATA'SEG %%

The UNLOCK'DFS'DATA’SEG routine will unlock the Disc
Free Space table locked with LOCK'DFS'DATA SEG.

PROCEDURE UNLOCK'DFS'DATA’SEG;
OPTION EXTERNAL;

28-21

Prepored by the Southern California Regional User's Group

|Proceedings; HP3000 IUG 1984 Anaheim

Bryan: Garroll is currently a Hewleit Packard
Support Specialist at MA-COM in Burlington, Mass.
He graduated from Abilene Christian University
with a B.B.A in Business Computer Science in
1982 and received the Certificated Data Processing
{CDP) certificate in October of 1982. Mr. Carroll

is " also amembe? of the Association for Computing - -
Machinery and was a member of the Abilene
Christian University Programming Team in 1982
winning first place honors at the regional level,

His experience includes four years with the-HF3000,
two of which were at the systems level, '

- -

28-22

Prepared by the Southern California Regional User's Group

