Proceedings: HP3000 IUG 1984

Anaheim

Avoiding

Heap Overflow and Stack Overflow
- with Pascal/ 3000

by Christopher P. Maitz
Hewlett-Packard

This paper is an attempt to share with-the
Pascal/3000 community things that were
learned in the development of the Pascal/3000
compiler. The compiler is written in Pascal

and is compiled with itself. The solutions we

found to avoid heap overflow and stack over-
flow while using the Pascal/3000 compiler
should be helpful to other developers of Pascal
systems. : : .

The Pascal/3000 project team has been
facing the problem of lack of space during

compilation since the early days. of the .
Pascal/ 3000 compiler’s development. We cur-. .
rently use the Pascal/ 3000 compiler to compile .

its own source, but before we reached the stage
in development when enough features existed
in Pascal/3000 to make self~compilation, pos-
sible, we compiled our.source with the "P4"
compiler available in the contributed library.
The P4 compiler took Pascal source code and
produced P-code. An assembler then converted
the P-code into SPL/3000 source code, at
which point the SPL/3000 compiler was used
to produce 3000 code. This painful process was
a great motivating factor for us to develop the
compiler to the point at which we could com-
pile the compiler with the compiler. As a fore~
shadowing of future woes, we faced the space
problem even with the P4 compiler. My first
assignment as part of the Pascal/3000 team
was, in fact, to enhance our version of the P4

compiler ‘so that its symbol table would pack.

two characters per word rather than one, dou-
bling the size of its symbol table.

What exactly is the stack size. limitation.

problem? A program executing on the HP3000

LI

uses a stack as shown in Fig. 1. Primary apd
Secondary DB contain the global variables.
When a procedure is called, its- activation
record (stack marker and local variables) is
pushed onto the stack. The set of stack
markers between QI (Q Initial, the stack
marker for the outer block) and Q (the stack:
marker for the currently executing procedure)
shows at any given.time the dynamic calling
sequence of the program. The area between Q
and S (the top of stack) represents space allo-
cated for the current procedure’s local vari-
ables and any expressions undergoing evalua-
tion. Between S and Z (the stack limit) is space -
for the expansion of S, . .

The other side of the stack is the area be-

tween DL and DB. This area. can be thought of =

as free space as far as the system is concerned. . -
For Pascal/3000 programs, however, this-area
contains the heap, where storage is allocated
dynamically. Whereas the system automatical-
ly increases Z as space is needed above S, the
Pascal runtime library . heap-routines control
the size of the DIL.-DB area directly, using the
intrinsic DLSIZE. The total size of the regions
both above and below DB must not exceed the
stack segment size, which is determined when.
the system is configured. The maximum size is
31232 words. (Actual space available to the
program is less, due to process information that
the system keeps in the PCBX.in the users
stack.) B ‘ : .)
When the Pascal/3000 compiler .requests data
to be allocated in the heap and not.enough
space exists in the stack, the Pascal runtime .
library traps the condition and.-the error

SYSTEM RESOURCE EXHAUSTED 1, COMPILE TERMINATED (42.6)

16-1

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

is generated and the compilation is terminated.
When the Pascal/3000 compiler runs out of
space at the other end of the stack (due to a
procedure call, allocation of local variables, ex-
pression evaluation), an error also occurs. This

error, unfortunately, cannot be trapped as the
heap overflow error can. Instead of a Pascal
error message, the system aborts the compiler
and generates the message

ABORT :PASCAL.PUB.SYS.<segment-#> <segment-offset?
PROGRAM ERROR #20 :STACK OVERFLOW

Both of these overflow situations will be refer-
red to simply as the "stack size limitation
problem” or "overflow problem" in the rest of
the paper.

It is the responsibility of the runtime
library to balance the areas on either side of
DB. When space is needed in the heap and not
enough space is left between the internal Top-
of -Heap pointer and DL, DLSIZE is called to
increase the area between DL and DB. When
space is deallocated through use of the Pascal
pre-defined heap routine RELEASE, DLSIZE
is called to cut back this area, allowing the sys—
tem more room with which to increase Z. The
stack segment of a Pascal/3000 program is

then split between the space used on either side

of DB. The compiler has very few static data
structures, its structures are almost entirely
dynamic, the sizes of which depending sig-
nificantly on the structure and character of
the user’s program. The Pascal/3000 compiler
as it runs will generally require only a few
thousand words between DB and.Z, leaving the
rest for the heap. s

The compiler uses the dynamic structure of
the heap to its advantage. When compiling a
program the compiler processes the global in~
formation first, which includes labels, con-
stants, types, variables and external procedure
headers. Even though space is allocated for
these dynamically in the heap, it remains allo-
cated thfoughout the entire compilation since
global identifiers can be referenced anywhere
in the program. :

Processing procedures is very different from
processing the outerblock and therein lies the
effectiveness behind several key space-saving

ideas that will be presented shortly. A~

procedure’s identifier and parameter list are
stored “in the heap, along with other global in-
formation. Before the declarations and the
body of the procedure are processed, a MARK
is done in the heap which saves the Top-of-
Heap pointer (Fig. 2a) The procedure’s
declarations and statements are then processed
and stored in the heap (Fig. 2.b), but, after the

code for the procedure is generated, all of the -

space allocated since the MARK can be
reclaimed using RELEASE (Fig. 2.c). The heap
is then returned to its state before the declara-
tions and statements of the procedure. All that
remains is the procedure’s name and descrip-
tions of its parameters, which is only the
information necessary to call that procedure
from other points in the program.

With this short introduction to the work-
ings of the compiler, one can see that two ways
to make the 3000 stack stretch further would
be to reduce the amount of global data (the
space which remains during the entire compila-
tion) and to keep down the size of individual

-procedures. Several approaches to the global

problem will be presented first.

1. GLOBAL/EXTERNAL Compiler Options.
In 2 normal program {neither $§GLOBALS$ nor
$EXTERNALS specified) the compiler assumes
that all global variables are present and there-
fore assigns addresses to them in Primary DB.
For all other compilation units which comprise
the program, the same assumption is made.
Obviously, if the compiler is assigning addresses
for the global variables, they must all be
declared in each compilation unit and in the
same ordetr to ensure that the addresses used
are the same for each compilation.

This requirement is relaxed with the use of
the $GLOBALS and SEXTERNALS compiler
options. As before, the compilation unit which
contains the outer block must have all of the
program’s global variables declared within it.
The compiler option $GLOBALS is used for
this compilation unit to tell the Pascal/3000
compiler- that 1) all of the program’s global
variables are present, 2) the compiler should as-
sign addresses to the global variables and 3)
special information should be put into the USL
file regarding these variables. This information
consists of the name and address of every
global variable. In the other compilation units
of the program, marked with the SEXTER-
NALS option, the compiler does not assign ad-
dresses to the global variables. When it
generates code which references a global vari-
able, it doesn’t use an address in the instruction;
instead, it leaves the address part of the in-
struction blank and puts that instruction on a
list with any other instructions which accessed
that variable. For each’' global variable, the
compiler puts into the USL file a special entry
with the variable’s name and a link to the list
of its references. When the USL file is
prepared into a program file, the MPE Seg-
menter gets the actual address of the variable
from the:information generated by the outer
block compilation and uses it to fix up all of
the instructions which actually reference that
variable in the other compilation units. In this
way, the binding between a variable’s name
(the ways it is referenced at the user level) and

Prepared by the Southern California Regional User’s Group

Proceedings: HP3000 IUG 1984 Anaheim

its address (the way it is referenced by the variables. Compilation units which have never
computer) is postponed until PREP time, had problems are still compiled using all of the
allowing the compiler to relax the need to see global variables. This method was only used on
all of the global variables in all of the compila- the units that needed it as they needed it.
tion units.
To implement this approach, each compila-

Not only does this approach yield sig- tion unit should have a separate file for the
nificant savings, it.can also be implemented as global variables that it uses. Just include the
needed on individual compilation units. All of giobal types and a file containing only the
the compilation wunits that comprise the global variables used in the compilation unit
Pascal/3000 compiler use SEXTERNALS, but (Fig. 3). This method requires that global vari-
only those that have experienced heap or stack able names should be unigue to 15 characters, a
overflow problems include subsets of the global limit imposed by the MPE Segmenter.

$EXTERNALS$

PROGRAM CmpUniti1(Input,Output):

{The global constants and types)
$INCLUDE 'GlobTyps.Types.Account'$

{Just the global variables that this compilation unit uses}
$INCLUDE 'CmpUnitl . Vars.Account'$

{Include the procedures for this compilation unit here}

BEGIN {Empty outer block}
END. {Empty outer block}

¥*¥ Now the outer block compile *¥x
$GLOBALS

PROGRAM MainProg;

{The global constants and types}
$INCLUDE 'GlobTyps.Types.Account'$

{All of the global variables}
$INCLUDE 'GlobVars.Vars.Account’'$

BEGIN {Actual outer block}
{Code for the outer block)
END. {Actual outer block)
Fig. 3. Use of $GLOBAL$ and $EXTERMAL$ Compiler Options

2. External Procedure Declarations. Perhaps suggestion here is to declare them only at
the greatest savings in stack space can be the level used. The source code for the
achieved by declaring external procedures Pascal/3000 compiler consists of about fif-
only on the level used. Although the most ty separately compiled programs. During
natural place to declare external procedures one stage of development, each of these
may be the outer block, there is no compilation units had from 20to 100 ex-
requirement that they be so declared. ternal procedures declared globally. An in-
{(Even though not declared in the outer dividual procedure rarely referenced more
block, the compiler knows that they are ex- than five of these external procedures, yet
ternal to the program.) External procedures space used to describe the name and
may be declared on any level and the parameters for all of procedures was

16-3

Prepared by the Southern California Regional User's Gaesp

Proceedings: HP3000 IUG 1984 Anaheim

globally allocated since they were declared - 5external procedures referenced by
m the outer block. By moving these each level one procedure in the.com-
external procedure declarations inside the pilation unit (average)
scope in which they were referenced, the :
Pascal/3000 team was able to reclaim a - each procedure identifier requires 14
significant amount of space. . words of space
An .example serves to illustrate the potential - each parameter identifier requires 8
savings. Assume the following for a particular words of space

comptlation unit: ‘ .
The sizes for procedure and parameter iden-

- 100 exterpal declarations tifiers are given in HP3000 16-bit words. The
) parameter specification in an average proce-
- 3 parameters per external declaration dure declaration would then be
(average)
3 X 8 = 24
of space for total
parameters a parameter space used

for parameters

Therefore, the amount of space consumed by a single external
declaration is

14 + 24 = 38
space for space for total
procedure id. parameters space used

If all of the external procedure declarations are declared in the outer
block, the total space consumed is

100 % 38 = 3800

of space for total

externalsl external decl. space used

Now if externals are only declared at the level in which they are
referenced, space consumption is

5 X 38 = 190
of space for total
externals external decl. space used

per procedure

In this example, over 3600 words of stack space were saved by declaring
the external procedures locally. :

The value of this approach depends on the Another advantage of this approach
structure of one’s program. If there exists a towards saving space is that it can be applied to
procedure in the compilation unit which individual compilation units as needed.
references all of the externals used.in the en- Removing all external declarations from the
tire compilation unit (or if the entire compila- outer blocks of all the compilation units for
tion unit is a single procedure), this method the Pascal/3000 compiler would have been a
will be of no benefit. Modularized programs large effort. Instead we only used this ap-
with procedures oriented toward single func- proach for those compilation units which were
tions will realize the most gain by declaring ex- experiencing stack overflows during
ten&al procedures at the level in which they are compilation, :
used.

Rather than imbed in-line declarations of
external procedures into your code, it is

16

4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

suggested that you create one file for each
external procedure header and place these files
in a special group. (We called this group
"EXT") If you need to use an external proce-
dure, then include the file which has the exter-
nal procedure declaration in the procedure
which calls it (Fig. 4). The viability of putting
each external into its own file depends on your

PROCEDURE Ptrocl {Parm: Integer):

VAR
I : Integer;

$INCLUDE 'InsertNu.Ext.Account'$
$INCLUDE 'DeleteNu.Ext.Account’'$

BEGIN {Proc1}

naming conventions. [t was a natural manner
in which to organize external declarations for
the Pascal/3000 project, since each procedure
in the compiler already resided in its own file
in a special group for procedures (called
"PROCS"). However it is done, localizing exter-
nal procedure declarations can yield significant
savings in stack space.

InsértNumber (I): {an external procedure call)

DeléteNumber (1} {an external procedure call}

ENDE {Procl}

Fig. 4. Local Declaration of External Procedures

3. Odds and Ends. Here a few general tips
which the Pascal/3000 team learned during
development. If your procedure or function
spans more than 2 pages (without comments)
you may try to break part of it up into one or
more nested procedures. Procedures that are
too long tend to be hard to read, are difficult
to debug, take a lot of stack space to compile,
and generally fail to follow structured
programming guidelines. If a case element
statement is long, make it a nested procedure to
save space. If there is a large number of cases
in the case statement, break it up into smaller
ones. Put the more frequent case elements in
the first part of the case statement; in the
OTHERWISE part of the case statement, have
a procedure call to a nested procedure which
has the rest of the case elements.

That brings to a close the methods actually
used in the development of the Pascal/3000
compiler. There are, however, several more
ideas that will be presented in brief.

4, If you are compiling with the option
$TABLES ONS§ and are at the end of the pro-
cedure and either the code offsets or code list-
ing has been generated and the identifier table
has not yet been generated, you most likely
have a stack overflow in the routines that
generate the tables. As a short term solution,
you can insert the compiler option $TABLES

16-5

OFF$ before the procedure to proceed with the
compilation. .If you really want an identifier
map, try one of the other solutions.

5. Divide! Are you including a large number of
constants that you don’t use? For example, if
you have one file for all error numbers, you
may want to break them up into smaller files
based on their functionality.

6. Divide! Try separating global types into files
which reflect their functional independence,
Include only the files needed to compile an in-
dividual compilation unit. You may also have
to divide up the source into smaller units to
take advantage of this. Also, if a source has
many level-1 procedures, try dividing the
source into separate compilation units, since
then there would be fewer procedure headers
(procedure names and parameter lists) declared.

7. Run the compiler specifying "NOCB" in the
RUN command; this moves part of the system
information stored in the PCBX to an area out-
side the program’s stack.

‘RUN PASCAL.PUBSYS;PARM=7;NOCR

This will save you a small amount of space
immediately, but it does not really solve the
problem. Try one of the other solutions for
more permanent results.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 UG 1984 Anaheim

8. Use integer constants instead of enumerated
types and then only include the specific con-
stant values that are used in any particular
procedure. To then declare a variable of that

PROGRAM Prog;

CONST
FirstError = 0;
LastError 100;

TYPE,
ErrorNumber = FirstError

PROCEDURE Procl(Pointer
CONST

"type", it is only necessary to include the con-
stants that denote the starting and ending
values of the range (Fig. 5).

..LastError;

: PtrType});

$INCLUDE 'ErrFilel.Const.Account’$

VAR
Error :

BEGIN

IF Pointer

THEN

Error := BadPointer;

END,

BEGIN

ErrorNumber;

NIL

{outer block}

END.
Fig. 5.

{outer block}

This solution is recommended only as a last
resort, as it asks the programmer to sacrifice
the use of enumerated types, a very nice fea-
ture of Pascal. One of the other approaches
should be tried first, since most of them main-
tain or improve the program’s style and
organization.

9. If one procedure is too big. to compile and
there is a good reason for not breaking it up
into smaller procedures, you may try moving
the procedure so that it is compiled earlier in
the compilation unit. This will help a little
since the declarations of the other procedures
in the unit will be processed after the offend-
ing procedure.

Recommendations

Not all solutions cited here are appropriate for
every project and every circumstance and stage
of development. Below is a guick guide for
finding a method to suit your ' particular
situation. :

H you are just starting development of a large
system, consider using the following sclutions
from the outset: 1, 2 and 3.

If you are having a problem with just one
procedure and want a quick solution to get 1t

{BadPointer is in ErrFilel)

Replacing Enumerated Types with Constants

compiled, try one or more of the following: 3,
4, 7or 9.

If you are interested in saving space on all of
your compiles and are willing to spend some
time restructuring your programs, try one or
more of the following: 1, 2, §, 6 or 8.

Summary

This paper has presented a number of ways
that the stack size limitation can be avoided
when using the Pascal/3000 compiler. It is the
hope of the author that the approaches out-
lined here may help the Pascal programmer to
more easily develop large systems on the
HP3000.

Acknowledgments

I would like to thank Ron Smith for his help in
compiling the data for this paper, Sue Kimura
for her daily encouragement while it was being
written and the Pascal/3000 project team,
both past and present, for the opportunity to
work and learn with them on the project.

References

16-6

Prepared by the Southern Calijornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

MPE [V System Manager/System Supervisor 1981, Part No. 32106-90001,

Reference Manual, HP3000 Computer Systems,

Hewlett-Packard Company, 1981, Part. No. Systemn Reference Manual, HP3000 Computer
30000-90014. Systems, Hewlett-Packard, 1978, Part. No.

30000-90020.

Pascal/ 3000 Reference Manual, HP3000 Com-
puter Systems, Hewlett-Packard Company,

16-7

Prepared by the Southern Colifornia Regionol User's Group

Proceedings; HP3000 TUG 1984 Anaheim

DL
FREE SPACE
TOP OF HEAP (TOH)
HEAP AREA
DB
PRIMARY DB
AND
SECONDARY DB
Ql
PROCEDURE CALLS
Q
CURRENT PROCEDURE
S
FREE SPACE
Z

Fig. 1. Pascal/3000 Compiler Runtime Stack

16-8

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

R BL DL

i 1 , TOH

Space For
‘Local Vars.
& Statements

of P
TOH TOH
Space for Space For Space For
Procedure ID Procedure 1D Procedure ID
& Parameters % Parameters & Parameters
Space For Space For Space for
Global Info. Global Info. Global Info.
DB DB DB
< Z Z Z
a. MARK saves b. After P processed c. RELEASE after
Top_Of _Heap code generated

PROGRAM Quterblock;

VAR
X, Y : Integer;

PROCEDURE P {(Parml, Parm2, Parm3 : Integer);
a. —» VAR
Locall, Local2 : Integer;
BEGIN ({Body of P}

-

.

b, —» END; {Body of P}

C. == PROCEDURE Qg

Fig. 2. Heap Activity of Pascal/3000 During Compilation

16-9

Prepared by the Southern California Regionol User’'s Group

Proceedings: HP3000 1UG 1984 Anaheim

Blographical Sketch
- Name ;: Christopher P. Maitz
Title : Member of Technical Staff
Employer : Hewlett - Packard Com:pufer Languages Lab

Job Responsibilities : Involved in the development and enhancement of the
Pascal/ 3000 compiler since 1979.

L
Education: BS, Mathematics, Carnegie-Mellon University

Marital Status . Married

16-10

Prepared by the Southern California Regional User's Group

