Proceedings: HP3000 IUG 1984 Anaheim

DATA BASE DESIGN TOOLS:

A Survey of Current Research,
an Opportunity for Customer Input

Abe Lederman
Hewlett-Packard
Information Networks Division
Cupertino, California

ABSTRACT:

Designing a data base can be a time consuming, tedious, and complex task.
The ad-hoc methods used to design a data base often lead to data bases that
are poorly designed and which adversely affect overall system performance.

In this paper we identify and briefly describe tools that can assist with the
different phases of data ba-~ design, introducing methodology to the process
and automating some of the more tedious aspects 01 . :a base design.

The purpose of this paper, and the accompanying presentation is to
introduce our audience 1o current data base design tools research and give
them an opportr~ity to give us at Hewlett-Packard some feedback as to the
usefulness of such tools. A survey on data base design will be distributed at
the presentation.

In writing this paper, the author has d- awn on work ! has conducted at
Hewlett-Packard part of an investigation into data base design tools. At
this time Hewlet1-Packard has not made any commitment to actually
develop any of the tools described in this paper

14-1

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

1. INTRODUCTION

Designing a data base can be a time consuming, tedious, and complex task. This is especially true
when large data bases, consisting of hundreds of items and many data sets, are designed. In most
cases data bases are designed in an ad-hoc trial-and-error manner without the btenefit of
methodologies or tools to assist in the design process.

The ad-hoc methods used to design a data base often lead to data bases that are poorly designed. A
poor data base design will likely result in an information system with poor performance. In
addition a poor data base design will make it harder to develop the application software to operate
on information in the data base. Once a poorly designed data base is up and running, it can be
very costly to restructure the data base to correct the design errors that should have been detected
during the design phase.

For the past several months I have been involved in an investigation at Hewlett-Packard to try
and determine what kinds of tools Hewlett-Packard can develop to help our customers design both
network (IMAGE) and relational data bases. In this paper I am going to share with you some of
what I have learned in this investigation.

This paper divides the data base design process into six phases. For each phase I identify and
briefly describe tools that can assist with the task of data base design. It is not possible in a paper
this brief to go into as much detail as is necessary to do justice to the material presented. The goal
of this paper is to introduce the reader to data base design tools research. A select number of
papers addressing different areas of data base design tools research are referenced throughout the

paper.

I feel, and will try to show in this paper, that the use of data base design tools can:

« Improve design quality -
. Shorten design cycle
» Improve data base performance

We are interested in learning how you currently design your databases, the difficulties you
encounter, and what tools (other than those described in this paper) will help you be more
productive and more successful in your data base design activities. At the conference we will
distribute a survey on data base design which we strongly encourage you to fill out and return to
Hewlett-Packard.

One thing to keep in mind in reading through this paper is that I anticipate that some of the data

base design tools described in this paper will be mostly useful in projects involving the design of
large data bases.

14-2

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

2. DESIGN PHASES

I have chosen to divide the data base design process into six phases :

REQUIREMENT SPECIFICATION - Information-oriented and processing-oriented
requirements are collected and analyzed.

VIEW MODELLING = Local Entity-Relationship models are constructed from the
information-oriented requirements. The Entity~Relationship (E-R) model is a
conceptual organization of the data which allows the user to simply think of data
objects (entities) and the relationships between them. The E-R model is described in
section 2.2. 1.

VIEW INTEGRATION = Local E-R models constructed in the previous phase are
integrated into one consistent global conceptual schema.

SCHEMA MAPPING =~ Global conceptual schema is translated into a normalized
logical schema for the target DBMS. -

PHYSICAL DESIGN - Transaction models are constructed for the most active
transactions: These models are input to physical design tools which assist with such
design decisions as record segmentation, record joining, and the selection of primary
and secondary indices. :

DESIGN EVALUATION - Data base performance is -estimated through the use of
analytical modelling tools and/or data base prototyping tools.

The process of data base design is iterative in nature, both within a given phase, and among the
different phases. For example, an inconsistency in the view integration phase may require a
change to a local E-R model developed in the view modelling phase. This in turn may. require
-modifying- some requirements specified ‘in the requirement specification phase. Similarly, the
physical design and design evaluation phases form an iterative loop. A physical design change will
require the design to be re-evaluated, which in turn may require additional changes to the
physical design, and so on. Data base design tools must facilitate this iterative nature of the data
base design process.-

Let us now take a look at what kinds of tools can be developed to assist in each of these phases of
the data base design process.

2.1 Requirement Specification

The requirement specification phase provides the initial input to the other phases of the design
process. This input as proposed by Kahn (Kahn] should consist of both information-oriented and
processing-oriented requirements. Information-oriented requirements describe the structure of
the information that one is trying to model, and are used to construct the local E-R models in the
view modelling phase. Processing-oriented requirements describe the transactions that will be
performed against the data base, and are used to construct transaction models (see section 2. 5. 1)in
the physical design phase.

Requirement specification tools should facilitate the input, edit, output, and verification of
requirements. These tools shor1g also enable designers to document the data base requirements and
generate requirement analysis reports in a form that can be revicwed by end-users. Further

14-3

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim i

investigation is required to determine whether tools should be provided to assist the designer in
mapping requirement specifications into E-R models and transaction models. Alternatively, the
initial input of requirements to the data base design tools might occur in the view modelling and
transaction modelling phases.

Data base requirement specification may be viewed as a subset of gathering requirements for the
information system as a whole. Although a great deal of research [IEEE] into high level languages
for requirement specification and analysis of information systems has been conducted, the specific
problem of data base requirement specification has not been addressed to any significant extent.
One possibility is to provide tools to -automatically extract data. base requirements from
information system requirements.

2.2 View Modelling

In the viéw modelling phase of the data base design process we take the information-oriented
requirements collected in: the previous phase and represent them in a. form that can be
manipulated by the design tools. In this section I describe an E-R model that is.used to model the
information-oriented requirements.

The design of & large centralized data base requires the input of many users: One way in which
this task can be simplified is by independently specifying the requirements for the different
functions of an organization. Each such set of requirements is called a user view. For example,
user views might be specified for the payroll, personnel, inventory and accounting functions of a
company. From each user view independent local E-R models are developed.

The number of user views required to model a data base is dependent on the complexity of the
data base design, and on the number of transactions that are encompassed by each user view. At
one extreme [Hubbard, Yao), a local E-R model is constructed for each transaction against the data
base. At the other extreme, the system analyst-or DBA manually performs the task of view
integration and only constructs one E-R model for the entire data base. A more common approach
is for a view to encompass multiple transactions, which are typically the transactions that a user is
responsible foﬁ., or the transactions for a logical subdivision of an enterprise. This approach, of
meodelling the information structure for a set’ of transactions with one E-R model, requires less
input during the modelling phase, and results in less problems during the view integration phase,
since a smaller number of views need to be integrated.

2.2.1 The E-R modet

The Entity-Relationship-Attribute (E-R) model developed by Chen [Chen] provides a fairly
natural way for modelling the information-oriented requirements. The E-R model, with various
extensions, has been used in much of the research into computer-assisted data base design tools
[Batini).

The E-R model consists of entities, attributes, and relationships among entities. An entity is any
identifiable “thing". Entities of the same t,pe are grouped into an entity=-set. EMPLOYEE,
DEPARTMENT, and CAR are some examples of entities.

Entities have properties, called attributes. For example, the EMPLOYEE entity may have the

following attributes : name, social security number, address, and birt! -date An attribute or set of
attributes that uniquely identify an entity in an entity-set is called a key.

14-4

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

A relationship expresses an association among two (typically) or more entities. PI-EMP is an
example of a relationship between EMPLOYEE and PROJECT. Relationships can be classified
into three categories : one=to~one (1:1), one-to-many {1:N), and many-to~many (M:N).

A graphical technique, the Entity-Relationship Diagram (ERD), may be employed to visually
depict entities and relationships. In an ERD:

1.

2.

Entity sets are represented by a rectangular box.

Attributes are represented by circles.

. Key attributes are represented by filled-in circles.

. Relationships are represented by a diamond-shaped box. The relationship type (1:1,

I:N, M:N) is labelled along the lines connecting the entity bozes to the relationship
diamond. For L:N relationships an arrow points from the i-entity to the N-entity.

The diagram below is an example of a very simple ERD.

DEPENDENTS

—.Noml

— anndate

1

© SSNum

Nems O

Birthdots {)—

ENPLOYEE

PJ-EMP

<

DaptNum

DEPARTMENT

N N @ PjNum

PROJECT
O eudgat

There are two main reasons why the E-R model (as opposed to a network or relational model) is
used to model the local views. First, at this early stage in the design process, it is important that
the design be DBMS independent. The designer should defer the decision of selecting a target
DBMS until the schema mapping phase. The E~-R model provides a neutral model that is natural
to use, straightforward to translate into a relational schema, and only a bit trickier to translate
into a network schema. Second, the E-R mode] permits more of the semantics of the information
system being developed to be captured than is possible with the network or relational model.

Graphic-oriented tools, similar to CAD (Computer Aided Design) tools used in various engineering
disciplines, might provide a suitable interface for de eloping the k-R models. A graphic-oriented
interface might allow system analysts and end-users to work together in developing their E-R

models.

14-5

Prepared by the Southern Californie Regional User's Group

Proceedings; HP3000 IUG 1984 Anzheim

2.3 View Integration

The objective of the view. integration phase is the merging of the tocal E-R mddels, developed in
the previous phase, into a single, consistent global schema. This phase is obviously not required if
only one view was created in the view modelling phase.

The first step in view integration involves identifying and resolving inconsistencies and
redundancies among the local E~-R models. Although design tools will not actually resolve
inconsistencies or redundancies, they can assist the DBA or system analyst by identifying potential
integration problems.

Some examples of inconsistencies that might occur include :

+ SYNONYMS ~ The use of different names for the same object (entity, relationship
or attribute).

¢ HOMONYMS - Using the same name for different objects.
+ Type/size inconsistencies.

¢ Relationship inconsistencies. For example, defining & relationship between two
entities as I:N in one instance and as M:N in another instance.

« An entity is defined as an attribute of another entity.
Two examples of 4edundancies that might occur include :

¢ Redundant relationships. For example, A (an entity) is related 1:1 to B, B is related
I:1 to C, and A is related i:1 to C, This Iast relationship is not necessary since it can
be derived from the other two relationships.

¢ Redundant attributes. Attributes that appear in more than one entity. For example,
NAME is defined as an attribute of both EMPLOYEE and EMPLOYEE-BENEFITS
(with S8-NO as the key).

Once all the inconsistencies and redundancies have been resolved, the next step is to actually merge
the local E-R models into the global conceptual schema. ‘A design tool can perform this task,
although the desigrer may wish to control how the merging is performed where alternative ways
of merging exist.

2.4 Schema Mapping

In this phase, the global conceptual schema is mapped into a schema for the target DBMS. This
phase might be viewed as pazt of the physical design phase. Physical design decisions such as index
selection, however, are deferred until the physical design phase. In this phase we are mapping from
the E-R model, expressing the global conceptual schema, into a "vanilla" schema of the target
DBMS. . :

Mapping into a relational model is straightforward, while mapping into & network model may be
gomewhat trickier Tools can be provided to perform the schema mapping. As with view
integration, alternative mappings may evist, requiring the designer to interact with the mapping
tool in ¢choosing among the different alternatives.

14-6

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

As part of the process of schema mapping, we want to generate a schema that is normalized. The
algorithms to generate a norma.li;ed schema may be incorporated into the schema mapping tool. I
now briefly describe normalization, an important concept in data base design.

2.4, 1 Normalization

Normal forms {Kent] were first defined for relational data bases, although they are also applicable
to the design of network datz bases such as IMAGE. The normal forms can be viewed as
guidelines to be followed in designing a data base in order to avoid update problems resulting from
redundant data. These guidelines are for the most part common sense rules that most data base
designers follow, perhaps without knowing that they are performing normalization.

Take a5 an example the SUPPLY table below. The key is the composite (S#, PART#). CITY,
however, is only dependent on S#.

s# | parT# | arv CITY
$1 | 300 New York
S1 P2 200 New York
$1 P3 400 New York
- 82 P2 250 Palo Alto
| 52 P4 500 Palo Alto
53 P 300 Sunnyvale

The above table design has several problems :

e CITY is repeated for every record having a PART# supplied by the same S#,
resulting in wasted storage.

o If CITY changes for a given S#, then every record specifying a PART# suﬁplied by
the same supplier must be updated. In addition to the cost of doing all these updates,

inconsistencies might arise with different records showing different cities for the
same supplier.

¢ If at some point there are no parts supplied by a supplier, then there is no record in
which to store the supplier’s CITY.

The solution, obvious enoﬁgh, is to normalize the above table by decomposing it into the two
normalized tables shown below.

14-7

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 TUG 1984 Anaheim

s# | PaRT# [QTy s# cITY

$1 P1 300 s1 New York
$1 P2 - | 200 s2 Palo Alto
$1 P3 400 53 Sunnyvale
s2 P2 250 |
s2 P4 500

53 P1 300

It should be noted, however, that it js not always desirable to strictly follow the normalization
guidelines. There may be times where for performance reasons, it may be advantageous to
maintain redundant data in a table. The normalized schema generated by the schema mapping
tool is input to physical design tools where controlled denormalization is done when performance
tradeoffs require it. '

2.5 Physical Design

In the physical data base design phase, we take the "vanilla" schema generated in the schema
mapping phase together with a description of the most active transactions that will be running
against the data base and design the physical structure and access paths to the data base that will
optimize the performance of the specified transactions. '

This task, although it sounds simple, is in practice very complex. The designer must be able to
evaluate the storage/CPU usage tradeoffs as well as tradeoffs in the performance of dlfferent
transactions of many alternatwe data base designs.

The design evaluation phase which follows physical design in this paper is not really separate from
the physical design phase. We have separated the two phases, since a separate set of tools can be
identified to assist jn the two phases. The physical design tools, however, will have to invoke some
of the design eva.luat:on tools in order to be able to optimize data base perf. ormance.

2.5.1 Transaction Modelling

In order for the physical design tools to be able to assist with producing an optimized physical
design, they must be provided with a description of the workload that is going to be performed
against the data base. In most cases the 80/20 rule applies. This rule states that the 20% most
active transactions account for 80% of the workload on the data base. Therefore it is only
necessary o describe 2 few of the most active transactions to the physical design tools to provide a
fairly accurate description of the data base workload.

The transactior :.odels are constructed from the processing-oriented requirements collected
during the imtial requirement specification phase. 1 have, however, deferred dlscussmg the
transaction modelling step until now because constructing these models requires thinking in terms
of physical data base structures Physical des1gn considerations should be avoxded until the physwal
design phase.

14-8

Prepared by the Southerr California Regional User's Group

Proceedings: HP3000 IUG 1984 Anahein

The table below shows a transaction model for a report that outpuis for every project is
overbudget a list of all employees on the project and their departments. This transaction model is
similar to models preposed in [Ceri, Teorey],

} ACCESS | REGORDS RECORDS | | LNk usep
OBJECT | MODE | PROCESSED | SELECTED | OPERATION | NEXT
PROJECT | SERIAL 160 15 | GET PJ-EMP
PJ-EMP | INDEX 10 10 | GET EMPLOYEE
EMPLOYEE | DIRECT I 1] GET EMP-DEPT
EMP-DEPT | INDEX X 1| GET
FREQ: 2/MONTH WEIGHT: 1 MODE: BATCH

For each transaction we specify (at bottom of table):
FREQ - Frequency of execution,

WEIGHT - Weight factor for frequency. Typically 1. As an example, we might assign
a weight factor greater than 1 to a transaction that is executed on an infrequent basis,
but requires fast response time.

MODE - Batch or Online. Batch transactions are given a somewhat lower weight
factor than online transactions.

For each access operation in the transaction we specify :
OBJECT - The object to be accessed, either an entity or a relationship.

ACCESS MODE - Serial, direct (hashed), or indexed. This is only a hint to the design
tools. When considering overall data base performance, an indexed access, for example,
may have to be converted into a serial access if it is not cost-effective to provide the
required index. =

RECORDS PROCESSED - Estimate of the average number of records that will have to
be processed.

RECORDS SELECTED - Estimate of the average number of records that will be
selected from those processed. In the above example, we estimate that 15 of the 100
project records accessed will be sverbudget, requiring access of the PI-EMP,
EMPLOYEE, and EMP-DEPT records.

OPERATION - Get, put, update, or delete.
LINK USED NEXT - Object to be acceseed fe'. wing current access.
The above transaction model is only a first attempt at developing a model that can be used for

describing transactions to the design tools. There are still sorhe problems with this model that need
to be resolved. One major problem is that the model needs to be able to describe the data that the

14-9

Prebai‘cd by the Sourhern Californie Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

transaction is going to operate on in as physical-structure independent a manner as possible in
order to give the physical design tools the freedom to do their job.

Perhaps another approach to this problem, which deserves further investigation, is the use of a
high-level non*procedural language such asa relatlonal DBMS query language as the language to
model transactions in.

2.5.2 Physical Design Assistance
Some of the physical design decisions that tools can assist with include :

+ Record segmentation. Since some transactions access just a subset of a record, it

 might make sense to segment the record along such usage lines, improving the
performance of the transactions that only need to access the record subset. Smaller
record sizes reduce the number of I/0s performed (assuming that we access the
records in the order they are clustered), since it is possible to block more records
together. Also smaller record sizes result in less wasted storage.

* Record joining. This is the opposite of record segmentation and is done to improve
the performance of high frequency transactions which access data from two or more
records together. The tradeoff to consider is that the resulting denormalized design
may lead to redundancy problems.

¢ Data base partitioning. For performance reasons, maintainability reasons, or because
of limitdtions such as the 256 item limit in IMAGE, it might be desirable to
partition a data base into two or more data bases. Design tools can suggest how to
best partition the data base.

» Index selection. Design tools can be built to assist in selecting primary and secondary
indices based on access paths needed to rum the specified transactions. Tradeoffs
have to be evaluated between improving the performance of the transaction
accessihg the data base through the index, worséning the performance of the
transactions that have to update the index, and the increass in storage reqmrements
from the added index.

s Sort item selection. Design tools can assist in evaluating tradeoffs involving the
addition of a sort item to a data set.

¢ Prime capacities. It has been shown that hashing for master data sets in IMAGE
improves if prime capacities are used. Prime capacities, slightly higher than required
capacity, can be automatically assigned by a design tool.

» Blocking factors, Optimal blocking factors can be calculated for each data set,
relieving the designer from the task.

There is a great deal of literature describing algorithms used to optimize phys1cal data base design
parameters. A goyd survey paper is [Chen2].
2.6 Design Evaluation

Physical data base design involves making a lot of design decisions. The effects of such decisions on
data base performance are not always obvious. 'There is a need for VISICALC like tools that can

14-10

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

answer "what if' questions about data base performance. These tools need to be able to predict
performance given a description of the data base structure and a description of the workload that
is going to be run on the data base.

The tools that can be used to evaluate data base performance fall into two classes : analytu:al
modelling tools and data base prototyping tools.

2,6.1 Analytical Modelling Tools

Making some simplifying assumptions, we can c¢alculate the cost of running a transaction in terms
of the average number of [/Os required to execute the transaction, ignoring all other costs. A
design evaluation tool can be developed that will calculate the total }/O cost for a specified
transaction workload. The following example illustrates the calcuiations that would be performed
by such a tool in evaluating a very simple IMAGE design in which two transactions are executed.

The IMAGE design we are evalvating is a simplified version of the STORE data base in the
IMAGE manual. This data base consists of two manual masters, one detail data set, and an
optional aute master which provides a search path on PURCHASE-DATE. The goal of this
evaluation is to deterruine whether the search path on PURCHASE-DATE should be provided or
not.

There are two transactions performed against the STORE data bas:. The first transaction,
SALES~POSTING, is an online transaction, executed 200 times per day. Each time the transaction
is executed an average of 5 entries are posted to the SALES data set. A transaction model for this
transaction is shown below :

SALES-POSTING

ACCESS RECORDS RECORDS LINK USED
OBJECT MODE - | PROCESSED | SELECTED 3 OPERATION NEXT
SALES 5 - PUT
FREQ: 200/DAY WEIGAT: 1 MODE: ONLINE

The second transaction, SALES-REPORT, is . batch transaction, executed once a day, which
generates a report of sales information, customer information and product information for all sales
with a specified PURCHASE-DATE. The transaction model for this transaction is shown below :

14-11

Prepared by the Southern CaliJernia Reglonal User's Group

Proceedings: HP3000 IUG 1984 Anaheim
SALES-REPORT
ACCESS RECORDS RECORDS LINK USED
OBJECT ‘MODE PROCESSED | SELECTED | OPERATION NEXT

SALES SERIAL 20,000 1,000 GET CUSTOMER
CUSTOMER | DIRECT 1 1 GET PRODUCT
PRODU.CT: DIRECT 1 1 GET

FREQ: - 1/DAY MODE: BATCH

WEIGHT: 0.8

The following assumptions have been made about the number of 1/0s performed by each IMAGE
intrinsic cal

1/0s
DBGET 1.7 Assumes that we have to follow some synonym chains.
{master~calculated)
DBGET 0.2, Assumes S records per block.
{(detail-serial)
DBGET 1 Does not assume that records are loaded in chain sequence.
{detail-chain)
DBPUT 2+ 4 7P Pisthe number of search paths to the detail data set.
(detaiD :
11/0 - read a block with free space
1 1/O - write the block to disc
1.7P I/O - read the master record
IPI/O - update the master record
3P 1/0 - read and update previous end of chain

Let us now calculate the number of 1/0s performed by the SALES-POSTING transaction when
we do not have a search path on PURCHASE-DATE, and when we do have one.

The SALES-POSTING transaction calls the DBPUT intrinsic five times Using the estimate :
I/0s=2+4.7P

with P=2 (search paths on CUSTOMER and PRODUCT), each DBPUT intrinsic will perform 11.4
1/0s, and the SALES-POSTING transaction will perform a total of §7 1/0s.

with P=3 (search path on PURCHASE-DATE added’, each DBPUT intrinsic will now perform 16.1
1/0s, and the SALES-POSTING transaction will perform a total of 80.5 1/0s.

Let us now do the same calculations for the SALES-REPORT transaction. Without a search path
on PURCHASE-DATE, the transaction will call the DBGET intrinsic 20,000 times. For each of
the 1,000 records we estimate will match. the specified PURCHASE-DATE, a DBGET call to
access the CUSTOMER data set and a DBGET call to zccess the PRODUCT data set will have to
be made. The total number of I/0s performed by the transaction is as follows ;

14-12

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 TUG 1984 Anaheim

20,000 DBGETs (detail-serial} * 0.2 = 4,000
1,000 DBGETS (master-calculated)* 1.7 = 1,700
1,000 DBGETs (master-calculated) * 1.7 = 1,700

TOTAL = 7,400

If we add a search item on PURCHASE-DATE, the 20,000 calls to DBGET in serial mode, are
replaced by 1,000 calls to DBGET in chain mode, each call performing one I/0. Adding the search
item on PURCHASE-DATE saves us 3,000 1/Os (4,000 - 1,000 over doing the serial DBGETS,
and the total number of I/0s performed by the SALES-REPORT transaction is now only 4,400
1/0s.)

The table below summarizes the remaining calcufations that are necessary to deiermine which of
our alternative designs will require the least number of total I/0s for the entire transaction

workload.
NEIGHTED DESIGN #1 DESIGN #2
TRANSACTION FREQ 1/0s PER TOTAL 1/0s PER TOTAL
{tran/day) TRANS. 1/0 TRANS. 1/0
SALES-POSTING 200.0 57.0 11,400.0 80.5 16,100.0
SALES-REPORT 0.8 7400.0 $,920.0 4400.0 3,520.0
17,320.0 19,620.0

The table above shows that design #1, the one without the search path on PURCHASE-DATE will
perform less total 1/Os than design #2. The example we have just gone over, although overly
simplified illustrates one type of calculation that a simple design evaluation tool can perform.
Such a design evaluation tool would also calculate storage requirements for two or more
alternative designs.

More sophisticated analytical modelling tools, based on queueing theory [Sevcik] are now starting
to be developed to predict data base performance. Such tools would be used to more accurately
predict data base performance tzking into account the effects of different transactions running
concurrently on the system, interaction with other activity on the system, data base locking
strategies, disc caching, etc.

2.6.2 Data Base Prototyping Tools

Another approach that can be used to evaluate a data base design is to build prototypes of the
most active transactions and actually measure the performance of these transactions using
performance measurement tools. There are several tools tnat can assist with the different tasks
involved in this approach to data base design evaluation. Such tools are not only useful in the
initial data base design process, they are also useful in the ongoing data base performance-tuning
and maintenance activities. These tools include :

o Application prototyping tools. Currently, there are tools available on the HP3000
such as the TRANSACT lzanguage, a part of the RAPID/3000 package, and some
third party software packages that allow you to quickly build prototype
applications. An effort needs to be made to tie together the transaction models used
by the design tools to these prototyping toole.

14-13

Prepared by the Southern California Regional User’s Group

Proceedings; HP3000 IUG 1984 Anaheim

« Data base simulation tools, An example of such a tool is IDEA (IMAGE Data base
Evaluative Analyzer), a contributed library software package that simulates data
base activity, and generates timing reports. Data base activity is specified through
scripts which describe transactions against the data base. IDEA actually generates
calls to the IMAGE intrinsics to obtain its performance estimates. It would be useful
if scripts for an IDEA-like tool could be automatically generated from the
transaction descriptions used as input to the design tools:

¢ Performance monitoring tools. Tools are needed to monitor data base activity. Such
“tools should monitor and generate- reports detailing how often each data set was
accessed, what type of access was performed, what search path was followed, how
much contention for data base resources was experienced (e.g. how often was a data
set being accessed locked by another transaction), and so on..

¢ Test data generation tools, A test data generator should automatically load a data
base with random data which satisfies characteristics of the real data as specified by
the designer. For example, a designer should be able to specify that a detail data set
search item field be loaded with randomly distributed data in the range of 100,000
to 200,000 with an average chain length of five.

¢ Data conversion tools. These tools would simplify the task of loading a new data
base with existing data, perhaps contained in a KSAM file, or in another IMAGE
data base.

¢ Data base restructuring tools, An example is the ADAGER package which aliows

IMAGE 4ata bases to be restructured online, without having to unload the data to
do the restructuring. ‘

14-14

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

3. DESIGN TOOLSET

In this section 1 would like to briefly discuss how a design toolset might integrate the different
tools described in this paper. Such a toolset would provide a common interface to the different
tools, would provide some common functionality across the different tools, and would allow the
different tools to communicate with each other.

The central component of such a design toolset is going to be a data dictionary. The data
dictionary is the interface through which the different tools communicate. The data dictionary is
going to have to mnaintain different representations (E-R models, transaction models, network
models, and relational models) of the meta-data describing the different models that are used by
the design tools in the different phases of the design process.

The design toolset should provide (through the data dictionary) some common functionality
supporting the design process. This functionality would include : :

+ Documentation. All the tools should allow all design decisions (from requirement
specification through physical design) to be thoroughly documented..

s Logging, Changes to a design should be logged to permit review of the steps taken to
arrive at a current design.

+ Version Management, Make it easier for designers to explore alternative designs.

¢ Archiving. Ability to store material (e.g. local E-R models) generated during the
design process which is not needed in a production dictionary on backup storage.

Tt is also important that each tool be designed to perform as specific and small a task as possible.
This will allow tools to be used either independentlv or in combinations without interactions. For
example, it should be possible to use the design evaluation tools without having to first use the
modelling, schema mapping, and physical design tools. This allows the design evaluation tools to be
used to evaluate the impact of design changes to an existing data base.

14-135

Prepared by the Southern California Regional User’s Group

Batini

Ceri

Chen

Chen2

Hubbard

IEEE

Kahn

Kent

Sevcik

Teorey

Yao

Proceedings: HP3000 IUG 1984 Anaheim

4. REFERENCES

Batini, C., Lenzerini, M., and Santucci, G., "A Computer-Aided Methodology for
Conceptual Data Base Design”". Information Systems, Vol. 7, No. 3, 1982, op.
265-280.

Ceri, S., Navathe S., and Wiederhold, G., "Distribution Design of Logical Database
Schemas". IEEE Transactions on Software Engineering, Vol. SE~9, No. 4, July 1983,
pp. 487-504.

Chen, P.P., "The Entity-Relationship Model - Toward a Unified View of Data",
ACM Transactions on Database Systems, Vol. 1, No. 1, March 1976, pp. 9-36.

Chen, P.P., and Yao, S.B., "Design and Performance Tools for Data Base Systems".
Proceedings 3rd International Conference on Very Large Data Bases, 1977, pp. 3~15.

Hubbard, G.U., Computer -Assisted Data Base Design, Van Nostrand Reinhold Co.,
1981

IEEE Transactions on Software Engineering, Vol. SE~3, No. 1, January 1977.

Kahn, B.K., "A Method for Describing Information Required by the Data Base Design
Process”. Proceedings ACM-SIGMOD International Conference on Management of
Data, 1976, pp. 53-64.

Kent, W., "A Simple Guide to Five Normal in Relational Database Theory"
Communications of the ACM, Vol. 26, No. 2, February 1983, pp. 120-125.

Sevcik, K.C., "Data Base System Performance Prediction Using an Analytical Model".
Proceedings 7th International Conference on Very Large Data Bases, 1981, pp.
1.82-198.

Teorey, T.J. and Fry, J.P., "The Logical Record Access Approach to Database Design".
ACM Computing Surveys, Vol. 12, No. 2, June 1980, pp. 179-211.

Yao, 5.B., Navathe, S.B., and Weldon, J-L, "An Integrated Approach to Database
Design". Proceedings 1978 NYU Symposium on Data Base Design (Lecture Series in
Computer Science), no. 132, pp. 1-30, Springer-Verlag, 1982.

14-16

Prepared by the Southern California Regional User's Group'

Proceedings: HP3000 JUG 1984 Anaheim

Abe Lederman was born in Montevideo, Uruguay and immigrated to the U.S. in 1968 at the age
of 10. He received the B.S. and M.S. degrees in computer science from the Massachusetts Institute
of Technology in 1981.

Upon graduation, Abe Lederman accepted a position as a member of technical staff in
Hewlett-Packard’s Information Network Division working on maintaining and enhancing the
RAPID software package. He is now working in the data base section on data base tools.

14-17

Prepoared by the Southern California Regional User's Group

