Proceedings: HP3000 1UG 1984

Anaheim

SOFTWARE PROTOTYPING:
TODAY’'S APPROACH TO INFORMATION
SYSTEMS DESIGN AND DEVELOPMENT

ORLAND LARSON
HEWLETT-PACKARD

Among the challenges facing the data process-
ing community are the increasing costs and
time associated with developing applications,
the increasing backlog of applications, the ex-
cessive time spent maintaining applications,
and the shortage of EDP professionals. In addi-
tion, systems implementation and funct:onahty
are 1mpa1red due to the lack of tools which in-
volve end-users in the system development
process.

Meeting these challenges requires a more
progressive approach to applications develop-
ment - one that is significantly different from
traditional system development cycles. This ap-
proach is called SOFTWARE PROTOTYPING.

This paper defines software prototyping, iden-
tifies its major uses, reviews the step-by-step
prototype development process, and discusses
the resources and skills reqmred to effectively
prototype applications. It also addresses the
problems and costs associated with software
prototyping.

INTRODUCTION
The Changing Role of Data Processing

The data processing department has changed
dramatically since the 1960’s, when application
development as well as productlon Jobs were
usually run in a batch environment with long
turnaround times and out-of -date results.

The 19705 were a period of tremendous im-
provement for the data processing environ-
ment. One of the key developments of that
period was the development and use of Data
Base Management Systems (DBMS). This
provided the basis for on line interactive ap-
plications. In addition, computers and operating
systems provided programmexs the capability
of developing application pro- grams on line,
sitting at a terminal! and mteractlvely

13

developing, compiling, and testing these
applications. The end user was also provided
with easy to use on-line inquiry facilities to al-~
low them to access and report on data residing
in their data bases. This took some of the load
off the programmers and allowed them to con-
centrate on more complex problems.

During the 19805, for the Data Base Ad-
ministrator and MIS manager, we see increased
importance and use of centralized data dic-
tionaries or "centralized repositories of infor-
mation about the corporate data resources" We
also see simpler and more powerful report
writers for the end user and business profes-
sional. For the programmer, we see the use of
very high level transaction processing lan-
guages to reduce the amount of code required
to develop applications. Finally, the tools have
been developed to effectively do software
prototyping which will provide benefits to the
end user as well as the application programmer
and analyst.

Throughout the Seventies and Eighties, infor-
mation has become more accurate, reliable, and
available, and the end user or busmess profes—
sional is becoming more involved in the ap-
plication development process.

Challenges Facing MIS

The MIS manager’s number one problem is the
shortage of EDP specialists. A recent Com-
puterworld article predicted that by 1990
there will be 1/3 of a programmer available
for each computer delivered in this country.
Software costs are also increasing because
people costs are going up and because of the
shortage of skilled EDP specialists. The typical
MIS manager is experiencing an average of two
to five years of -application backlog. This
doesn’t include the “invisible backlog" the
needed applications which aren't even

Prepared by the Southern Califernia Regional User's Group




Proceedings: HP3000 TUG 1984 Anaheim

requested because of the current known
backlog. In addition, another probiem facing
MIS management is the limited centralized
control of information resources.

The programmer/analyst is frustrated by the
changeability of users’ application require-
ments (the only thing constant in a user en-
viropment is change). A significant amount of
programmers’ time is spent changing and main-
taining users’ appligations (as much as 60% of
their time). Much of the code the programmer
generates is the same type of routines such as
error checking, formatting reports, reading
files, checking error conditions, data validation,
etc. This can become very monotonous or
counter- productive for the programmer.

The end user or business professional is
frustrated by the limited access to information
needed to effectively do his/her day-to-day
job. This is especially true for those users who
know their company has spent a great deal of
money on computer resources and haven't ex-
perienced the benefits. The user’s business en-
vironment is changing dynamically and they
feel MIS should keep up with these changes.
MIS, on the other hand, is having a difficult
time keeping up with these requests for ap-
plication maintenance because of the backlog
of applications and the shortage of EDP
specialists. Once the user has "signed off” on an
application, he is expected to live with it for

awhile. He is frustrated when he requests what
he thinks is a "simple change” and MIS takes
weeks or months te make that change.

Traditional Approach to Application
Development

There are some myths concerning ap-
plication development:

- Users know what they want

- Users can communicate their
needs to MIS

- Users needs are static

The traditional approach to application
development has serious limitations when ap-
plied to on-line, interactive information sys-
tems that are in a state of constant change and
growth. Communications among the user,
analyst, programmer, and manager tend to be
imprecise, a detailed analysis prolongs the
process to the annoyance of the user, and
specifications are either ambiguous or too
voluminous to read. To compound this problem,
the user is often requested to "freeze". his
requirements - and subsequent attempts at
change are resisted.

Lets review the traditional approach to
application development.

TRADITIONAL APPROACH
‘TO APPLICATION DEVELOPMENT

User Analyst/Programmer

Requast for months
changes

lew of months
Eecifications Redesign
Ty Cade months/
application and teat years -

[ ]

Use the 1 Document
ident! Davolop :
lddlll“:nll changes maintonance |~ months
enhancements spacifications

~  The user first requests an application and
then an analyst or programmer is assigned
to the application. .

- The analyst or pfogrammer_ takes the
oftentimes sketchy user specifications and
designs more complete specifications.

2

Preparad by the Southern California Regional User's Group




Proceedings: HP3000 IUG 1984 Anaheim

= The user then reviews the analyst’s inter-
pretations of his specifications and probab-
Iy makes additional changes.

- The analyst redesigns his specifications to
adapt to these changes. (By this time,
several days, weeks or months have gone
by.)

- The user approves the specifications and a
team of analysts and programmers are as-
signed to develop, test and document the
application. (This may take months or
years.) :

- The wuser finally tries the .application.
Months or years may have gone by before
the user gets his first look at the actual
working application.

The question is: "Can MIS afford
to continue wusing this traditional
approach to application development?

Prototyping Defined

According to Webster’s Dictionary,
the term prototype has three pos-
sible meanings:

1) It is an original or model on which
something is patterned: an archetype.

2) A thing that exhibits the essential fea-
tures of a later type.

3) A standard or typical'example.

J.David Naumann and A. Milton Jenkins in a
paper on software prototyping (see reference 3)
believe that all three descriptions apply to sys-
tems development. Systems are developed as
patterns or archetypes and are modified or en-
hanced for later distribution to multiple users.
“A thing that exhibits the essential features of
a later type” is the most appropriate definition
because such prototypes are a first attempt at a
design which generally is then extended and
enhanced.

13-3

- The user, of course, will want additional
changes or enhancements made to the ap-
phcatlon to adjust the apphcauon to the
"real world". -

- " Depending on the extent of these changes,
additional maintenance specifications may
have to be written and then coding, testing
and documentation.

- The total application development process
may take months or years and the main-
"tenance of - these apphca.tlons may; go on
forever.

Software Prototypes

. The process of software prototyping is a quick

and relatively inexpensive process of develop-
ing and testing an application system. It invol-
ves the end user and programmer/analyst
working closely to develop the application. It is
a live, working system,; it 1s not Just an idea on
paper. It performs actual work; it does not Just
simulate that work. It can be used to test’ out
assumptlons about users’ requ1rements, system
design, or perhaps even the logic of a program.

Prototyping is .an iterative process. lt begins
with a simple prototype that performs only a
few of the basic functions of a system. It is a
trial and error process - build a version of the
prototype, use it, eva]uate it, then revise it or
start over on a new version, and so on. Each

- version performs more of the desired functions
- and in an increasingly efficient manner. It

may, in fact become.the actual production sys-
tem. it is a techmque that: minimizes the dang-

+ ers of a long formal analysis and increases the

likelihood of a successful 1mplementat|on

The Prototype Model

Prototyping an mformatmn system can be
viewed as a four step procedure.

Prepared by the Southern California Regional User's Group




Proceedings; HP3G00 [UG 1984 Anaheim

PROTOTYPING APPROACH
TO APPLICATION DEVELOPMENT

User Analyst/Programmer

Identify Basic
Requirements

implement identity changes to system Revise &
end use | providenewversion | onhance

Step 1. Identify users’ basic requirements:

" - End user and programmer/analyst work closely together.
- Concentrate on users’ most basic and essential requirements.
- Define data requirements, report formats, screens, and menus,
- Need not involve written specifications.
- For larger systems, a design team may need to spend a few weeks
preparing a first-effort requirements document.

Step 2. Develop a working prototype:

- Programmer analyst takes the notes developed in the user
_discussions and quickly creates a working system.

= Designs and/or defines data base and loads subset of data.
- Makes use of defaults and standard report formats.

'« Performs only the most important, identified functions.

Step 3. Implement and use the prototype:

~ Programmer/analyst demonstrates prototype to small group of users.
- Users may request enhancements during demo.
- Users make notes of all changes they would like made.

Step 4. Revise and enhance the prototype:

- Programmer/Analyst and user discuss desired changes.

- Changes and enhancements for the next version are prioritized.
- Programmer/Analyst creates next version.

- Go back to Step 3.

NOTE: Steps 3 and 4 are repeated until the system achieves the
requirements of this small group of users. Then either
introduce to a larger group of users for additional require-
ments or if enough users are satisfied, demo to management
to gain approval for the production system.

13

4

Prepared by the Sourhern California Regional User's Group




Proceedings: HP3000 IUG 1984 Anabeim

PROTOTYPING VS TRADITIONAL

~== Analyslc,/Design A7 Traditionat
—~ Devalopment ’,a" Approach
----- Teat/!mplementation o
—— Production - * user flrat sees system
-~
~
v
Cumulativa /
Investment } /
/
/ "
,f P Prototype
/ 4 Approach
/ ‘ /I' PP
.
,// . ,I/ user begins working with prototype
PP
T

Time

Uses of Software Prototypes
1. To clarify user requirements:

- Written specs are often incomplete, confusing, and take a static
view of requirements. '

- It is difficult for an end user to visualize the eventual system,
or to describe their current requirements.

- It is easier to evaluate a prototype than written specifications.

- Prototyping allows - even encourages users to change their minds.

- It shortens the development cycle and eliminates most design errors.

- It results in less enhancement maintenance and can be used to test
out the effects of future changes and enhancements.

2. To verify the feasibility of design:

- The performance of the application can be determined more easily.

- The prototype can be used to verify results of a production system.

- The prototype can be created on a minicomputer and then that software
prototype may become the specifications for that application which
may be developed on a larger mainframe computer.

3. To create a final system:

- Part (or all) of the final version of the prototype may become
the production version.

- It is easier to make enhancements and some parts may be recoded
in another language to improve efficiency or functionality.

Essential Resources I. Interactive Systems

The following are the essential resources to ef- - Hardware and Operating System -
fectively do software proto- typing: When doing software prototyping,

both the builder and the system must
respond rapidly to the user’s needs.

13-5

Preparad by the Southern California Regional User's Group




Proceedings: HP3000 IUG 1984 Anaheim

Batch systems do not permit
interaction and revision at a human
pace. Hardware and associated operat-
ing systems tailored to on-line
interac- tive development are ideal for
software prototyping.

2. Data Mahagement Systems

- A Data Base Management System
provides_the tools for defining, creat-
ing, retrieving, manipulating, and con-
trolling the information resources.
Prototyping without a DBMS s

inconceivablel

- A Data Dictionary provides standar-
dization of data and file locations and
definitions, a cross reference of ap-
plication programs, and a built~ in
documentation capability. These are
essential to managing the corporate
resources and extremely useful when
prototyping.

3 Generalized Input and Output Software

- FEasy to use data entry, data editing,
and screen formatting software are ex-
tremely helpful in the software
prototyping process to allow the
programmer to sit down at a terminal
with a user and interactively create
the user’s screens or menus.

~ Powerful easy-to-use report writer
and query languages provide a quick
and effective way of retrieving and
reporting on data in the system. A
report writer that uses default formats
from very brief specifications is most
useful in the initial prototype.

4, Very High Level Languages
- Traditional application development

languages such as COBOL may not be
well suited for software prototyping

because of the amount of code that has -

to be written before the user sees any
results. .

- Very powerful high level (MACRO)
languages that interface directly to a
data dictionary for their data defini-
tions are ideal. One statement in this
high level ianguage could realistically
replace 20-50 COBOL state- ments.
This reduces the amount of code a
programmer has to write and maintain
and speeds up the development process.

5. Library of Reusable Code

- A library of reusable code to reduce
the amount of redundant code a
programmer has to write is an
important prototyping resource.

- This code could represent commonly
used routines made available to
programmers.

Potential Problems

What are the problems with prototyping? How
can data processing management control its use
and keep it within bounds?

One problem with prototyping is the accep-
tance of this method by the systems people. It
also may encourage the glossing over of the sys—
tems analysis portion of a project. It may be
difficult to plan the resources to develop a sys-
tem. Programmers may become bored after the
nth iteration of the proto- type. Testing may
not be as thorough as desired and it might be
difficult to keep documentation on the applica-
tion up to date because it is so easy to change.

Even with these concerns, prototyping provides
a very productive user-designer working
relationship. So it behooves all data processing
executives to learn to use this powerful tool
creatively and to manage it effectively.

The advantages of prototyping greatly out-
weigh the problems.

Cost and Efficiency

It has been found that there is an order of
magnitude decrease in both develop- ment cost
and time with the prototype model.

It is often difficult to estimate the cost of an
application system because the total costs of
development, including maintenance are usual-
ly lumped together. The cost of implementing

- the initial system is much lower than the tradi-
tional approach (typically less than 25%).

However, software prototyping could be expen—
sive in three ways:

1. It requires the use of advanced
hardware and software.

2. It requires the time of high level
users and experienced designers.

3. Efficiency may be compromised.
The main thing to remember is that the main

focus of prototyping is not so much efficiency
but effectiveness.

Summary

Prototyping is truly a “state of the art" way of
developing applications.

13-6

Prepared by the Southern California Regional User's Group




Proceedings: HP3000 IUG 1984 Anaheim

- Software prototyping promotes an in-
teractive dialogue between the uvsers
and the programmer, which results in
a system being developed more quick-
ly, and results in an interactive
development approach which is
friendlier for the end user.

- The prototype provides a live work-
ing system for the users to experiment
with instead of looking at lengthy
specifications.

- The users are provided with an early
visualization of the system which al-
lows them to immediately use it.

- The users are allowed and even en-
couraged to change their minds about
user interfaces and reports.

- Maintenance is viewed right from the
beginning as a continuous process and
because the prototype is usvally writ-
ten in a very high level lan- guage,
changes are faster to locate and easier
to make.

- Software prototyping results in:

* Users who are much more satisfied
and involved in the development
process.

* Systems that meet the user's require-
ments and are much more effective
and useful.

* Improved productivity for all those
involved in software prototyping: the
users, the analysts;, and the
Programmers.

Hewlett~Packard’s Prototyping Tools
Hewlett-Packard is one of the few vendors
that supplies the majority of the tools needed
to effectively do software prototyping.

* Interactive Systems

- HP3000 (All Series) - MPE Operat-
ing System

* Data Management Systems

- IMAGE/3000 - KSAM/3000 - MPE
files - DICTIONARY/3000

* Generalized Input/Output Software
- VPLUS/3000 - QUERY/3000 -
REPORT/3000 - INFORM/3000 -
DSG/3000

* Very High Level Languages

- TRANSACT/3000

Canning, Richard G, "Developing Systems By Prototyping"” EDP Analyzer (19:9) Can-
ning Publications, Inc., September, 1981,

Naumann, Justus D. and Jenkins, A. Milton, "Prototyping: The New Paradigm for Sys-
tems Development,” MIS Quarterly, Vol. 6, No. 3, September 1982

Naumann, Justus D. and Galletta, Dennis F., " Annotated Bibliography of Proto- fyping
for Information Systems Development” Management Information Systems
Research Center Working Paper (MISRC-WP-82-12), September 1982,

Note: The above working paper as well as the paper by Naumann and Jenkins entit-
led “Prototyping: The New Paradigm for Systems Development” MIS
Research Center-Working Paper (MISRC-WP-82-03). October 1981, are
available for $3.00 each from :

University of Minnesota Systems Research Center School of Manrage-
ment 269 19th Avenue South University of Minnesota Minneapolis,
Minnesota 55455

or by calling 612-373-7822.

Podolsky, Joseph L., “Horace Builds a Cycle Datamation, November [977,
pp.162-186.

i3-7

Prepared by the Southern California Regional Ulser's Group




