Proceedings; HP3000 1UG 1984 Anaheim

Systematic Redesign
Modifying Object Code

i Phil Curry :
Alvin Community College

Many different types of files may be main-
tained on a computer system, right? Well in
actuality this statement is false. There are only
two types of files, data files and program files.
The data structures and contents of the files
are basically immaterial to the type of file it is.
The way a file is being used determines the

:LISTF DATA.2

ACCOUNT= ISIS GROUP= MISC

FILENAME CODE ------------ LOGICAL RECORD
SIZE TYP EOQF

DATA B0B FA 4

The file contents are as follows:

R.P. Gee 1401 Printer Street
Anne C. Cobol P.0. Box X3J4

N.C. Seay 4 Tran Street

Flop E. Disc 256 Sector

type of file it is. Let us prove this concept by
looking at several files that would. be typical-
ly found on a computer system.

A LISTF command is done to examine file in-
formation on a particular file,

----------- ----SPACE~---
LIMIT R/B SECTORS #X MX
4 3 3

What does the file contain? The answer is fairly easy, the file contains data.

A LISTF command is done to examine file information for another file.

:LISTF FSOURCE,2

ACCOUNT= ISIS GROUP= MISC

FILENAME CODE ----r-=----- LOGICAL RECORD
SIZE TYP EOF

FSOURCE 808 FA 14

The file contents are as follows:
$CONTROL USLINIT,SOURCE WARN

$TITLE "SUMMATION PROGRAM®
PROGRAM SUMM

12

White Plains
Boston MA
Los Angeles CA ‘
Half Track "IL
----------- ----SPACE----
LIMIT_R/B ‘SECTORS #X MX
14 3 6 1 1

-1

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

IMPLICIT INTEGER (A-Z)
SUM=0

10 DISPLAY “ENTER NUMBER: *
ACCEPT NUMBER
IF (NUMBER.EQ.-1) GO TO 20
SUM=SUM+NUMBER :
G0 TO 10
20 DISPLAY “The sum of the numbers is: ", SUM
STOP
END

What does the file contain? Again, the file contains data. The file does not contain a program as some
would answer. This file is used as input data to a Fortran compiler which produces a USL file as output.
When a ‘PREP command is used at the MPE level or the ~-PREPARE command is used in the Segment-
er, the USL file is used as data to the Segmenter and a file containing object code is produced.

Looking at one other file on the system, a :LISTF command shows the following:

:LISTF FOBJECT,2

ACCOUNT= ISIS GROUP= MISC

FILENAME CODE ------===--- LOGICAL RECORD---===-=-=--= -~ --SPACE~--~~
SIZE TYP EOF LIMIT R/B SECTORS #X MX

FOBJECT PROG 128W FB 5 5 1 6 1 1

The file contents {as viewed with FCOPY) are as follows:

:RUN FCOPY.PUB.SYS

HP32212A.3.17 FILE COPIER (C) HEWLETT-PACKARD CO. 1982
>FROM=FOBJECT; TO=; OCTAL ; CHAR

FOBJECT RECORD 0 (%0, #0)

00000: 004600 000001 000003 000001
00004: 000002 001440 000000 177777
00010: 000004 000000 000000 177777
00014: 000000 000003 00000V V77777
00020: 000000 000000 000000 090000
00024: SAME: TO 000034-1

00034: 140400 000124 000000 000000 ...7T....
00040: SAME: TO 000050-1) .

00050: 000400 000600 001000 000171 y
00054: 000371 000000 000000 177310
00060: 177000 177000 177000 000002
00064: 001362 000576 ¢01374 000000 ..."....
00070: 002003 117103 002601 001400 ...C....
00074: 152703 043117 041112 141075 . .FOBJ.=
00100: 052040 002001 000767 000400 T
00104: 000200 001120 000601 046511 ...P. MI
00110: 051503 020040 020040 044523 SC IS
060114 044523 020040 020040 000000 IS ..
00120: 000000 000000 177000 177000
00124: 177004 177006 000007 000006
00130: 177511 000017 177310 000001 .I......
00134: 000042 000001 000000 000000 ."......
00140: 000642 000362 177310 177310
00144: 177310 000000 000000 000000
00150: 177310 000001 000112 000000 J..

Prepared by the Southern Colifornia Regional User’s Group

+

Proceedings: HP3060 IUG 1984 Anaheim

00154
00160:
00164
00170:
00174:

000000 000003 001400 152703
177730 0000060 000001 001544
001560 001600 000001 000000 .p
000000 000713 000400 130564

001400 064445 000000 000000 ..i%....

FOBJECT RECORD 1 (%1, #1)

00000: 003000 002400 177777 000000
00004: SAME: TO 000200-1

< CONTROL Y >
2 RECORDS PROCESSED %X 0 ERRORS

What kind'of file is this? The answer to this question is not as easy
as the others. The file could be a data file or a program. We must
run :LISTDIR2.PUB.SYS to answer this question.

:RUN LISTDIR2.PUB.SYS

LISTDIR2 C.01,00 (C) HEWLETT-PACKARD CG., 1977
TYPE 'HELP' FOR AID

>LISTF FOBJECT:PASS

3Rk KAk R Rk gk 0K

FILE: FOBJECT.MISC.ISIS

FCODE: PROG FOPTIONS: STD,BINARY,FIXED
BLK FACTOR: 1 CREATOR: MANAGER

REC SIZE: 256(B) LOCKWORD

BLK SIZE: 128(W) SECURITY--READ: ANY

EXT SIZE: 6(S) WRITE: ANY

REC: 5 APPEND: ANY

SEC: 6 LOCK: ANY

EXT: 1 EXECUTE: ANY
MAX REC: B FESECURITY IS ON
MAX EXT: 1 COLD LDAD ID: %15106

LABELS: 0 CREATED: THU, 23 JUN 1983
MAX LABELS: ¢ MODIFIED: THU, 23 JUN 1983
DISC DEV #: 3 ACCESSED: THU, 23 JUN 1983
DISC TYPE: 0 LABEL ADR: %146665

DISC SUBTYPE: 9 SEC OFFSET: %1

CLASS: DIsC FLAGS: NO ACCESSORS

FCB VECTOR: %0

SEG: 1 TOTAL DB: %3

STACK: %1440 DL: %0

MAXDATA: DEFAULT CAP: IA,BA

SEXIT

Since the display does not indicate the file
is loaded, this is a data file. The loader uses
this file as data when a program is to be run
that is not currently loaded on the system.
Once the program is loaded, we would be
correct in saying that this file contains a
program. When the program is loaded, the
file cannot be modified since the operating
system has control over it. However, if the file
is not being used for program execution, it may
be accessed just as any other data file on the
system. .

The perpetual data concept should be quite
obvious. The output of a process is data to
another process. A person uses a terminal and a
text editor to produce a file containing source
code. This source code is data to a compiler
which produces a USL file, and so on. Any of
the files throughout the process may be ac-
cessed and modified before con- tinuing fo
the next. Jlogical step. What will be
demonstrated is the taking of the output.from
the Segmenter, prepared object code, and
;nogifying it before it is used as data to the
oader.

12-3

Prepared by the Southern Califprnia Regional User's Grou%

Proceedings: HP3000 UG 1984 Anaheim

DEBUG and DECOMP are used quite exten-
sively in this paper. The reader is assumed
to be familiar with DEBUG and the architec-
ture of the HP 3000 including the structure of
the data stack. You will learn quickly there
are several tools which are invaluable. Several
manuals which will be necessary are the
Machine Instruction Set, System Reference,
System Intrinsics and the SPL Reference
manual along with the Instruction Decoding
Pocket Guide. A copy of the System Tables
Manual could also prove helpful.

Many people wonder why in the world
would anyone want to modify object code.
The only practical answer is "Any time a
program needs to be modified and the source
code is not available". If the source code is
available, it would be much simpler to make
the necessary changes to the code and
create a new object file. All of us, however,
have programs on our systems which we have
no source code for. An example would be

some of the programs found in the Con-
tributed Software Library. Many times people
will contribute only object code to make sure
all changes to the source code are controlled at
their site.

Many times though, we need to make
changes to a program for which we have no
source code. One example of this would be the
run~-time information placed in the the object
code by the Segmenter. Looking at the listing
produced by LISTDIR?2 we can see there is one
code segment, the total global-DB area is three
words, the stack parameter used at run time
is 1440 (octal), the DL size in words is zero,
the maxdata parameter used at run time is the
default (-1), and the capabilities of the
program are IA and BA. The values men-
tioned are stored in record zero of the object
code. The data structure for prepared object
code can be found in the System Tables Manual
in Chapter 10, There is also an excellent ar-
ticle in the proceedings for the 1978 HP User’s
Group North America meeting held in Denver
which explains in a more narrative fashion
the structure of object code and USL files.

Record zero of all object code contains the fellowing:

Word
{zero based) Contents
0 Flags (Capabilities)
Bit 7: BA
8: IA
9: PM
12: MR
14: DS
15: PH
} Number of segments in the program
2 The number of words in the global-DB area
of the program's run-time stack
5 The initial stack size
6 The initial DL size {zero if DL= not

specified in PREP)

7 The maxdata specification (-1 if maxdata=
not specified in PREP)

By knowing the above, any of the para-
meters which are set by the Segmenter when
the object code is created may be changed by
updating the appropriate word in the object
code. One would not want to modify the
number of segments unless you are going to
add a segment to the object code (no easy task).
The total global-DRE value one would rarely
want to change. By altering the total

global-DB up, however, one can set aside
some global area that the original program
knows nothing about to be used by the patch
being implemented or a patched in procedure.

Now that we know how to change the
parameters set by the Segmenter, we need to
know how to modify the instructions generated
by the compiler. One way to do this is to use

Prepared by the Southern California Regional Usar's Group’

Proceedings: HP3000 IUG 1984 Anaheim

the program DECOMP which is in the
Contributed Software Library. DECOMP
allows the dumping of object code, showing the
op codes for the program instructions, and al-
lows the modification of these instructions.
Please notice that I stated modification of in-
structions. Other means must be taken for
inserting instructions inte object code.
Deleting instructions is another matter. Any
instruction can be quickly "deleted" by chang-
ing it to a NOP, which is the mnemonic for a
"No operation" or dq nothing instruction.

. Let us Jook at a typical problem and a solu-
tion. We have a program which opens an Im-

:RUN XTEST;LI1B=P
OPEN ERROR OF DATA BASE

age data base with exclusive access to generate
a report. There is a problem in that this
program must be run when no one is accessing
the Image data base. We do not have the
source code for the program but we need to
change the call to DBOPEN to use mode §
rather than mode 3 to allow concurrent access
to the data base.

First off, we will need to verify the fact
that the DBOPEN is really using mode 3.
The program calls DBEXPLAIN when a
DBOPEN fails to show what happened. In the
display we are shown that mode 3 was in fact
used.

IMAGE ERROR AT %000010: CONDITION WORD = -1

DBOPEN, MDDE 3, ON ISISDB
DATA BASE IN USE

END OF PROGRAM

If the program did not do this, we could use
DBUTIL’s SHOW command to verify that the
program did indeed open the data base with
a mode of 3.

12

Next we need to get a load map for the
program to see where DBOPEN is called from
in the program. The format for LMAPs can be
found in the MPE Commands manual in ap-
pendix D.

3

Prepared by the Southern California Regionatl User's Group

Proceedings: HP3000 1UG 1984

Anaheim

- tRUN XTEST;LMAP MAXDATA=10000;L1B=P

PROGRAM FILE XTEST.MISC. ISIS

CANYDATE1 PROG 2 13 3 PSL 2 13 7
SEMESTER PROG 2 11 3PSL O 2 4
ISISPREP PROG 2 2 3PSL O 1 4
CVRI PROG 2 14 2PSL 2 20 7
CCOMPRESS PROG 2 12 3 PSL 2 15 7
: 13 2
CFLAGS PROG 2 10 2PS5L 2 7 14
7 1
SORTEND ‘ PROG 0 23 3 88L 0 1 206
C’'PERFORM PROG 0 22 3 8SL 0 11 232
SORTINITIAL PROG 0 21 3 8SSL 0 11 206
C'SORTERR PROG 0 20 3 SSL 0 16 232
C'CLOSE PROG ¢ 17 3 85L 0 2 232
C'SORTINITIAL PROG 0 16 3 8L 0 11 23
C'ACCEPT PROG O 14 3 8SL 0 50 23
DBOPEN PROG 2 3 385L 2 2276
DBOPEN PSL 2 1 4 8SL 2 2 276
DBCLOSE PROG 2 16 2 85L 2 13 267
SORTINPUT PROG 0 1% 2 85L 0 3 206
C'TST' PROG 0 11 288L 0 12 230
TERMINATE’ PROG 0 190 38L 0 2 M
7 2
DBEXPLAIN PROG 2 7 3 8SL 2 1 300
3 2
DBGET PROG 2 2 2388L 2 22712
C’ENDPAR PROG O V7 28SL 0 3 232
14 1
C'DISPLAY'FIN PROG-0 6 3 85L 0 36 2
6 2
13] .
C'DISPLAY'FC PROG 0 12 1 850 0 37 23
C'DISPLAY'INIT PROG O 4 g SSL 0 34 23
4
11 1
C'DISPLAY'L PROG:0 & 3 3SL 0 33 231
5 2
10 1
C’EDITMOVEAN PROG 0 6 1 8L ¢ 2 231
C'WRITE' PROG O & 1 8SL 0 20 232
SORTOUTPUT PROG ¢ 4 1 8SL 0 2 206
C’'EDITMOVEN PROG 0 3 1 8L 0 1 23
C'OPEN’ PROG 0 15 3 8SL 0 23 232
2 1
QUIT PROG 0 }5 1 8L 0 21 16
0 0
QUIT PSL 0 36 14 8SL 0 21 16
QUIT PSL 0 5 10 8L 0 21 16
QUIT PSL 0 32 788 0 21 16
C'GOTO PROG O 12 2 85L O 4 232
7 0
COBOLTRAP PROG 0O 3 0 S8SL 2 44 231
DEBUG PROG 0 2 0 85L 0 10 52
PRINT PSL 0 40 14 55L 0 35 45
PRINT PSL 0 4 10 8SL 0 35 45
PRINT PSL 0 12 4 8SL 0 35 45
WHO PSL 0 37 14 85L 0 30 45
DLSIZE PSL 0 11 10 SSL 0 25 100
GEMMESSAGE PSL 0 10 10 8SSL 0 11 &5
PRINTFILEINFO PSL 0 7 10SsL 0O 2 46
PRINTFILEINFO PSL 0 23 4 SSL 0 2 46
FOPEN PSL 0 6 10 8SL ¢ 1 4
FOPEN PSL 0 16 4 SsSL 0 1 q
T
12-6

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

RTOI' PSL 0 40
COMMAND PSL 0 37
FMTDATE PSL 0 36
CLOCK PSL 0 35
CALENDAR PSL 0 34
FMTCALENDAR PSL 0 33
CONVERTDATE PSL. 0 31
MYCOMMAND PSL 0 30
FCONTROL PSL 0 27
FCONTROL PSL 0 20
FSETMODE PSL 0 26
FREAD PSL 0 25
FREAD PSL 0 17
FWRITE PSL 0 24
FWRITE PSL 0 13
FREADDIR PSL 0 25
TERMINATE PSL 0 24
DFIX PSL 0 21
DFLOAT' PSL. 0 15
EXTIN' PSL. 0 14

301 302 303 304
OPEN ERROR OF DATA BASE

g A N e N N NN N]

SsSL
SSL
551
SSL
SSL
SSL
SSL
SSL
SSL
SSL
SSL
SSL
SSL
SSL
SSL
SSL
SSL
SSL
SsSL
SSL

102

PR — — o —
Wt e B WN O B —

151
41

COoOODOoOOOOLOODLOOLOOLOOCOoOOOO

203
25
65

35
65
65
45
104
104
104
15
15
15
15

41
205
.203
205

IMAGE ERROR AT %000010: CONDITION WORD = -1

DBOPEN, MODE 3, ON ISISDB
DATA BASE IN USE

END OF PROGRAM

DBOPEN is called in the program code from segment 3 and is at external segment transfer table
entry 3. By looking at the LMAP, -we can tell that mode 5can be used since there are no calls to
DBLOCK or any of the Image intrinsics which modify the data base.

Next, DECOMP is run to find where in segment 3 the PCALs to DBOPEN occur. The first command
entered is to determine where the segment transfer table begins in the code segment.

:RUN DECOCMP.LIB.SYS
HP3000 DECOMPILER 6.1

FILE NAME? XTEST
TYPE 'HELP" FOR ASSISTANCE.

-F 3.
3.500 100601 SEGMENT TRANSFER TABLE (PL-%23) SORTEND
3.501 104600 SEGMENT TRANSFER TABLE (PL-%22) C'PERFORM
3.502 104601 SEGMENT TRANSFER TABLE (PL-%21) SORTINITIAL
3.503 107200 SEGMENT TRANSFER TABLE (PL-%20) C'SORTERR
3.504 101200 SEGMENT TRANSFER TABLE (PL-%17) C'CLOSE :
3.505 104602 SEGMENT TRANSFER TABLE (PL-%16) C'SORTINITIAL
3.506 111600 SEGMENT TRANSFER TABLE (PL-%15) C'OPEN'
3.507 124202 SEGMENT TRANSFER TABLE (PL-%14) C'ACCEPT
3.510 105576 SEGMENT TRANSFER TABLE (PL-%13) CANYDATEI
3.511 106576 SEGMENT TRANSFER TABLE (PL-%12) CCOMPRESS
3.512 101177 SEGMENT TRANSFER TABLE (PL-%11) SEMESTER
3.513 101042 SEGMENT TRANSFER TABLE (PL-%10) TERMINATE'
3.514 100534 SEGMENT TRANSFER TABLE (PL-%7) DBEXPLAIN
3.515 117202 SEGMENT TRANSFER TABLE (PL-%6) C'DISPLAY'FIN
3.516 115602 SEGMENT TRANSFER TABLE (PL-%5) C'DISPLAY'L
3.517 116202 SEGMENT TRANSFER TABLE (PL-%4) C'DISPLAY'INIT

12-7

Prepared by the Southern Colifornia Regional User’s Group

Proceedings: HP3000 1UG 1984 Anaheim

3.520 101132 SEGMENT TRANSFER TABLE (PL-%3) DBOPEN
3.521 103577 SEGMENT TRANSFER TABLE (PL-%2) ISISPREP
3.522 000000 SEGMENT TRANSFER TABLE (PL-%1)

3.523 040023 STT LENGTH = %23

The last instruction will be 0.477 since the segment transfer table
starts at 3.500, so we look for a PCAL to DBOPEN in 0.0 through 0.477.

-F "PCAL DBOPEN",0/477
3.10 031063 2. PCAL DBOPEN
~EXIT
END OF PROGRAM
DBOPEN s called from one place in the program, segmen.t 3 offset 10. Now we need to run the

program and invoke Debug to determine a memory location to use which contains the value § to
reference in the DBOPEN for the mode parameter.

‘RUN XTEST;LIB=P;DEBUG

*DEBUGY 0.0
A breakpoint is set at the call to DBOPEN.
7B 3.10
7R
¥BREAKX 3.10

Next we can look at the program segment to verify we broke at the
correct point in the program.

P-5,6,C !

P-5 031002 PCAL STT 2
P-4 040022 LOAD P+22

P-3 040022 LOAD P+22

P-2 040022 LOAD P+22

P-) 040022 LOAD P+22

P+0 031003 PCAL STT 3

Next we look at the run time stack to see what was placed on the stack in preparation for the call to
DBOPEN. DBOPEN has 4 parameters so we look at the top 4 items on the stack. Notice also in the
dump of the program segment above that we can see where the 4 loads to top of stack occur.

?D 5-3.,4
$-3 000513 000535 000540 000471
Since the intrinsic DBOPEN uses call by reference for all it’s parameters, we know that these values

on the stack are memory addresses and not actual values.

The parameters are located in the staék as follows:

Location Parameter for DBOPEN
5-3 BASE
5-2 PASSWORD
-1 MODE
12-8

Prepared by the Southern Calijornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

5-0 STATUS

We can verify this by displaving the contents of memory at these
locations.

7D 513,10 A

DB+513 ISISDB

7D 535,10 A

DB+535 L e
7D 540,1

DB+540 +00003

We know that the DBOPEN is for the data base ISISDB using the password of the creator (}) with an
open mode of exclusive access, mode 3.

Next we look at the memory locations around the mode parameter to see if there is a location con-
taining a 5 which can be substituted. We look for an alternate memory reference rather than changing
the value of DB+540 since this location could be referenced elsewhere in the program and changing the
contents could produce unpredictable results.

7D 530,20,1
DB+530 +08224 +08224 +08224 +08224 +08224 +15136 +00001 +00002
DB+540 +00003 +00004 +00005 +00006 +00007 +00000 +00000 +00000

A pattern of values can be found by looking at DB+536 through DB+544. The values contained in
these locations are 1 through 7. Since this pattern is found, we will assume that these are being used as
constants in the program for the Image calls. This could be verified by setting breakpoints at calls to
DBFIND, DBGET and DBCLOSE and examining the locations passed to these calls, however since we are
highly certain these values are alright to use as constants, we will continue.

Next we will modify the contents of S-1, the parameter for the mode, from DB+540 which contains
the value 3, to DB+542 which contains the the value 5.

MS-1 .
-1 000540 :=542 - |
7R '

Do you wish to extract only on-campus sections?
As we can see the data bﬁse opened and the program continued executing.
We have now found out what needs to be changed in the call to DBOPEN. Now we need to patch the
object code to call DBOPEN using the address DB+542 for the mode parameter rather than DB+540.
:RUN DECOMP.LIB.SYS

HP3000 DECOMPILER 6.1

FILE NAME? XTEST
TYPE "HELP' FOR ASSISTANCE.

-3.0

FILE XTEST.MISC.ISIS

SEGMENT 3 LENGTH 524
3.0 170400 .. LRA P- 000 <<=)>>¢<-~ Procedure Entry
3.1 051604 S. STOR Q- 004
3.2 031400 3. EXIT %0
3.3 031002 2. PCAL ISISPREP
3.4 040022 @. LOAD P+ 022 <¢=263>
3.5 040022 @. LOAD P+ 022 €C=27>>
3.6 040022 @. LOAD P+ 022 <<=30>>
3.7 040022 B. LOAD P+ 022 <<=31>>

12-9

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

0 031003 2. PCAL DBOPEN

i 040020 e, LOAD P+ 020 <¢=31»
2 043700 G. . LOAD - §- 000,1 ¥
3 000106 .F DELB, ZERO

5

001706 .. CMP , ZERD

141202 .. BE P+ 002 <¢=17>>
.16 006400 .. NOT , NOP
A7 017714 .. BRE P+ 0141 <<¢=33-:62>>
.20 040012 @. LOAD P+ 012 <=32>>
.21 021002 . LDI 2
.22 031004 2. PCAL C'DISPLAY INIT
.23 021006 . LbI &
.24 170010 .. LRA P+ 010 <¢=34>
.25 140024 .. BR P+ 024 <¢=51>>
.26 000513 K DECX, MPYL

000535 .] DECK, XAX .
.30 000540 .° DECX, DEL
.31 000471 .9 INCX, FIXT
.32 001655 .. DXCH, FNEG
.33 000027 .. NOP , DTST
.34 000005 .. NOP , DECX

.35 013517 .0 - TCBC BIT 18

.36 050105 PE TBA P+ 105 .- «<<=143>>
.37 047040 N LOAD DB+040.1.X

.40 042522 ER LOAD P- 122,1 <<=177716>>
4] 051117 RO STOR DB+117 .

.42 051040 R - STOR DB+040

.43 047506 OF . LOAD Q+ 106,1I.X o

.44 020104 D w==~= << DOQUBLE WQRD »>

.45 040524 AT ?71?

.46 040440 A LOAD P- 040 - <<=6>>

Cad Cad Cad Ca G Gad Cad Cad Cad €ad €3 €ad €00 Ca) Cad Cad) X) Ca3 Cad €ad b Cad €a) €ad €ad Cad b Cud Cud
38]
-4

Again, notice the 4 load instructions before the PCAL to DBOPEN at 3.10. The third load instruc-
tion at 3.6 shows a load of P+22. To the reside of the instruction <<=30>> is shown, indicating the loca-
tion ferenced. Looking at the contents of 3.30 we notice the value 540. This needs to be changed to
542 using the modify command.

-M 3.30 !
3.30 000540 .° DECX, DEL =542
3.30 000542 .b DECX, LDXB-

-£

END Of PROGRAM
Finally we can run the program to verify that the paidh is correct.

:RUN XTESTLIB=P;DEBUG

¥DEBUG* 0.0
7B 3.10
7R

¥BREAKX* 3.10

D 5-3.4

$-3 000513 000535 000542 000471
70 542,1 .

DB+542 +00005

7R

Do vou wish to extract only on-campus sections?

By looking at the contents of the stack we can observe the address for the mode parameter passed is in-
deed DB+542 and the contents of the address is 5.

12-10

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Let’s look at a second example. We have a program that uses a tape as input data and creates a report.
We know the tape file is opened with the file name "CBM004". We would like to produce the same
report using a disk file as input so we enter the appropriate file equation and run the program.

:FILE CBM004;DEV=DISC
:RUN XREPORT

After waiting a while we press the break key and type RECALL. We find
that the program is still expecting to use a tape as input.

:RECALL
THE FOLLOWING REPLIES ARE PENDING:
?211:06/8576/109/LDEVH FOR "CBM004" ON TAPE (NUM}?

We suspect the program has the bit set in the foptions for FOPEN which indicates to disallow file equa~
tions. To verify this we need to run the program again with the LMAP option to find what seg-
ments ¢all FOPEN in the program. '

:RUN XREPORT; LMAP

PROGRAM FILE XREPORT.MISC.ISIS

1I0° PROG 0 16 0 SSL 0 34 205
DIO' PROG 0 15 0 SSL 0 33 205
DATELINE PROG 3 14 0 SSL 0 35 205
FSET PROG 3 13 0 SSL 0 16 205
FOPEN PROGO 12 0SSL 0 1V 4
PRINTFILEINFO- PROG 3 1 0 SSL 0 2 46
sIo’ PROG 0 10 0 SSL 0 30 205
RID’ PROG O 7 0 SSL 0 32 205
TERMINATE® PROGO 6 0S8SsL 0 2 4
FMTINIT' PROGO & 0 SSL 0 21 205
TFORM' PROG 0 4 0 SSL 0 22 205
OVFL' PROGO 3 0 SSL 0 143 203
301

We know that there is only 1 segment in the program and that FOPEN is
at STT entry 12. Now we need to find where in the program FOPEN is
called.

:RUN DECOMP.LIB.SYS

HP3000 DECOMPILER 6.1

FILE NAME? XREPORT
TYPE 'HELP' FOR ASSISTANCE.

Display the segment transfer table to find the last instruction in the
segment .

1
-
>

.3015 116122 SEGMENT TRANSFER TABLE (PL-%16) 1I0'
.3016 115522 SEGMENT TRANSFER TABLE (PL-%15) DIO'
.3017 116522 SEGMENT TRANSFER TABLE (PL-%14) DATELINE
.3020 107122 SEGMENT TRANSFER TABLE (PL-%13) FSET
.3021 100406 SEGMENT TRANSFER TABLE {PL-%12) FOPEN
.3022 101047 SEGMENT TRANSFER TABLE (PL-%11) PRINTFILEINFO
.3023 114122 SEGMENT TRANSFER TABLE (PL-%10) SIO’
L3024 115122 SEGMENT TRANSFER TABLE {PL-%7) RID'

L3025 101042 SEGMENT TRANSFER TABLE (PL-%6) TERMINATE’
.3026 110522 SEGMENT TRANSFER TABLE (PL-%5) FMTINIT’
L3027 111122 SEGMENT TRANSFER TABLE (PL-%4). TFORM’
.3030 161572 SEGMENT TRANSFER TABLE (PL-%3) OVFL’

SO O0ODDOoOODOD

12-11

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

0.3031

001403

0.3032 000000
0.3033 040016

The last instruction

0.0 through

0.3014.

SEGMENT TRANSFER TABLE (PL-%2) SRS05S
SEGMENT TRANSFER TABLE (PL-%1)

STT LENGTH = %16

will be 0.3014, so we look for a PCAL to FOPEN in

-F "PCAL FOPEN",0/3014

0.1574 031012 2. PCAL FOPEN
0.1703 031012 2. PCAL FOPEN

-E

END OF PROGRAM

Now we run the program and use DEBUG to set

calls to FOPEN.
:RUN XREPORT ;DEBUG

DEBUG
78 1574,
7R

XBREAK¥

We know the

Intrinsics

as follows:

Locatien

5-16
S-15
5-14
$-13
S-12
s-1
s-10
8-7
5-6
s-5
5-3
5-2
5-1
5-0

We look now at the top 17 locations on the stack.

0.1403
1703

0.1574

parameters

manual.

breakpoints at the two

used in FOPEN by looking in the System

The layout of the stack before a call to FOPEN is

Parameter for FOPEN
FORMALDESIGNATOR
FOPTIONS

AOPTIONS

RECORD SIZE

DEVICE

FORMS MESSAGE

USER LABELS
BLOCKING FACTOR
NUMBER OF BUFFERS
FILE SIZE (DOUBLE WORD}
NUMBER OF EXTENTS
INITIAL ALLOCATION
FILE CODE

OPTION VARIABLE MASK

12-12

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 iUG 1984 Anaheim

D 5-16,17
S-16 001416 002001 000000 177660 001426 000000 000000 000014
$-6 020040 020040 020040 020040 020040 020040 017440

Next we look at the file name used in the FOPEN. Since there are two
calls to FOPEN we need to know if this is the open for the tape file
or the report file.

7D 1416/2.10.A
DB+607 CBM004 .TAPE ...

This is indeed the FOPEN for the file CBM004. Let’'s look at the
parameters for récord size and device. -

?=177660,1
=-80
70 1426/2,10,A
bB+613 TAPE

The file is opened for an 80 byte record and looking at the foptions value of 2001, we know bit 5
was indeed set to disallow file equations. Let’s change the value of the foptionsat S-15 to 1 toal-
liw file equations then change the data stored at DB+613 and DB+614 to indicate a disk device rather
than tape.

™ §-15

3-15 002001 :=1

™ 613,2

DB+613 052101 :="pI"
DB+614 050105 :="SC"
?D 613,2.A

DB+613 DIsC

7R

¥BREAK* 0.1703

This is the second FOPEN so resume execution.

?R

END OF PROGRAM

As we can see the program did not wait for a tape request so the disk file was used as input rather than
the tape.

We would like to have the program allow file equations and default to disk rather than default to
tape as it currently does. We start by running DECOMP to find where value 2001, the foptions value, is
stored. We do not know the address using DEBUG since the foptions parameter is passed by value.

:RUN DECGMP.LIB.SYS
HP3000 DECOMPILER 6.1

FILE NAME? XREPORT
TYPE 'HELP’ FOR ASSISTANCE.

First we decompile the statements close to the PCAL to FOPEN to see
how the parameters are placed on the stack.

-1540
0.1540 163001 .. STD DpB+001,1
0.154) 000647 .. ZERO, FLT

12-13

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim .

0.1542 163000 STD DB+000,I

0.1543 140005 .. BR - P+ 005 €<¢=1550>>
0.1544 041502 CB LOAD Q+ 102 -
0.1545 046460 MO LOAD P- 060,I,X <<=1465->53131>>
0.1546 030064 04 m—-- - ‘ .
0.1547 020016 . MOVE PB-DB SDEC=2

0.1550 034404 9. LOPN %4 <<=1544>>
0.1551 034403 9. LDPN %3 <<=1546>>
0.1552 140004 BR P+ 004 <¢=1556>>
0.1553 052101 TA MTBA P+ 101 t¢=1654>>
0.1554 050105 PE TBA P+ 105 <<=1661>>
0.1555 020000 . MOVE PB-DB SDEC=0 ,
0.1556 040403 A. LOAD P- 003 <<=1553>>
0.1557 034403 9, LOPN %3 <<=1554>>
0.1560 000600 .. ZERO, NOP

0.1561 171707 LRA S- 007

0.1562 010201 .. LsL 1 BIT

0.1563 040016 @. LOAD P+ 016 <<=1601>>
0.1564 000600 .. ZERD, NOP

0.1565 025120 *p LONI 80

0.1566 171707 . LRA 5- 007

0.1567 010201 LsL 1 BIT

0.1870 000700 .. DZRO, NOP

0.1571) 021014 *“. oI 12

0.1572 035006 :. ADDS %6 .

0.1573 040007 @. LOAD P+ 007 <<=1602>>
0.1574 031012 2. PCAL FOPEN

0.1575 051707 S. STOR S- 007

0.1576 035406 ;. SUBS %6

0.1577 051406 S. STOR Q+ 006

0.1600 140003 .. BR P+ 003 <<=1603>>
0.1601 002001 ADD |, DELB

0.1602 017440 TSBC BIT 32.X

0.1603 141502 .B BNE P+ 002 <¢=1605>>
0.1604 140042 " BR P+ 042 <¢=1646>>
0.1605 041406 C. LOAD Q+ 006

0.1606 031011 2. PCAL PRINTFILEINFO

0.1607 000707 .. DZRD, DZRO C
0.1610 021002 *.. WwI 2

0.1611 172003 .. LRA P+ 003,1 <<=1614->1645>>
0.1612 031005 2. PCAL FMTINIT’

0.1613 140020 . BR P+ 020 <¢=1633>>

We can see that the file name CBMO004 is P-relative data and is loaded onto the stack by the LDPN
instructions at 0.1550 through 0.1551. We can also see that the device type is loaded onto the stack by
the LOAD and LDPN instructions at 0.1556 through 0.1557. The address of the file name is pushed
onto the stack at 0.1561 then this word address is converted to a byte address by shifting the value
left 1 bit at 0.1562. The wvalue for the foptions is pushed onto the stack at the next instruction
0.1563, which is LOAD P+16. The value to the side of the instruction indicates the P-relative address
of P+16 is 1601. By looking at the value at 0.1601 we see it is 2001. This value needs to be changed to

the value one as we did using DEBUG.

-M 18601
0.1601 002001 ADD
0.1601 000001 NOP

DELB
DELB

cel

Finally, we need to change the value at 0.1553 through 0.1554 from-
"TAPE” to "DISC" so the file will default to the disk device.

-M 1553/1554

0.1553 052101 TA MTBA P+ 101 <<=1654>> ;="DI"
0.1553 042111 DI LOAD P+ 111,1 <<=1664->36270>>
0.1554 050105 PE TBA P+ 105 <c=1661>> 1="3C"
0.15854 051503 SC STOR Q+ 103
-D 1553/1554
0.1553 042111 051503 DISC
-E
12-14

Prepared by the Sovthern Celifornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

END OF PROGRAM
Now we run the program using DEBUG to verify that our patch is correct.
:RUN XREPORT ;DEBUG
*DEBUGX 0.1403
?B 1574
?R
XBREAKX* 0.1574

Locking at $-15, 'we see the foptions is now 1, and looking at DB+613
we see the contents is now "DISCY.

?D $-16,17
S-i6 001416 000001 000000 177660 001426 000000 000000 000014
5-6 020040 020040 020040 020040 020040 020040 017440

0 1426/2,10 A
DB+613 DISC e
R :

END OF PROGRAM

The final example will show multiple solutions to solve a problem. We have a program which allows
one to change the terminal type for $STDIN. The program does not need SM capability, yet it checks
to see if the person running the program is MANAGERSYS, and if not, the program terminates.

:RUN XDEV

USER: MANAGER

ACCOUNT: 1ISIS

GROUP; MISC

LOGON DEVICE: 23 o ;

You must be MANAGER.SYS to run this program.

END OF PROGRAM
A simple solution would be to write our own WHO subroutine which always Ireturns the user as
MANAGER.SYS and place it in an SL. The problem in doing this is that all programs which call

the WHO intrinsic and use this SL will always return the user as MANAGERSYS and we want only
this one program to have MANAGER.SYS returned to it.

We start by looking at the program file information using
LISTDIR2.PUB.SYS.

:RUN LISTDIR2.PUB.SYS

LISTDIR2 C.01.00 (C) HEWLETT-PACKARD co., 1977
TYPE 'HELP® FOR AID

>LISTF XDEV

okl RIOROIO)

FILE: XDEV.MISC.ISIS

FCODE: PROG FOPTIONS: STD,BINARY,FIXED
BLK FACTOR: 1 CREATOR: *x

REC SIZE: 256(B) LOCKWORD : *¥

BLK SIZE: 128(W) SECURITY--READ: ANY

EXT SIZE: 7(S) WRITE: ANY

REC: 6 APPEND: ANY

12-13

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 IUG 1984

SEC: 7

EXT:

MAX REC: 6
MAX EXT: 1

LABELS: 0
MAX LABELS: 0
DISC DEV #: 2
DISC TYPE: 0
DISC SUBTYPE: 8
CLASS: DISC
FCB VECTOR: %0

$ SEG: 1

STACK: %1440
MAXDATA: DEFAULT
2EXIT

END OF PROGRAM

Anaheim

LOCK: ANY
EXECUTE: ANY
: *¥SECURITY IS ON
COLD LDAD ID: %15115
CREATED: MON, 18 JUL 1983
MODIFIED: MON, 18 JUL 1983
ACCESSED: MON, 18 JUL 1983
LABEL ADR: *x¥
SEC OFFSET: %1
FLAGS: NO ACCESSORS

-TOTAL DB: %25
DL: %0
CAP: 1A BA

We note that there is only one segment in the program.

DECOMP to

for user, account, group and logon terminal is stored.

:RUN DECOMP . LIB.SYS

HP3000 DECOMPiLER 6.1

FILE NAME? XDEV

TYPE 'HELP' FOR ASSISTANCE.

-F 0,
0.360 114122 SEGMENT TRANSFER TABLE (PL-%13)
0.361 116122 SEGMENT TRANSFER TABLE (PL-%12)
0.362 101042 SEGMENT TRANSFER TABLE {PL-%11)
0.363 110522 SEGMENT TRANSFER TABLE (PL-%10)
0.364 111122 SEGMENT TRANSFER TABLE {PL-%7)
0.365 122572 SEGMENT TRANSFER TABLE {PL-%6)
0.366 100442 SEGMENT TRANSFER TABLE (PL-%5)
0.367 100406 SEGMENT TRANSFER TABLE {PL-%4)
0.370 114046 SEGMENT TRANSFER TABLE (PL-%3)
0.371 103101 SEGMENT ‘TRANSFER TABLE {PL-%2)
0.372 000021 SEGMENT TRANSFER. TABLE {PL-%1)
0.373 040013 STT LENGTH = %13

-F "PCAL WHO", K 0/357
0.47 031003 2. PCAL WHO -

The WHO intrinsic is called from one place in the program, at 0.47. Now we need to find where
the locations are placed on the stack in preparation for the ca

to be stored.

0.21 035007
0.22 171700
0.23 010201 ..
0.24 051404 S.
0.25 035004 :
0.26 171700
0.27 010201 .,
0.30 051405 S,
0.31 035004
0.32 171700

ADDS
LRA
LSL
STOR
ADDS
LRA
LSL
STOR
ADDS
LRA

*7

S- 000
1 BIT
Q+ 004

S- 000
1 BIT
Q+ 005

S- 000

12-16

Next we

SI0’

110’

TERMINATE®

FMTINIT'
TFORM'
F'CONTRAP
TERMINATE
FOPEN
WHO
FCONTROL

TYPESET

run

find where the WHO intrinsic is called and where the data

H to WHO so we know where the data is

<-- Primary Entry TYPESET

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim
0.33 010201 .. LSL t BIT
0.34 051406 S. STOR Q+ 006
0.35 000706 .. DZRO, ZERO
0.36 033405 7. LLBL TERMINATE
0.37 031006 2. PCAL F 'CONTRAP
0.40 000706 .. DZRO, ZERO
0.4] 041406 C. LOAD Q+ 006
0.42 041405 C. LOAD Q+ 005
0.43 041404 C. LOAD Q+ 004
0.44 000600 .. ZERO, NOP
0.45 171401 .. LRA Q@+ 001
0.46 021035 *, LbY 29
0.47 03f003 2. PCAL WHO

We can see the parameters passed to the WHO intrinsic from the System
Intrinsics manual. The parameters are placed on the stack as follows:

Location Parameter for WHO
5-10 MODE
5-7 CAPABILITY
5-6 LOCAL ATTRIBUTES
5-5 USER NAME
5-4 GROUP NAME
5-3 ACCOUNT NAME
5-2 HOME GROUP
5-1 LOGON TERMINAL
5-0 OPTION VARIABLE MASK

Looking at 0.40 through 0.45 we see the loads
to top of stack of the addresses for the
parameters and at 0.46 the placing on top of
stack of the option variable mask. The option
variable mask is 35 octal or 29 decimal. The
binary representation of 35 octal is
00/011/101. The bits which are set indicate
which parameters, from right to left, that are
passed to the intrinsic. The parameters for the
WHO intrinsic are as follows:

WHO (modecapabilitylattr,usern, groupnac-
ctnhomen,term); O-V

Alligning the bits with the parameters of the
intrinsic, we find the parameters passed are
the fourth, fifth, sixth and eighth, which are
USERN, GROUPN, ACCTN and TERM.

Looking at the loads to top of stack at 0.40
through 0.45, we see at 0.40 three words
with the contents of zero loaded, which are the
first three unreferenced parameters. At 0.41,
we see a load of Q+6, which contains the
byte address for the fourth parameter, USERN.
At 0.42, we see a load of Q+5, which contains
the byte address for the fifth parameter,
GROUPN. At 0.43, we see a load of Q+4,
which contains the byte address for the sixth
parameter, ACCTN. At 044, a load of one
word containing zero for the unreferenced
seventh parameter. Finally, at 0.45, we see a
load of the address of Q+1, which is the
eighth parameter, TERMN.

12-17

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

We c¢an run the program using DEBUG to verify this.
:RUN XDEV;DEBUG

DEBUG 0.21
78 47
7R

XBREAKX 0.47

D8-10,11

5-10 000000 000000 000000 000124 000114 000104 000000 000034
5+0 000035

78 50

7R

%BREAK* 0.50

D 124/2.4 A
DB+52 MANAGER
7D 114/2.4 A
DB+46 MISC

D 104/2,4.A
DB+42 ISIS
D 34,1

DB+34 +00023
7R

USER: MANAGER

ACCOUNT: 1ISIS

GROUP: MI1SC

LOGON DEVICE: 23

You must be MANAGER.SYS to run this program.

END OF PROGRAM

Now that we know where the intrinsic NHD is being called and where the information is
being stored, we can decide on a solution.

The first solution uses brute force. We decide to let the WHO intrinsic be called but will bypass
the checking of the data for being the user MANAGER and the account SYS. This will allow any user
to run this program. We use DECOMP to determine where the checking is done for the user to be
MANAGERSYS.

.166 042105 DE LOAD P+ 1051 <<=273->44674>>
¢.167 053111 VI’ STOR DB+111.1 T

o

0.170 - 041505 CE LOAD Q+ 10§

0.171° 035040 : ADDS %40

0.172 040407 "A. LOAD P- 007 €<=163>>
0.173 034407 9. LDPN %7 <¢=164>>
0.174 034406 9, LDPN %6 €<=166>>
0.175 034405 9. LOPN %5 <<=170>>
¢.176 021016 . oI 14

0.177 111707 .. LRA S- 007

0.200 010201 .. LsL 1 BIT

0.201 031013 2. PCAL SI0'

0.202 035407 ;. sSuBs %7

0.203 1714001 .. LRA Q+ 001

0.204 031012 2. PCAL IID'

0.205 031007 2. PCAL TFORM'

0.206 041406 C. LOAD Q+ 006

12-13

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

.207 140005 .. BR P+ 005 «<=214»

.210 046501 MA LOAD P- 101,I,X <<=107-220147>>
211 047101 NA LOAD DB+101,1.X

212 043505 GE LOAD Q+ 105,1

213 051040 R STOR DB+040

214 170404 LRA P~ 004 <<=2102>

215 010201 .. LsL 1 BIT

.216 0210010 . LDI 8

21T 020243 . cMPB PB-DB SDEC=3

.220 145503 .C BNE P+ 003,I - <¢=223->236>>
.221 041404 C. LOAD Q+ 004

.222 140006 .. BR P+ 006 €<=230>>

.223 000013 .. NOP , MPYL

.224 051531 &Y STOR Q+ 131

.225 051440 S STOR Q+ 040

.226 020040 MVvB PB-DB SDEC=0

.227 020049 MvB PB-DB SDEC=0

.23¢ 170404 .. LRA P- 004 <¢=224>>

231 010201 . LSL 1 BIT

.232 021010 %, oI 8

.233 020243 . CMPB PB-DB SDEC=3

.234 141502 .B BNE P+ 002 €¢=236>>

.235 140050 . {(BR P+ 050 <¢=305>>

.236 000707 .. - DZRO, DZRO

237 021002 “. o1 2,

.240 172003 .. LRA P+ 003, 1 «<<=243->304>>
.241 031010 2. PCAL FMTINIT'

.242 140030 .. BR P+ 030 <¢=272%

243 000041 ! NOP , ZROB '

4 054557 Yo TBX P- 157 <<=65>>

.245 072440 v ADDM P- 040,1 <<=205->31214>>
.246 066565 mu CMPM P- 165,1.X <<=61->40464>>
.247 071564 st ADDM Q+ 164

0.2

OO0 OO 00O O OO LOOLOOOOD D000 COOLOLOOOOOOOOCOOOOOOOO0O

.250 Q20142 b MVLB SDEC=2 .

.251 062440 e CMPM P- 040,1 <<2211->47312»>
252 046501 MA LOAD P- 101,I.X <<=151->21161>>
.253 (47101 NA LOAD DB+101.I.X%

.254 043505 GE LOAD Q+ 105,1

.255 051056 R. STOR DB+056

.256 . 051531 SY . - STOR Q+ 131

.257 051440 S = STOR Q+ 040

.260 072157 to ADDM P+ 157, 1 «<=437»

.261 020162 r SCU SDEC=2

.262 072586 wun ADDM P- 156,1 <<=104->41623>>
.263 020164 1t SCU SDEC=0

.264 064151 hi CMPM P+ 151 X <<=435»>

265 071440 s ADDM Q+ 040

.266 070162 pr ADDM P+ 162 <<=450>>

267 067547 og - CMPM Q+ 147 1.X

270 071141 ra ADDM DB+14)

271 066456 m. CMPM P- 056,1,X <<=213->51253>>
.272 025426 +. LDXN 22

273 044401 I. . LOAD P- 001.X «<=2722»

.274 011202 .. IXBZ P+ 002 =276

.2715 140402 . BR P- 002 «<=273>2

.276 021054 ", LDI 44

277 111726 . LRA S- 026

.300 010201 .. LSL 1 BIT,

2301 031013 2. PCAL SIO'

.302 035426 ;. SUBS %26

.303 b31007 2. PCAL TFORM' :
.304 031011 2. PCAL TERMINATE’ ' ’
.305 000606 .. ZERO, ZERO

.306 021040 " DI 32 .
307 035014 . ADDS %14

.310 040004 @. LOAD P+ 004 <=314>>

12-19

Prepared by the Souihern Coliforfia Regional User’s Group

Proceedings: HP3000 1UG 1984 Anaheim

0.311 031004 2. PCAL FOPEN
0.312 051402 S. STOR Q+ 002
0.313 140002 .. BR P+ 002
0.314 004000 .. DEL , NOP

0.315 141202 .. BE P+ 602
0.316 140037 .. BR P+ 037

In instructions 0.166 through 0.205 we see the
output of what the logon device is. At
0.206 the address of the USERN, Q+6, is
loaded. Next, a branch to 0.214, to bypass the
P-relative data "MANAGER " Next, at
0.214, the address of the P-relative data is
loaded onto the stack. Next, the address is logi-
cally shifted left 1 bit to form a byte ad-
dress from the word address which was loaded.
Next, a decimal 8, the number of bytes to com-
pare, is loaded onto the stack. At 0.217, the
CMPB instruction will compare & decimal
bytes. At 0.220, the instruction says branch
to 0.236 if the bytes compared are not equal.
Therefore, if the contents of the data whose
address is stored at Q+6 for a length of 8
bytes does not match "MANAGER " then
branch to 0.236, otherwise continue. Next, at
0.221, the address of the ACCTN, Q+4, is
loaded. The instructions at 0.222 branches
around the P-relative data stored in 0223
through 0.227. Next, at 0.230, the address of

-M 206
0.206
0.206

-E

END OF PROGRAM
‘RUN XDEV

041406 C. LOAD Q+ 006
140077 .7 BR P+ 077

USER: MANAGER

ACCOUNT: 1ISIS

GROUP : MISC

LOGON DEVICE: 23
Change to term type: 7?10

END OF PROGRAM

<¢=2315>>

<¢<=317>>
<¢=355>»

the P-relative data is loaded onto the stack.
Next, the address is logically shifted left 1
bit to form a byte address from the word ad~-
dress. At 0.232, a decimal 8, the number of
bytes to compare, is loaded onto the stack.
At 0.233 is the compare bytes instruction,
CMPB. At 0.234, the instruction is to branch
to 0.236 if the 8 bytes are not equal, other-
.wise the next instruction at 0.235 is a branch
to instruction 0.305.

Now we know the flow of logic for the
comparison. If the USERN is not
"MANAGER" then branch to 0.236. Next if
ACCTN is "SYS" then branch to 0.305, other-
wise branch to 0.236. To implement the
"brute force" solution, instruction 0.206 is
modified to BR P+77, which is a branch to
0.305, which completely bypasses any
checking for MANAGER.SYS, and continues
processing,

:=140077
<<=305>>

SOLUTION 2,

A second solution is to modify the P-relative data being checked. Since we are in the account
"ISIS" we can change the account name being checked from "SYS" to “ISIS". The P-relative data is at

0.224 through 0.227.

-M 2247225
0.224 051531 §Y STOR Q+ 131 .="E8"
0.224 044523 IS LOAD P- 123,X «<««<=}01>>
0.225 051440 S STOR Q+ 040 .="I8"
0.225 044523 1S LOAD #P- 123X <<=102>>
-224
0.224 044523 18 LOAD P- 123,X <<=101>>
6.225 044523 IS LOAD P- 123X <«=102>>
12-20

Prepared by the Southern Colifornia Regional User’s Group

Proceedings: HP3000 IUG 1984 Anaheim

0.226 020040 MVB PB-DB SDEC=0
0.227 020040 MVB PB-DB SDEC=0
0.230 170404 .. LRA P- 004 «<=224>>
3
END OF PROGRAM
:RUN XDEV

USER: MANAGER

ACCOUNT: 1ISIS

GROUP : MISC

LOGON DEVICE' 23
Change to term type: ?10

END OF PROGRAM

There are some disadvantages to this method. What we will do is increase the global-DB
The first 18 the user must be area by %14 words to allocate memory the
MANAGER.UISIS to run the program and can- program does not reference and place initial
not be any other user on the system as the values in these locations. Then we will change
patch in solution 1 allows. This may be what the array pointers from pointing 2t there in-
you want. The second disadvantage is the tended memory locations to instead point to
error message generated will need to be our global memory locations we are allocating.
modified to state "You must be

MANAGERISIS to run this program.”, but as We know by looking zt the output from
we now know, this can be easily done. LISTDIR2? that the total global-DB area is

%25 words. Global~DB is initialized at run time
from data within the object code. Word 2 of

SOLUTION 3. record 0 denotes the beginning record number

of the image of the global-DB area of the

The third solution is a bit exotic, however stack. We need to allocate 4 words (8 bytes) of

this technique for patching may be neces- storage for USERN, 4 words for ACCTN and

sary if the data for USERN, ACCTN, 4 words for GROUPN. What we will do is

GROUPN and TERMN is used elsewhere and add 14 octal (12 decimal words) to the value in

you wish them not to reflect what the WHO word 2 of record O so the loader will allocate

intrinsic would normally return, but rather not 25 octal words of global-DB storage but
other values. In this solution we will patch the instead 41 octal words.

program to show the USERN as "MANAGER",
the ACCTN as "SYS" the GROUPN as "PUB"
and the TERMN as 20 no matter who runs
the program.

:RUN DISKED2.PUB.SYS

DISKED2 C.01.00 (C) HEWLETT-PACKARD CO., 1976
TYPE "HELP' FOR INFO
*HELP

DISKED2 allows to dump and/or modify : file contents or
any disc sector {sys. mgr capability is required).

B[ASE] [<ABS SEC #>]

DEBUG

DISC <LOG DEV #>

O[UMP] [[<REL SEC #>] [, <# OF SEC>]] OR [<'ALL'>] [, A=ASCII]
(AT LEAST ONE PARAMETER MUST BE PRESENT.)

FLILE] <FILENAME>

L{IST] [<DEVICE CLASS»] OR [<LOG DEV #>]

M[ODIFY] <SEC NUM, REL WORD ADDR [.NUM OF WORDS]>
(NEW VALUE STARTS WITH : # - DECIMAL, ' - ASCII)

12-21

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984

Anaheim

W{IDTH]

ELXIT]

*FILE XDEV

>DUMP 1

LOGICAL SECTOR 1 *kk BEGINNING OF DATA k%
SECTOR %00000220402 LDEV = %000004
000: 004600 000001 000025 (0000t 000002 001440 000000 177777
010: G00005 000000 000021 177777 000022 000004 000001 000001
020: 000000 000000 000000 000000 000000 000000 000000 000000
030: 000000 000000 GOOOOO 000000 000000 000374 000000 177774
040: 177774 177774 177774 177714 177174 117774 177774 177774
050: 177774 177774 177774 177774 177774 117174 171774 177774
060: 177774 177774 000000 066001 177777 000002 023401 177777
M 1.2
LOGICAL SECTOR) %Xk BEGINNING OF DATA ¥k%
SECTOR %00000220402 LDEV = %000004
002: %000025,41
WRITTEN

*DUMP 1
LOGICAL SECTOR) k% BEGINNING OF DATA X¥kk
SECTOR %00600220402 LDEV = %000004
006: 004600 000001 000041 000001 000002 001440 000000 177777
0106: 000005 000000 000021 177777 000022 000004 000001 00000]
020: 000000 006000 000000 000000 000000 000000 000000 000000
030: 000000 000000 000000 000000 000000 000374 000000 177774
040: 177774 177774 177774 171774 \7TIIA 177774 1777174 117774
050: 177774 177774 177774 V71774 1777174 177774 1177174 1717774
060; 177774 177774 066001 177777 000002 023401 177777

000000

DB-relative data may be changed by modifying

the image of the DB area in the object code.

Knowing this, we now modify record 1 words #25 through %40 zero based to "MANAGER PUB SYS
R(Y;Tg%eN tha}) ltaheagddress for USERN is DB+25 the address for GROUPN is DB+31 and the address for
is DB+

>DUMP 2
LOGICAL SECTOR 2

SECTOR %00000220403 LDEV = 2000004
000: 000001 Q00000 0060000 000000 000000 000000 006000 000000
010: 000000 000000 000000 000000 000000 000000 000000 000000
020: 000000 000000 003000 002400 177777 000000 000000 000000
030: 000000 000000 000000 000000 000000 000000 0600000 000000
040: 000000 000000 000000 000000 000000 000000 000000 000000
050: 0000600 000000 000000 000000 000000 000000 000000 000000
060: 000600 000000 000000 000000 ¢O00000 000000 000000 000000
070: 000000 000000 000000 000000 000000 000000 000000 000000
M 2,%25,12
LOGICAL SECTOR 2
SECTOR %00000220403 LOEV = %000004
025: %000000, 'MA’
026: %000000, 'NA’
027: %000000, 'GE’
030: %000000,'R '
031: %#000000, 'PU’
032: %000000,'B '
033: #000000,"' '
034: %000000," '
035: %000000, 'SY’

12-22

Prepared by the Southern California Regienal User's Group

Proceedings: HP3000 IUG 1984 Anaheim

036: %000000,°S '
037: #%000000," °
040: %000000," '
WRITTEN

SEXIT

END OF PROGRAM

Running DECOMP, we can verify that our modification is correct.
:RUN DECOMP .LIB.SYS

HP3000 DECOMPILER 6.1

FILE NAME? XDEV
TYPE 'HELP® FOR ASSISTANCE.

-D DB+25
DB+25 046501 047101 043505 051040 050125 041040 020040 MANAGER PUB
DB+34 020040 051531 051440 020040 020040 §Ys

~EXIT
The contents of the run time stack for the original program is as
follows:
DL =mmeeccmcccccrcmceccee-
| DL area |
DB | |
! Global area I %25 words
Q-initial | |
Q+1 } TERMN |
Q+2 ! I
Q+3] |
Q+4 IDB address of ACCTN | ----
P I
Q+5 DB address of GROUPN | ~==1---
....................... | l
Q+6 IDB address of USERN | ==-l--l---
----------------------- [
! ! I |
! ACCTN b <=== 1 |
|] [
----------------------- 1\
| | U
| GROUPN | Commwmm- |
| ! |
....................... I
!
! USERN | Commmcanas
|
! !
! !
| |
! !
z

The contents of the run time stack for the patched program is to
be as follows: :

) T O

12-23

Prepared by the Southern Calijornia Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim

DB

DB+25

DB+31

DB+35

Q-initial

Q+1
Q+2
Q+3
Q+4
Q+5
Q+6

| |
! USERN |
{ *MANAGER" |

! GROUPN !
! “PUB" !

Global area %41 words

- -

Next we must find where the values of Q+4, Q+5 and Q+6 are set and

patch the code to load the new DB+ values we have allocated instead of

the ones generated by the compiler.
:RUN DECOMP.LIB.SYS
HP3000 DECOMPILER 6.1

FILE NAME? XDEV
TYPE 'HELP' FOR ASSISTANCE.

0.21 035007 ADDS A7 <-- Primary Entry TYPESET
0.22 171700 LRA S- 000

0.23 010201 LSL 1 BIT

0.24 051404 STOR Q+ 004

0.28 035004 ADDS %4

0.26 171700 LRA S- 000

0.27 010201 LSL 1 BIT

0.30 051405 STOR Q+ 005

0.31 035004 ADDS %4

12-24

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 JUG 1984 Anaheim

0.32 171700 .. LRA S~ 000
0.33 010201 .. LSL 1 BIT
0.34 051406 S. STOR Q+ 006
0.35 000706 .. DZRO, ZERO

0.36 033405 7. LLBL TERMINATE
0.37 031006 2. PCAL F’ CONTRAP
0.40 000706 .. DZRO, ZERD

0.4 041406 C. LOAD @+ 006
0.42 041405 C. LOAD @+ 005
0.43 041404 C. LOAD Q+ 004
0.44 000600 .. ZERO, NOP

0.45 171401 .. LRA Q+ 001
0.46 021035 . iDI 29

0

.47 031003 2. PCAL WHD

Q+ relative memory is allocated when the
program starts. By looking at instruction
0.21, we see 7 words allocated on top of stack.
At 0.22 we see the address of S-0 stored at top
of stack then logically shifted left 1 bit to
form a byte address, then at 0.24 this value
is stored at Q+4. Instructions 0.25 through
0.30 allocate 4 words and stores the byte ad-
dress at Q+5 Instructions 0.31 through
0.34 similarly allocate 4 words and stores the
byte address at Q+6. The instruction at
0.35 loads the final 3 words of array allocation
onto the stack. Instruction 0.37 arms the

-M 22
0.22 171700 .. LRA §- 000
0.22 021035 *“. LI 29

-M 26
0.26 171700 .. LRA §&- 000
0.26 021031 °. LbI 25

-M 32
0.32 171700 .. LRA 5- 000
0.32 021025 *, I 21

The instructions show LDI 29, LDI 25 and LDI
21. The numbers in these load immediate in-
structions are decimal. These numbers in octal
are 35, 31 and 25 respectively, which can be
seen by looking at the octal representation of
the instruction.

We need to leave the adds to top of stack at
0.21,0.25, 0.31 and 0.35 so the Q+ relative ad-
dressmg will work. If we eliminated the adds,

-M 40
0.40 000706 . DZRO, ZERD
0.40 021024 ", (DI 20
-M 41

0.41 041406 C. LOAD Q+ 006
0.41 051401 S. STOR Q@+ 001

Next we change instructions 0.42 through 0.47,

CONTROL-Y trap to call TERMINATE if
CONTROL-Y is pressed. As stated earlier, in-
structions 0.40 through 0.46 set up the para~
Blz%ers for the PCAL to the WHO intrinsic at

Now that we know where the DB-relative
addresses for the arraysare being set, we can
patch the instructions for storing the startmg
addresses of the arrays in- Q+4, Q+5 and
Q+6 from the original addresses to the DB+
addresses we allocated. _

:=021035
13021031

1=021025

then some references could possibly be off by
the number of words which were added to
the stack if direct memory referencing is used.

Next we modify 0.40 to LDI 20 which loads
a decimal 20 onto the stack, then instruction
0.41 to store the value in Q+l Remember, the

value of TERMN is stored at Q+1, so now the
logon terminal is set to 20.

:=021024

:=051401

the remainder of the

instructions which set up the stack and then calls the WHO intrinsic,

to NOP (no operation) instructions.

12-25

Prepared by the Southern Californic Regional User's Group

END OF PROGRAM

Now we run the --q'rogram'.

:RUN XDEV

MANAGER

ACCOUNT: SYS

GROUP: PUB

LOGON DEVICE: 20
Change to term type: 710

END OF PROGRAM

USER:

It should be clear now that object code is not
sacred. The instructions in‘the object code can

a problem or have the program perform dif-
ferently than intended. Modification of
instructions and P-relative data is quite simple.

be decoded and modifiéd as necessary to correct

Proceedings: HP3000 IUG 1984 Anaheim

-M 42747
0.42 041405 C. LOAD Q+ 005 =0
0.42 000000 .. NOP , NOP
0.43 041404 C. LOAD Q+ 004 1=0
0.43 000000 . NOP , NOP
0.44 000600 ZEROQ, NOP =0
0.44 000000 NOP , NOP
0.45 171401 LRA Q+ 001 t=0
0.45 000000 .. NOP , NOP
0.46 021035 . LDI 29 150
0.46 000000 .. NOP , NOP
0.47 031003 2. PCAL WHD =0
0.47 000000 . NOP , NOP

Looking at the code as patched we see:

=21 |
0.21 035007 . ADDS %7 <-- Primary Entry TYPESET
0.22 021035 *. LbI 29
0.23_ 010201 .. LsL 1 BIT
0.24° 051404 S. STOR - Q+ 004
0.25 035004 . ADDS %4
0.26° ° 0210317 ., LDI 25
0.27 010201 .. LsL 1 BIT
0.30 051405 S.- - STGR Q+ 005
0.31 035004 :. ADDS %4
0.32 021025 ™. Lbr 21
0.33 010207 .. LSL 1 BIT
0.34 051406 S. STOR Q+ 006
0.35 000706 .. DZRO, ZERD
0.36 033405 7. LLBL TERMINATE
0.37 031006 2. PCAL F'CONTRAP
0.40 021024 . LDI 20
0.41 051401 S. STOR Q+ 001
0.42 000000 .. NOP , NOP
0.43 000000 NOP , NOP
0.44 000000 .. NGP , NOP
0.45 000000 .. NOP , NOP
0.46 000000 .. NOP , NOP
0.47 000000 NOP , NOP

-EXI

The insertion of P-relative data and
" instructions is not shown since it is quite a bit
more involved, but is possible. - T

After patching several programs, one begins
to better understand the internals of the

12-26

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

HP 3000 and appreciate the work of a
compiler writer. Hopefully, one can now sce
that object code can be changed just as
source code to better accommodate individual

- needs not considered when the source code was

written.

PCAL TERMINATE

Title: Systematic Redesign: Modifying Object Code

Author: Phil Curry Coordinator of Administrative Computing Alvin Community College
3110 Mustang Road Alvin, Texas 77511

Phone: (713) 331-6111

Biographical Sketch:

I have been employed at Alvin Community College since 1976. I am responsible for

administrative computing which includes our
accounting systems. I have worked with the

student records, payroll, personnel, and
HP 3000 since 1977 starting with the

Series 11, I'm a member of the board of directors for the Greater Houston Regional

User's Group and am a member of the Contrib
made numerous contributions to the CSL incl
Trek, and a program which allows one to reset

uted Software Library committee. I have
uding a tape library system, Super Star
the runonly option in a BASIC program.

12-27

Prepared by the Southern California Regional User's Group

