Proceedings: HP3000 IUG 1984 Anaheim

The Ins and Outs of Pascal/30001/0

Susan R. Kimura
Hewlett-Packard

Numerous questions usually arise when a user
first encounters /0O in Pascal. Some of these
questions are:

- Do 1 have to use GET and PUT to
do my [/O?

- What is the deferred GET all
about?

- How exactly does EOLN work?
- How do READ and WRITE work?
- Why do READ and WRITE take
longer than MPE’s FREAD and
FWRITE? _
This paper addresses these Questions. The dis-

cussion focuses on the standard Pascal file type
called textfile. The first part discusses textfiles

in generzl. The second part discusses the use of .

READs and WRITEs of textfiles. Some com-
parison with MPE’s FREADs and FWRITEs is
also made.

TEXTFILES

Pascal defines a file type as a structure which
consists of a sequence of components of the
same type. The following discussion focuses on
a Pascal standard file type called TEXT. A
variable of type TEXT is called a textfile. A
textfile is a logical file which consists of com-
ponents of type CHAR and is structured into
lines separated by line markers. It is accessed
sequentially. A textfile also has associated with
it a buffer variable and a current component.
The buffer variable is denoted £~ for a textfile
f. It may be previewed prior to a read opera-
tion or modified prior to a write operation.

There are two primitives, GET(f) and PUT(f),
which operate on a textfile. These primitives
are used in conjunction with the buffer

var:able f" to perform input and output.
GETIf) is used for input and PUT(f) for output.
The GET operation, as defined by Jensen and
Wirth [3), advances the current file position to
the néxt component and moves that component
into the buffer variable. The PUT operation
writes the contents of the buffer variable to
the current component and advances to the

. next component.

The procedures RESET(f) . and REWRITE({) are
provided to open a file for sequential I/0.
RESETI(f) opens the file f for read-only access.
The file is positioned at the first component
and a GET is performed, REWRITE(f) opens
the file f for write-only access. The file is
positioned at -the first component. The file
buffer variable f* is undefined.

Note. that this definition of RESET may cause
problems for input from a terminal. If a GET,
as defined above, is performed on the RESET a
physical read from the terminal must be done
in order to fill the buffer variable. The
program is then . paused for input from the
terminal before the user has requested an input
operation. The deferred GET, as defined in the
HP Standard {2] and used by Pascal/ 3000, is a
method which provides a solution to this
problem. With the deferred GET the buffer
variable is not filled on a GET. However, on
the following reference to the buffer variable
the current component is moved to the buffer
variable and the file position is advanced to the
next component. In other words, after a
RESET the buffer variable f~ is undefined un-
til an operatlon which references the buffer
variable is requested. At that time the first
component is moved to the buffer variable and
the file position is advanced. An operation
which would fill the buffer variable would be
a reference to the buffer variable f*, or a call
to READ(f,v), EOF(f), or EOLNI(f).

EOF(f) and EOLNI(f) are funetions which
indicate when the end-of-file has been

Prepared by the Southern California Regiona! User’s Group

Proceedings: HP3000 JUG 1984 Anaheim

reached and when the end-of-line has been
reached, respectively. EOF(f} is trve when
there are no more components to be read from
file f. EOLN(f) is true when the current posi-
tion is beyond the last component of a line. At
this point the buffer variable f~ contains 2
blank.

An overview of the Pascal/3000 internals as-
sociated with a file would be useful at this
point. When a file is declared, a block of
storage is allocated which is used to keep track
of the state of the file. This block of storage is
called the file control block and contains in-
formation such as a readable flag, a writeable
flag, an end~of -line flag, an end-of -file flag, a
get flag, the current record length, the MPE
file number, the file buffer variable, and the
current position. Another block of storage is
allocated which buffers the input or ocutput of
a physical [/O operation. This block of storage
is called the file buffer. When an I/O opera-
tion is requested, the Pascal/3000 run-time
library accesses and updates the information in
the file control block. In the case of an input
operation a record may be read from the file
into the file buffer and characters moved from

the file buffer to the buffer variable. In the
case of an output operation characters may be
moved from the buffer variable to the file
buffer and the contents of the file buffer writ-
ten to the file.

Consider the following program which uses
GETI(f) for reading characters from a textfile f.
The physical file associated with f contains
only one line with the sequence 'AB’.

PROGRAM pascal (f);

VAR
f : TEXT;
¢ : CHAR;
b : BOOLEAN;
BEGIN
(1} RESET(f):
(2) ¢c=17
(3) GETI(,
(4) c=1~
(5} GETIf),
(6) b:=EOLNIf);
(7) GETI(,
(8) b= EOF(f)
END.

The results after the execution of each statement are:

c b feof feoln fepos fchar fgetok
(1) 7 ? false true 0 7 trie
(2) A’ ? false - false 1 ‘At false
(3) A’ ? false false 1 A’ true
(4) 'B’ ? false false 2 ‘B’ false
(5} ‘B’ ? false false 2 ‘B’ true
(6) ‘B’ true false true 2 T false
(7) B’ true false true 2 ' true
(8) ‘B’ true true - true 2 T false

Feof, feoln, fcpos, fchar and fgetok are vari-
ables in the file control block. Feof is the end-
of -file flag, feoln the end-of-line flag, fcpos
the current character position index, fchar the
buffer variable and fgetok the get flag which
indicates that the buffer variable may be
updated.

On the RESETI(f) in (1), the textfile f is opened
for read-access. Fcpos is set to the first posi-
tion, which is 0. Fgetok is set to true but fchar
18 still undefined. When the buffer variable is
referenced in (2) an FREAD is done, filling the
file buffer with the line 'AB’. Fchar is filled
with the first character, "A’, and fcpos is up-
dated. When GETI(f) is called in (3); fgetok is
get to true, but fchar is not updated. State-
ments (4) and (5) are similar to statements (2)
and (3). When EOLN(f) called in in (6), the
fcpos is beyond the last character. Consequent-
ly, fchar is filled with a blank as defined in
Pascal and feoln is set to true. The GET(f) in
(7) is used to get past the end-of-line marker
by setting fgetok to true. Finally, the call to
EOF(f) in (8) triggers another FREAD which

returns an end-of -file condition and feof is set
to true.

Writing to a file using PUT(f) is a straightfor-
ward case. Consider the following pregram
which writes to the textfile f:

PROGRAM pascal {f):

VAR
f : TEXT,
BEGIN
{1) REWRITE(f),
{2) "~ := 'a’;
(3) PUT(f):
(4) f~ :='b’;
(8) PUT(f):
END.

The results after the execution of each state-
ment are:

fepos fchar
(1) 0 ?
(2) 0 ‘a'

Prepared by the Southern Califorunia Regionel User's Group

Proceedings; HP3000 IUG 1984 Anaheim

(3) 1 a’'
(4) 1 b’
(5) 2 ‘b’

On the REWRITE(f) in (1) the textfile [is
opened for write-access. Fepos is set to the
first position. The buffer variable fchar is un-
defined until the literal a’ is assigned to it in
(2). On the PUT() in (3) the contents of fchar
is moved to the file buffer and fcpos is up-
dated. Statements (4) and (5) are similar to
statements (2) and (3). When the end of the
program is encountered, the file buffer is au-
tomatically flushed. An FWRITE is done to
the file f which now contains the sequence ’ab’,

READ, READLN, WRITE, WRITELN

While GETs and PUTs may be used for textfile
1/0, they are not the most efficient method.
To facilitate textfile I/O the predefined
procedures READ, READLN, WRITE, and
WRITELN are provxded

The forms of the READ statement are:

READ(f,v);
READ(f,v1,...,vn}:
READLN(f):
READLN(f,v);
READLN(f ,v1,...,vn);

The forms of the WRITE statement are:

WRITE(F, e),
WRITE(f,al, .en);
HRITELN(f)

WRITELN(f, e):
NRITELN(f.el.....en);

These procedures allow the user to read vari-
ables and write expressions of type char, in-
teger, real, longreal, boolean, user-~defined
enumeratlon PAC, and string. 1 The f param-
eter may be ‘omitted. In this case the standard
Pascal textfiles INPUT and QUTPUT are used
for READs and WRITESs, respectively. The pa-
rameter v1,..vn indicates that an arbitrary
number of variables may be read. Likewise,
the parameter el,.en indicates that an ar-
bitrary number of expressions may be written.
They need not all be of the same type. Fur-
thermore, when reading or writing integer,
real, longreal or user-defined enumeration, in-
ternal conversions occur. These cOnversions,
from ascii to binary representatlon in the case
of a read, or binary to ascii representation in
the case of a write, greatly simplify the work
for the user.

On a READ or READLN a sequence of charac-
ters which conform to the syntax of the type of
the variable are read and converted from ascii
to binary, if necessary. After a READ the file
position is set after the last character read on

the current line. After a READLN, any
remaining characters and the end-of-line
marker in the current line are skipped over
and the file position is set at the start of the
following line.

Conversely, on a WRITE or WRITELN, an ex-
pression is converted from binary to ascii, if
necessary, and written to the file buffer. After
a WRITE the file position is set to the position
after the last character written. On a
WRITELN an end-of-line marker is written
after the last character 2 and the file buffer is
written to the file using an FWRITE.

The write statements also allow formatting of
odutput by specifying a field width parameter
m. For reals and longreals, a decimal place pa-
rameter n may also be specified. The forms of
the write expression are:

oo
33

If no formatting is specified, a default field
width is used. If m is speclﬁed the expression
is written in the field width specified with
right-justification. For reals and longreals, if n
is specified, the expression is written in fixed-
point format with n decimal digits.

Consider the simplest case of reading in a se-
quence of characters into a variable ¢ of type
CHAR with the following statements from a
,tgglt;),le f which contains two lines, AR’ and

PROGRAM pascal (f);

VAR
f : TEXT;
¢ : CHAR;
b : BOOLEAN;
BEGIN
(1) RESET(f);
{2) READ(f,c):
(3) READ(f . c):
(4) b := EQLN(f);
(5) READ(f,c);
(6) READ(f,c);
END.

Because the characters are being read one at a
time, this sequence of statements is equivalent
to:

PROGRAM pascal (f);
VAR

f : TEXT;

¢ : CHAR;

b : BOOLEAN;
BEGIN
} RESET(f)
} c := f~; GET(f);
;)

¢ = 7 GET(f);
EOLN(f);

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

(5) ¢ := f*; GET(f):
(6) ¢ := f~; GET(f);
END.
¢ b feoln fcpos
(1) ? ? true 0
(2) ‘A’ ? ~ false : 1
(3) '8’ ? “false 2
(4) ‘8' , true . true’ "2
(5) T true ‘true 2
{e) DT true . false 1 -

The textfile f is opened for read-access on the -
RESET(f) in (1). Fepos is set to the first posi-
tion. Fgetok is set to true but fchar is still un-
defined. When READI(fc) is called in (2), an
FREAD is done, filling the file buffer with
'AB’. Fchar is filled with the first character,
'A’, and fcpos is updated. The contents of fchar
is then assigned to the variable ¢. In addition,
because a GET{(f) is part of the READ, fgetok is
set to true. Statement (3) is similar to state-
ment (2). When EOLN(f) is called in (4) fchar
is filled with a blank because fcpos is beyond

[b feoln fcpos
(5) "B’ true - true 0

In this case, fcpos is set to the first position,
fgetok is set to true and the variable ¢ remains
unchanged. :)

As stated above READ(f,v) allows the user to
read not only characters but also integers, reals,
enumerated types, PACs and strings: Internal-
ly, when reading a variable of type INTEGER
from a textfile f, the following sequence of
events occur in the Pascal run~time routine for
reading an integer: :

(1) A procedure is called to verify
that the file is open. This proce-
dure searches a linked list of
opened files. If the file is not
found on the list, an -error is
reported. ‘

(2) The read-access flag in the file
control block is checked to verify
that the fileé has read-access. If it
does not, an error is reported.

(3) A procedure is called to verify
that an end-of -file condition does
not exist. A physical read using
FREAD may occur. If an end-of -
file is encountered, an error is
reported. :

(4) The buffer variable is scanned to
skip over - initial blanks.
Characters may be mioved from

]

The results after execution of each statement
are:

fchar fgetok

? true
‘A true
'B’ true
o false
te true-
D’ true

the last character. The next call to READ(fc)
in (5) the blank in fchar is assigned to the vari-
able ¢ and fgetok is set to true. Finally, on the
READIfc) in {6), another FREAD is done, fill-
ing the file buffer with 'DEF’. Fcpos is initial-
ized to the first position, fchar is filled with "D"
and its conténts assigned to the variable c.

If the READI{fc) in (5} is replaced by
READLN(f) with no variable to read, this
would be equivalent to a GET{f) and the cor-
responding result would be:

fchar fgetok

true

the file buffer to the buffer
variable. 'FREADs may occur: if
end-of -line markers are
encountered. '

(5) A procedure is called to verify
that an end-of -file condition was
not encountered while skipping
blanks. If so, an error is reported.

{6) A string of digits is-moved into an
internal buffer until a non-digit
or end-of -line marker is encoun-
tered. The digits are moved from-
the file buffer, to the buffer vari-
able, and -then to the internal
buffer. '

(7) The compiler library routine EX~-
TIN’ is invoked to do the conver- -
sion to binary. . :

An analogous sequence of events occur when
reading a real or longreal variable with the ex-
ception that reading the string of digits is more
complex due to the decimal point and scale fac-
tor which may be present. = - ‘

This run-time routine shows how much over—
head there is compared with doing an FREAD. -
The user who uses FREAD has direct control
over the state of his file. Consequently, the
checks for whether the file is open and has
read-access are not necessary. Since the Pascal

4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

run-time routine does not know the dynamic
flow of a user program these checks are
necessary. On the other hand, the user who
uses FREAD is responsible for doing the ascii
to binary conversion. This is automatically
done by the run-time routine. The primary
overhead in the Pascal run-time library, is the
movement of characters from the file buffer,
to the buffer variable, then to the internal
buffer. These steps are done in order to main-
tain the file control block in the correct state
at all times.

Now consider the case of writing an integer to
a textfile f. The following events occur:

(1) A procedure is called to verify
that the file is open. If it is not,
an error is reported.

(2) The write-access flag in the file
contro} block is checked to verify
that the file has write-access. If
it does not, an error is reperted,

(3) A check is made that a valid field
width has been requested. If the
field width is not valid, an error is
reported.

(4) The compiler library routine IN-
EXT’ is invoked to convert the bi-
nary representation to an ascii
string.

(5) The correct field width to use is
calculated. The wuser-specified
field width may be over-ridden if
the converted string does not fit
within the user-specified width.

formatting of output, which are taken care of
by the run-time routine, must be done by the

Finally, consider the case of reading a variable
of type PAC from a textfile. The following
events occur:

(1) A procedure is called to verify
that the file is open. If it is not
open, an error is reported.

(2) The read-access flag in the file
control block is checked to verify
that the file has read-access. If it
does not, an error is reported.

(3) A procedure is called to check
for an end-of-line condition. An
FREAD may occur. If an end-of -
file condition is encountered, an
error is reported. If an end-of-
line condition is encountered, the
PAC variable is blank filled and
control is returned to the user
program.

(4) If an end-of-line condition was
not encountered, characters are
moved from the file buffer to the
buffer variable, then to the PAC
variable, one character at a time,
until the variable has been filled
or an end-of-line condition is
encountered.

(5) If the PAC variable was not fil-
led, the remaining character posi-
tions are blank-~filled.

As with the other run-time routines, checks
(6) A WRITELN is done if the con- must be made to verify that the file is opened
verted string does not fit on the with the appropriate access. When checking
current line, for the end-of-line condition, a physical read
using FREAD into the file buffer may occur.
Procedures are called to move the characters
from the file buffer into the buffer variable
and then into the PAC variable. Finally, the
variable is blank-filled if necessary. This
description shows that reading a PAC variable,
which may be thought of as similar to an
FREAD of a PAC variable, is more complex.
The primary overhead is in accessing the
are moved from the string to the routines which maintain the state of the file
file buffer and the current posi- control block which are not neccessary for user
tion index is updated. FREAD:s.

(7) A procedure is called to write out
the converted string. If the con-
verted string is shorter then the
determined field width, an ap-
propriate number of blanks are
inserted so that the string will be
right-justified within the deter-
mined field width., The characters

As demonstrated above, there is also some
overhead in writing an integer to a textfile.
Checks must be done to verify that the file is
in the proper state. The conversion of the in-
teger from binary to ascii representation must
be done. Finally, the ascii representation must
be moved to the file buffer. For the user using
FWRITE, the check that the file is opened for
write~access is not necessary. However, the
conversion from binary to ascii, as well as

To summarize, a great deal of overhead is in-
volved in accesssing textfiles because the state
of the file control block must be maintained,
especially with respect to the buffer variable
and the current position. The fact that
textfiles have end-of -line markers complicate
reading and writing of textfiles. On the other
hand, the use of textfile I/O eliminates the
need for the user to use or write his own
conversion routines when reading and writing

Prepared by the Southern California Regional User’s Group

Proceedings: HP3000 IUG 1984 Anaheim

integer, real, longreal, boolean, - and
user~defined ~ enumeration. Furthermore,
formatting of output is done for the user using
the write routines.

The auther hopes that this discussion has
eliminated some of the “mystery" associated
with textfile 1/0O and that this information
may.aid in the user’s deveopment of Pascal
Programs.

Footnotes

t In Pascal/3000 PAC is used to denote the
type PACKED ARRAY {1.N] OF CHAR.
String is a predefined packed structured type
consisting of components of type CHAR. It has
a maximum length but its actual length may
vary dynamically at run time.

2 On the HP3000 the end-of-line marker is a
logical marker. There is no actual end-of-line
marker written to the_fi]e buffer.

Biographical Sketch

Name : Susan R. Kimura .~ -

Title : Member of Technical Staff

Bibliography

[1} American National Standard Pascal :
Computer Programming Language.
(1983). ANSI/IEEE 770X3.97-1983.

2] ﬁewlett-Pac.kard Standard Pascal .
Report. (1983). Release 2.

(3] Jensen,” Kathleen and Wirth, Niklaus.
(1975). Pascal User Manual and Report.
Springer-Verlag. New York. :

[4] Pascal/ 3000 Reference Manual. (1981).
Hewlett-Packard.

Acknowledgement

1 would especially like to thank my colleague
Chris Maitz for his expertise and advice. I
would also like to thank my project manager,
Jean Danver, and my colleages, Jon Henderson
and Pat Miyamoto, for proof-reading this
paper.

Employer : Hewlett-l-’acka.rd Computer Languages Lab

Job Responsibilities : Involved in current product engineering on the COBOLII and
Pascal/ 3000 compilers since 1980.

Education: BA, University of Hawaii, Psychology M4, University of Hawaii, Japanese
Linguistics MS, University of Wisconsin, Computer Sciences

Marital Status : Married with one child

- -

Prepared by the Southern California Regional User's Group

