Proceedings: HP3000 JUG 1984 Anaheim

Use of COBOL It Macros for Database Access

Jerrel Baxter, CDP
School of Optometry

INTRODUCTION

IMAGE/3000 provides a powerful tool
for development of data storage and
retrieval applications. Its use of subroutine
CALL’s for operation invocation allows
fairly simple inclusion into all program-
ming languages for the Hewlett Packard
3000. However, this CALL level interface
also places total responsibility for error

checking and reporting on the programmer
which c¢an require rather voluminous
coding. This paper describes one method
for dealing with this problem for COBOL II
programmers, use of COBOL Il macros. The
methods used are also applicable to use of
VPLUS/3000 for terminal screen handling
and DSG/3000 for graphics generation.

STANDARDS

In order to create an orderly process for
generating code for database references the
following standards were adopted.

1. A COPYLIB module defining a
parameter set for wuse in all
programs with database referen-
ces was created. See Appendix A
for a listing of the defined
module.

2. Naming conventions for creating
reference wvariables for database
names, dataset names, search item
names, search item values, and
dataset record layouts were
defined and made mandatory for
all programs.

:FILE COPYLIB=COPYLIB.COBOL
:FILE COPYDEF=COPYDEF.COBOL

$CONTROL USLINIT,NOMIXED,NOLIST
$INCLUDE COPYDEF.COBOL

DATA DIVISION,
WORKING-STORAGE SECITON.
COPY DBPARAMS.
01 DB-CLIENT

3. COBOL II macros were defined
for making all database calls. Use
of the COBOL 1l macros guaran-
tees adherence to standard error
checking and makes the purpose
of many database calls simpler to
recognize. The use of the macros
also makes it easy to incorporate
enhancements to the error
notification function in the fu-
ture by replacing the current er-
ror handling code within the
macro definitions.

As an example the following shows
DATA DIVISION and PROCEDURE
DIVISION code segments for a simple
database referencing program:

PIC X(10) VALUE * CLIENT *.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

01 DS-M~IDENTIFICATION PIC X(16) VALUE "M-IDENTIFICATION".
01 DS-D-PROJECTS PIC X{16) VALUE "D-PROJECTS v,
01 DS-A-SHORTNAMES PIC X(16) VALUE "A-SHORTNAMES v,
{(Continued on next page.)

01 DI-ACCOUNT PIC X(16) VALUE "ACCOUNT .
01 DV-ACCOUNT PIC 9(4) DISPLAY.

01 DI-SHORTNAME PIC X(16) VALUE "SHORTNAME .,
01 DV-SHORTNAME PIC X(6}.

01 DR-M-IDENTIFICATION.
COPY MIDENTIF. :
01 DR-D-PRDJECTS.

COPY DPROJECT.

01 DR-A-SHORTNAMES.

COPY ASHORTNA.

PROCEDURE DIVISION.
MAIN-PROCESSING SECTION.
INITIALIZATION.
#DBOPEN({DB-CLIENT#, 14)
CONTINUE-PROCESSING.

X Note use of V version of COBOL II macros to indicate VPLUS/3000
X is active (error routine closes VPLUS form and terminal files
¥ prior to aborting).
%VDBF IND(DB-CLIENT# DS-D-PROJECTSH, DI SHORTNAME#
,DV- SHORTNAME#)
IF DB-MISSING
MOVE "Client not found." TO V-MESSAGE
: GO0 TO CONTINUE-PROCESSING.
%VDBGET(DB-CLIENT#,DS-D-PROJECTS#,54# ,DB-ALL-LIST#H
,DR-D-PROJECTS# , DB-DUMMY#)
IF DB-EOC
MOVE “Client not found." TO V-MESSAGE
GO TO CONTINUE-PROCESSING.

% End of program.
DEFINITIONS

The standard macro defini-
“tions and an example of their
¢alling sequence are listed below:

$DEFINE %DBOPEN=
X %DBOPEN(DB-BASENAMEH 14)
* Opens the specified database in the specified mode. On copen
* failure an error message is output, the data base is closed
* (per IMAGE manual recommendations), and the program is aborted.
CALL "DBOPEN" USING t1
DB-PASSWORD
DB-MODE-!12
DB-STATUS
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
CALL "DBCLOSE" USING !1
DB-DUMMY

(Continued on next page.)
DB-MODE -1

10-2

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

DB-STATUS
STOP RUN.#

$DEFINE %DBCLOSE=
* ¥DBCLOSE(DB-BASENAME#)
* Closes the specified data base. On close failure an error
* message is output and the program is aborted.
CALL "DBCLOSE" USING 1
DBR-DUMMY
DB-MODE-1
DB-STATUS
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
STOP RUN.#

IDEFINE %“DBREWIND-=
* %DBREWIND(DB-BASENAME# DS~-M-SETNAME#)
* Rewinds the specified dataset within the specified database.
* On rewind failure an error message is output and the program
* ig aborted.
CALL "DBCLOSE" USING !l
12

DB-MODE-3
DB-STATUS ’
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
STOP RUN.#

$DEFINE. %DBBEGIN=
* YDBBEGIN(DB-BASENAME#)
* Qutputs a text message to the IMAGE logging file and marks the
* begmnmg of a logical transaction. On failure an error message
* js output and the program is aborted.
CALL "DBBEGIN" USING 1
DB-TEXT
DB-MODE-1
DB-STATUS
DB-TEXT-LENGTH
IF NOT (DB-OKAY OR DB-LOGGING-DISABLED)
CALL "DBEXPLAIN" USING DB-STATUS
STOP RUN#

$DEFINE #DBEND=
% YDBEND(DB-BASENAME#)
* Qutputs a text message to IMAGE logging file and marks the end of
* a logical transaction. On failure an error message is output and
* the program is aborted.
CALL "DBEND" USING !1
DB-TEXT
DB-MODE-1
DB-STATUS
DB-TEXT-LENGTH
IF NOT (DB-OKAY OR DB~LOGGING-DISABLED)
CALL "DBEXPLAIN" USING DB-STATUS
STOP RUN.#
$DEFINE %DBDELETE=
* Y DBDELETE(DB-BASENAME# DS-M-SETNAME#)
* Deletes the currently referenced data record in the specified
* dataset for the specified database. On failure an error
* message is output and the program is aborted. A missing record
* or chain head is not considered to be a failure.
Cp:lfL "DBDELETE" USING !l
DB-MODE-1
DB-STATUS
IF NOT {DB-OKAY OR DB-MISSING OR DB-CHAIN-HEAD)
CALL “DBEXPLAIN" USING DB-STATUS
STOP RUN.#

10-3

Prepared by the Southern Calijornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

$DEFINE %#DBFIND=
* ZDBFIND(DB-BASENAME#,DS-D-SETNAME#,DI-KEYNAME#,DV-KEY-NAME#)
* Finds the search path for the specified key value for the
* gpecified key item in the specified dataset and database. On
* failure an error message is output and the program is aborted.
* A missing key value is not considered to be a failure.
CAII?:,L “DBFIND" USING !1
DB-MODE- |
DB-STATUS
13
14
IF NOT (DB-OKAY OR DB-MISSING)
CALL "DBEXPLAIN" USING DB-STATUS
STOP RUN#

$DEFINE %#DBGET=
* ¥ DBGET(DB-BASENAME# DS-M-SETNAME#,7# DB-ALL-LIST#
* ,JDR-M-SETNAME# DV-KEYNAME#)
* Gets the data record corresponding to the parameter values. On
* failure an error message is output and the program is aborted.
* Beginning of file, end of file, beginning of chain, end of chain,
and no entry are not considered failures.
CAI%.L "DBGET" USING !1
DB-MODE-!3
RB-STATUS

15
I6
IF NOT DB-GET-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
STOP RUN.#

IDEFINE %DBLOCKBASE=
* %DBLOCKBASE(DB-BASENAME#)
* Locks the specified database. On failure guarantees release of
#* all locks, outputs an error message and aborts the program.
CALL "DBLOCK" USING !1
DB-DUMMY
DB-MODE-1
DB-STATUS
IF DB-CONDITION > 0
CALL "DBEXPLAIN" USING DB-S5TATUS

{Continued on next page.)
CALL "DBUNLOCK" USING !1
DB-DUMMY
DB-MODE-1
DB-STATUS
STOP RUN
ELSE
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
STOP RUN.#

$DEFINE %DBLOCKSET=
* “¥DBLOCKSET(DB-BASENAME# DS-M-SETNAME#)
* Locks the specified dataset for the specified database. On
* failure guarantees release of all locks, outputs an error message
* and aborts the program.
Cﬁ:lz..i., "DBLOCK" USING !1
DB-MODE-3
DB-STATUS
{F DB-CONDITION > 0
CALL "DBEXPLAIN" USING DB-STATUS

10-4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

CALL "DBUNLOCK" USING !1
DB-DUMMY
DB-MODE-1
DB-STATUS
STOP RUN
ELSE
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
STOP RUN.#

$DEFINE %“DBLOCKENTRY=
* Y DBLOCKENTRY{DB-BASENAME# DE-LOCKSPECIFICATION#)
* Locks according to the lock specifications in the specified
* table. On failure guarantees release of all locks, outputs an
* error message and aborts the program.
CAt]fL "DBLOCK" USING 11
DB-MODE-$§
DB-STATUS
IF DB-CONDITION > 0
CALL "DBEXPLAIN" USING DB-STATUS
CALL "DBUNLOCK" USING 11
DB-DUMMY
DB-MODE-1
DB-STATUS
STOP RUN
ELSE
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
STOP RUN.#

$DEFINE %DBPUTALL-=

* ¥DBPUTALL(DB-BASENAME# DS-M-SETNAME# DR-M-SETNAME#)
* Puts the data record to the specified dataset and database using

* @ for the record list. On failure generates an error message,

* unlocks the database (assumes normal use of mode ! for DBOPEN)

* and aborts the program.

(Continued on next page.):
CAI]fL “DBPUT" USING !l

DB-MODE-1
DB-STATUS
'IB)B-ALL-LIST
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
CALL "DBUNLOCK" USING !l
DB-DUMMY
DB-MODE-~1
DB-STATUS
STOP RUN.#

SDEFINE %DBPUTSAME-=
* ¥DBPUTSAME(DB-BASENAME# DS-M-SETNAME# DR-M-SETNAME#)

* Puts the data record to the specified dataset and database using
* & for the record list. On failure generates an error message,
* unlocks the database (assumes normal use of mode 1 for the
* DBOPEN), and aborts the program.
CAé,L "DBPUT" USING !

DB-MCDE~1

DB-STATUS

II)B-SAI’\dE.-LIS’l‘

13
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS

10-5

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 JUG 1984 Anaheim

CALL "DBUNLOCK" USING !l
DB-DUMMY
DB-MODE-1
DB-STATUS

STOP RUN.#

$DEFINE %DBPUT=
* XDBPUT(DB-BASENAME# DS~M-SETNAME# DA -M-SETNAME#
* ,DL-ITEMLIST#)
* Puts the specified record to the specified dataset and database
* using an abbreviated item list and record area. On failure
* outputs an error message, unlocks the database {assumes normal
* use of mode 1 for DBOPEN) and aborts the program.
CA'IiL "DBPUT" USING !l :
DB-MODE-1
BB-STATUS
13
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
CALL "DBUNLOCK" USING !1
DB-DUMMY
DB-MODE-1
DB-STATUS
STOP RUN#
SDEFINE %“DBUNLOCK=
* %DBUNLOCK(DB-BASENAME#)
* Unlocks all held locks for the specified database. On fajlure
* outputs an error message and aborts the program.
CALL "DBUNLOCK" USING 11
DB-DUMMY
DB-MODE-1
DB-STATUS ‘
IF NOT DB-OKAY :
CALL "DBEXPLAIN" USING DB-STATUS
STOP RUN.#

$DEFINE #DBUPDATEALL=
* %DBUPDATEALL(DB~-BASENAME# DS-M-SETNAME# DR -M-SETNAME#)
* Updates the data record to the specified dataset and database
* using @, for the record list. On failure generates an error
* message, unlocks the database (assumes normal use of mode 1 for
* DBOPEN) and aborts the program.
Cﬁ%liL "DBUPDATE" USING !1
DB-MODE-1
DB-STATUS
SB-ALL-LIST
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
CALL *DBUNLOCK" USING !l
DB-DUMMY
DB-MODE-1
DB-STATUS
STOP RUN.#

$DEFINE %DBUPDATESAME=
* ¥ DBUPDATESAME(DB-BASENAME# DS-M~SETNAME# DR-M-SETNAME#)
* Updates the data record to the specified dataset and database
* using *; for the record list. On failure generates an error
* message, unlocks the database {assumes normal use of mode 1 for
* the DBOPEN) and aborts the program.

CP%.L "DBUPDATE" USING Il

DB-MODE-1

10-6

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

DB-STATUS
[gB -SAME-LIST
I
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
CALL "DBUNLOCK" USING !l
DB-DUMMY
DB-MODE-1
DB-STATUS
STOP RUN.#
$DEFINE %DBUPDATE=

* ¥DBUPDATE(DB-BASENAME# DS-M-SETNAME# ,DA-M-SETNAME#

* DL-ITEMLIST#)

* Updates the specified record to the specified dataset and

* database using an abbreviated item list and record area. On

* failure outputs an error message, unlocks the database (assumes
* normal use of mode 1 for DBOPEN) and aborts the program.

CALL "DBUPDATE" USING !l
12
DB-MODE-1
|]Z)B—STATUS
14
13
IF NOT DB-OKAY
CALL "DBEXPLAIN" USING DB-STATUS
CALL "DBUNLOCK" USING !l
DB-DUMMY
DB-MODE-1
DB-STATUS
STOP RUN.#

The V versions at the UAB School of
Optometry are created by prefixing a V
before the macro name and placing the fol-
lowing code prior to the DBEXPLAIN call

MOVE 9@ TO V-CONTROL

. in all macro definitions:

CALL "VIEWIO" USING V-COM-AREA, RDATA- BUFFER

The VIEWIO procedure is a general in-
terface to VPLUS which considerably
simplifies normal access to VPLUS. Please
see the screen usage standards for more
information.

Please see Appendix A for a description
of the naming conventions and required
COPYLIB module for macro definitions’
references.

DISCUSSION

Use of COBOL II macros has resulted in
a consistent use of error detection and
recovery while requiring less input by
programmers. It also enables replacement
of error handling code with more com-
prehensive reporting by modification of the
macro definitions and recompilation with
no examination required of individual
source programs. See Appendix B for an
example describing enhancement of the
previously defined error reporting. Other
advantages of the use of macros include

10-7

reduction in source code disc space
requirements, reduction in segment traps
caused by the prior method of using PER-~
FORMed routines with set-up MOVEs for
similar access without a significant code
space increase, simplification of calling
séquences for IMAGE references with re-
lated time reduction for coding efforts, and
simplification of debugging efforts as code
is in-line which reduces the normal
requirement of searching throughout an of -
ten large program source listing for various
PERFORMed routines. REFERENCES

Thanks are due to the originators. of
COBOL Il for including the macro processor
capability (see Appendix A of Hewlett-
Packard’s COBOL II reference manual for a
description of the macro processor, part
number 32233-90001 and product number
32233A) and to Gerald Weinberg, author of
High Level COBOL Programming, for his
influence in making use of macro and
preprocessors for solving programming
problems. Also thanks to David Greer for
his article IMAGE/COBOL: Practical
Guidelines and Peter Somers for his article

Prepared by rthe Sourthern Californie Regiona! User's Group

Proceedings: HPF3000 IUG 1984 Anaheim

Using COBOL, VIEW and IMAGE: A
Practical Structured Interface for the
Programmer in the 1982 San Antonio HP
3000 IUG Proceedings. Last but not least

Corporation for his contribution to the
Montreal Contributed Library tape, COB-
CAN, a COBOL callable cancel routine
which provided most of the ideas utilized

thanks to Tony Abruzzio of Union Camp within Appendix B.
APPENDIX A
Following are standard declarations used fields.

in all programs which access a database.
. They are used to guarantee consistent data
names and availability of all necessary

01 DB-PARAMETERS.

05 DB-ALL-LIST .PIC %(2) VALUE "@ ".
05 DB-SAME-LIST PIC X(2) VALUE "X "
05 DB-NULL-LIST PIC X(2) VALUE * V.
05 DB-DUMMY PIC S9(4) COMP VALUE ZERO.
05 DB-PASSWORD PIC X(8) VALUE “"APASS; .
05 DB-MODE-} PIC 59(4) COMP VALUE 1.
05 DB-MODE-2 PIC S9(4) COMP VALUE 2.
05 DB-MODE-3 PIC S9(4) COMP VALUE 3.
05 DB-MODE-4 PIC S9(4) COMP VALUE 4.
05 ODB-MODE-5 PIC S9(4) COMP VALUE 5.
05 DB-MODE-6 PIC S9(4) COMP VALUE 6.
05 DB-MODE-7 PIC $9(4) COMP VALUE 7.
05 DB-MODE-8 PIC $9(4) COMP VALUE 8.
05 DB-MODE-QTHER PIC §9(4) COMP VALUE ZERD.
05 DB-TEXT-LENGTH PIC S9(4) COMP VALUE 72.
05 DB-TEXT PIC X(72).
05 DB-STATUS.
10 DB-CONDITION PIC S9(4) COMP.
88 DB-OKAY VALUE 0.
88 DB-LOGGING-DISABLED
VALUE 71.
88 DB-BOF VALUE 10.
88 DB-EOF VALUE 11.
88 DB-BOC VALUE 14,
88 DB-EOC- VALUE 15.
88 DB-MISSING VALUE 17.
88 DB-CHAIN-HEAD
VALUE 44,
88 DB-GET-O0KAY VALUE 0, 10, 11, 14, 15, 17.
10 DB-STAT2 PIC S9(4) COMP.
10 DB-STAT3-4 PIC S9(9) COMP.
10 DB-CHAIN-LENGTH PIC S9(%) COMP.
88 DB-EMPTY-CHAIN
VALUE ZERO.
10 DB-STAT7-8B PIC S9(9) COMP.
10 DB-STAT9-10 PIC 59(9) COMP,.
In addition to the above defined stan- an as needed basis:
dard declarations all programs define the
following data values for database access on
{Continued on next page.)
01 ODB-BASENAME PIC X(10) VALUE " BASENAME".
01 DS-D-BASEDETAIL PIC X{16) VALUE "D-BASEDETAIL ",
01 DS-M-BASEMASTER PIC X{16) VALUE “M-BASEMASTER ",
01 DS-A-BASEAUTOMATIC PIC X(16) VALUE "A-BASEAUTOMATIC “.

01 DR-D-BASEDETAIL.
COPY BASEDETA.
{Data declarations for @; reference to dataset, normally

10-8

Prepared by the Southern Celifornia Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

retrieved from a COBOL COPYLIB file named COPYLIB.COBOL.)

01 DR-M-BASEMASTER.

COPY BASEMAST.

01 DA-D-BASEDETAIL.

COPY BASEDE1A.
{Data declarations for an item list reference to dataset,
normally retrieved from a COBOL COPYLIB file named
COPYLIB.COBOL.)

01 DL-D-BASEDETAIL.

COPY BASEDEIL.
(Item list declarations for an item list reference to
dataset, normally retrieved from a COBOL COPYLIB file named
CUPYLIB.COBOL.)

01 DE-LOCKSPECIFICATION.

COPY LOCKSP1.
{Lock specifications for locking on an item value, etc.,
normally retrieved from a COBOL COPYLIB file named
COPYLIB.COBOL.)

01 DI-KEYVALUE PIC X(16) VALUE "KEYVALUE ",
(This is a key name for DBFIND or DBGET access.)
01 DV-KEYVALUE PIC 9(6) DISPLAY.

(This is the search value for use with searches on data
item referenced by DI-KEYVALUE.)

APPENDIX B

Additional macros have been defined to enhance the error reporting of the initial version of the
IMAGE database access Macros. They add the capability of logging all detected errors to the system
console as well as to the user’s terminal. This has proven especially useful for debugging of problems
for remote users. The database parameters COPYLIB was modified to include the following at the
end of its definition:

05 ERROR-REPORT-A.

10 ER-DATE PIC X(8) VALUE SPACES.

10 FILLER PIC X VALUE SPACE.

10 ER-TIME PIC X(6) VALUE SPACES.

10 FILLER PIC X VALUE SPACE.

10 ER-DEVICE PIC 2ZZ9 VALUE 0. .

0 FILLER PIC X VALUE SPACE.

10 ER-USER PIC X{(8) VALUE SPACES.

10 FILLER PIC X VALUE ".“.

10 ER-ACCOUNT PIC X(8) VALUE SPACES.

10 FILLER PIC X VALUE SPACE.

10 ER-STATUS PIC ZZ2Z9- VALUE 0,

10 FILLER PIC X VALUE SPACE.

10 ER-SUBSYSTEM PIC X(8) VALUE "IMAGE .
05 ERROR-REPORT-B. :

10 ER-PROGRAM PIC X(35) VALUE SPACES.

0 FILLER PIC XXX VALUE " @ ".

10 ER-PARAGRAPH PIC X{30) VALUE SPACES.

The following macro is invoked at the initiation of each program to define the logon device, user
name, and program:

$DEFINE %DBINIT=
% %DBINIT(LISTAPPT.PROG.SCHOOL#)
X Fills in the current date, time of day, logon device, user
X name, and program name for use in generation of error messages.
CALL INTRINSIC "WHO" USING //.
I,

/7,
ER-USER,
1,
ER-ACCUUNT,
/.
DB-CONDITION
MOVE DB-CONDITION TO ER-DEVICE

10-9

Prepared by the Southern Celifornia Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

MOVE CURRENT-DATE TO ER-DATE
MOVE TIME-OF-DAY TO ER-TIME
MOVE “"11" TO ER-PROGRAM.#

Each of the macro definitions for database access 1s modified to place the following code prior to
each call to DBEXPLAIN:

MOVE DB-CONDITIOGN TO ER-STATUS
DISPLAY ERROR-REPORT-A UPON CONSOLE
DISFPLAY ERROR- REPDRT B UPON CONSOLE

Optionally the programmer may include code at the beginning of each paragraph which will place
the name of the'paragraph in the variable ER-PARAGRAPH. The recommended method for this is
to use the following macro definition:

$DEFINE %AT=
¥ %AT(CONTINUE- PRUCESSING#)
¥ Places the current paragraph name into a variable for reporting
X of error messages and easing the debugging process
MOVE "11" TO ER-PARAGRAPH#

Use of this macro as standard practice also provides an'éxcellent method of -providing program trace
and profiling capabilities by replacement of the macrd definition. A simple example to show the ex~
ecution path of a program would use a2 macro definition as follows:

$DEFINE %AT=
X %AT(CONTINUE-PROCESSINGH) -
X Places the current paragraph name into a variable for reporting
‘%X of error messages and easing the debugging process and also
X lists the current active paragraph. {Note: full:value of this
¥ would require resetting of the paragraph name following return
X from each PERFORMed paragraph.)

MOVE "11" TO ER-PARAGRAPH

DISFLAY ER-PARAGRAPH UPON CONSOLE#

When it is desirable to reduce the code requirements a null macro which generates no code could
replace the normal definition. Any number of functlons become practical when tl'ns scenario becom-
es accepted practice.

Jerrel Baxter graduated cum laudé from Birmingham-Southern College, a Unifed
Methodist Church supported liberal arts college located in Birmingham, Alabama, in
1975 with a Bachelor of Science degree in Mathematics. Following graduation he was
employed by BSC as a computer programmer and instructor in computer science.

In 1978 he became manager of data processing for Argo and Company, a General
Electric industrial electrical parts distributor located in Birmingham, Alabarmia, and
Southern Carbon Brush Company, a manufacturer of carbon brushes for electric
motors, generators, efc.

Following stabilization of the operation at Argo and Company, he left in 1981 to
become manager of data processing for American Intermedical Resources, providers
of respiratory therapy department operations for hospitals throughout the United
States, computerized electrocardiogram analysis, computerized pulmonary function and
arterial blood gas analysis, and equipment rental for home-based health care.

In December of 1982, he became lead systems analyst for the School of Optometry
of the Umversaty of - Alabama in B:rmingham a new HP 3000 Series 44 installation.
Currently he is heavily involved in computerization of .the clinic operations of the
school which see approximately 30,000 patients each year for vision tests by op-
tometry students and necessary spectacle and/or contact lens fitting.

He has provided consulting and programming services to the North Alabama Con-
ference of the United Methodist Church and to Innovest Systems, Inc. (provides in-
vestment advisory services to institutional investors and recently to brokers of E. F.
Hutton).

10-1¢

Prepared by the Southern California Regional User’s Group

Proceedings: HP3000 1UG 1984 Anaheim

As an adjunct instructor at Birmingham-Southern College he has taught courses in
COBOL programming, FORTRAN programming, BASIC programming, APL
programming, and Data Structures.

10-11

Prepared by the Southern California Regional User's Group

