Proceedings: HP3000 1UG 1934

Anaheim

. CAP PM; Privnleged Mode
De~Mystified
- Jason M. Goertz

System Specialist
Hewlett-Packard

- Introduction

Many years have passed
HP3000 rolled out the -doors at Hewlett~
Packard. In that time, an increasingly sophisti-
cated user and software -supplier base has
emerged. Much of this increased kmowledge
and sophistication is because of better Com-
puter Science education, as well as the fact
that there are more and more people who

have more’ and more. years working with the .

HP3000. Along with- this -experience - has
come an -increasing use of one feature of the
HP3000, that being Privileged Mode.

In spite of this growing sophistication, there is
still a large number of people who do not un-
derstand what Privileged Mode is. Even the
in-house Data Processing departments writing
PM code internally and software vendors
who are supplying applications using PM (as
Privileged Mode will be called from here on} do
not always fully understand its consequences
and dangers. It is the purpose of this paper to
present -a description of PM and its implica-
tions, and to provide a technical document
that describes, in one place, all (or as many' as

since the first . .

could be found} of the varions commands,
compiler options, and intrinsics dealing with
PM. It is a fundamental part of human na-
ture to be fearful of the unknown. This
paper is. an attempt to make the largely un-
known world of Privileged Mode known, and
thuls lessen the fear of this potentlally powerful
too :

Before starting,--some disclaimcrs are in order.
This paper is by no imeans intended to en-
courage anyone.to use Privileged Mode. It is
the opinion and experience of the author, and
does not constitute an official statement on the
part of Hewlett-Packard. It is intended strict-
ly to be informative so that the reader could
form his/her own opinions.

The approach which will be taken in
describing the details will-be to look at PM
from the inside out. That is, examine first
what- PM is at the hardware level, then look
?utward to the software which sets and checks
or PM.

What is Prwﬂeged Mode

At the lowest level, PM is a state in which a
Process can run, either temporarily or for the
duration of the process’s execution. While in
this mode, the ability to execute a certain set
of privileged instructions is given, as well as al-
lowing certain non-privileged instructions. to
operate in a different fashion than normal,
uvser mode. In addition, procedures can be
defined- which can only be called when the
calling code is running in PM. it is that
simple. That is-the total definition of PM.
No magic, no wires or mirrors, no potions or in-

cantations. However, there are many, many.
ramifications of this simple definition. Indeed,

exactly what these mstructmns and capabilities
are, and how PM can be entered and exited
is the whole point of this paper.

The ultimate enforcement of which capabilities
will be granted is done by the microcode - (ie,
hardware) of the machine. To understand how
this is possible, we must first understand a lit-
tle .about the hardware architecture of the
HP3000. ‘ o

The CPU of any HP3000 has several
hardware registers that are used for various
functions. Different CPU types (Series

Prepared by the Southern Colifornia Regional User's Group

Proceedings: HP3000 JUG 1984 Anaheim

30,44,64, 1Il) have different registers, but
some registers are common to alt types. One of
these registers is called the Status register, and
this contains information regarding the state
of the hardware and microcode at a given
instant in time. Such things as what code
segment is being executed, whether an over-
flow has occured, whether carry has occured,
and other types of information are kept here,
and are available to both the hardware and
software via this register. Bit zero (highest.or-
der bit) of the 16 bits is called the Mode bit,
and this is where the fact that the machine is
in PM or not is kept. If the bit is on (a one),
then the machine is running in PM AT THAT
INSTANT IN TIME. The microcode ¢an check
this bit at any time to determine whether cer-
tain operations are valid. The most common
check that is made is when certain instruc-
tions are executed which are deemed
"privileged". The list is too numerous to men-
tion here, but can be found by consulting
the Machine Instruction Set Reference
Manual, PN 30000-90022. In the description
for each instruction, the wvarious- checks that
are made are listed, For example, the LOAD
instruction Lists STOV and BNDV checks
These are, respectively, the STack OVerflow
and BouNDs Violation checks.. One of the

checks whlch can be made is the MODE check,

which is whether or not the Status reg:ster
Bit Ois I. In general, all IO instructions, and
any instruction which can reference memory
outside of the users stack or code segments
have a2 MODE . check on them. A few of
these are MFDS - (Move From Data Segment),
MTDS (Move - To Data Segment), LSEA
(Load Single from an Extended Address)
HALT (Halts the hardware),- and SIOP (Start
10 Program on HP-IB machmes) Rather the
list the instructions, it is better to consult this
manual on a specific instruction and check if
PM is required. When a violation is detected, 2
trap is executed which produces the mes-
sage PROGRAM ERROR #6 PRIVILEGED
INSTRUCTION.

The other check made by the microcode is
done by the PCAL {Procedure CALI) instruc-
tion. It is possible to define a procedure with
the OPTION UNCALLABLE keywords. When
this is done, the PCAL instruction makes sure
that the MODE bit is set when calling this

procedure. If it is not, a trap is executed which
produces the message PROGRAM ERROR #17:
STT UNCALLABLE.

It is important to note at this point that it is
not the instructions themselves that are par-
ticularly dangerous. It is the use of them that
can cause problems. Even then it is usually
only two things that cause problems. One is
when data is MODIFIED outside of the user’s
domain. Very rarely does just LOOKING at
data outside the stack or code segment cause
problems. The other and perhaps more
difficult problem to ensure does not happen is
providing incorrect information to the
machine instructions or uncallable procedures.
Something as simple as giving a data segment
number of zero to the MFDS instruction will
cause a System Failure 16. Or worse, a non-
zero DST number which is not currently used.
A timing problem in the creation and release
of a data segment can be disasterous. It is al-
most entirely this area which has given PM
code a bad name. Even MPE (which runs
ENTIRELY in PM) cannot escape this problem.

It must be pointed out that there -is a great
deal of data which can only be obtained via
PM that is perfectly safe to access. An example
is data in the PCBX area of the stack. This is
an area below the DL.register which contains
all kinds of file control blocks, extra data seg-
ment information, and other things. Since the .
stack s always there when a process is run-
ning, it is very safe to access this data.
However, since it is below DL, privileged in-
structions must be used to access this area.
One routine which does:this is the JOBIN-
FO procedure in the Contributed Library.
This procedure access the PCBX to obtain the
Job/Session number. A new intrinsic in
MPE-V, also named JOBINFO, will replace
this contributed procedure, It is impor- tant
to note, however, that the new JOBINFO will
do essentially the same work as the contributed
version. Which brings up a good point: There
is really two kinds of Privileged Mode. They
are: 1) The kind HP supports and, 2) the kind
HP doesn’t support. All this really means is
that HP writes MPE and utilities in
Privileged Mode and supports it. When

-someone else writes the code, HP doesn’t sup-

port it.

Setting the Mode Bit

We have seen that essentially what constitues
PM is the MODE bit is set in the STATUS

register. But how does this bit get set? Asking.

this simple question opens a veritable can of
worms. We will try to make a systematic
analysis of all the various options available to
perform this simple bit-twiddle.

At the lowest level, the MODE bit is set by
only one machine instruction, that being. the
PCAL instruction. The decision whether to set
or not set the MODE bit on the PCAL by
the following rules: 1). If the CST or CSTX
entry reflects the fact that this segment is
Privileged (Bit 1 of . word 0. of the entry), then
set the MODE bit on. 2). If the segment
being branched to is nonprivileged, but the

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

MODE bit is currently set, then Xeep the
MODE bit set for the execution of the new
segment.

Note that 2) above implies that CODE WRIT-
TEN TO RUN IN USER MODE WILL RUN
IN PRIVILEGED MODE. Typically, this will
not pose a problem. However, it is a little
known fact that ALMOST ALL BOUNDS
CHECKING IS TURNED OFF IN
PRIVILEGED MODE. An example is the
SCAN statement in SPL. If the termination
criteria are not found, then normally a
bounds violation will occur. In PM, however,
the scan will continue beyond the stack. Ob-
viously, this can have disasterous implications
if the code has not been well debugged.

The reason for leaving the machine running
in PM can be understood if we examine the
logic for the EXIT instruction. This instruction
can set the MODE bit to zero, but will not set
it to one. The logic choices are: 1). If the cur-
rently running segment is in PM and the seg-
ment being exited to is in user mode, then the
MODE bit will be cleared on the exit, return-
ing the machine to a user mode state, 2). If the
machine is in user mode at the time of the
EXIT and the segment being exited to is
privileged, (as indicated in the Status Regist—
er saved in the Stack Marker at Q-1), then
Privileged Instruction violation will occur.
This is done to prevent a possible breach of
security. It would be a simple matter fora
user without any special capabilities to write
a small SPL program to call a procedure (a
PCAL) which set bit zero of Q-1 to 1 (the
MODE b%it) Upon EXITing, the program
would be running in PM, and could look at
any part of the system, including the
directory to get MANAGER.SYS password,
or any other part of memory desired. Be-~
cause the EXIT instruction follows rule 2
above, we see how this possible loophole is
closed. We also see why the PCAL instruction
follows rule 2 in the previous paragraph. If
the procedure should, indeed, be privileged, this
is the simplest way to insure that the MODE
bit is set correctly.

Continuing on. our journey outward, it was
mentioned that the CST or CSTX entry (logi~
cally the same) was checked for a PM bit.
This bit gets set when the CST or CSTX entry
is created. [t is best to take each case, CST and
CSTX, separately.

The CST table is a fixed length table (192
entries) which contains information regarding
segments found in SL files only. MPE-V will
change this around in detail, but for the pur~
poses of this discussion, this description will
suffice. Each entry is built by one of two
software entities. On startup, INITIAL reads
the system SL (SL.PUB.SYS) and creates a CST
entry for every segment which is a SYSTEM,

RESIDENT, or PRIVILEGED segment.
Typically, MPE segments will always be
SYSTEM and PRIVILEGED. Thus, each seg-
ment marked PRIVILEGED will have the PM
bit set in the CST. After the system is up
and running, and all MPE segments are loaded
and CST entrijes created, the LOADER is the
entity that adds any other SL segments to the
CST. This is done when a program is loaded
which references procedures in a segment in a
group, public or the system SL. If that seg-
ment is also marked as being PRIVILEGED,
then the PM bit is set for that segment also.

For segments that are resident in program
files, the rules are the same as for user SL
segments, above, except that table that gets
built is the Code Segment Table Extension
(CSTX) instead of the CST. Also, the infor-
mation as to whether the segment is privileged
or not is kept in record 0 of the program file
in a table called the CST re-mapping array.
Thus, when 2 :RUN command is entered by a
user, the LOADER reads this table and knows
whether or not to set the PM bit in the CSTX.
It is important to note that the smallest entaty
which can be called "privileged" is a segment.
This has some important ramifications. If one
procedure in a segment 1is defined as
privileged, then ALL PROCEDURES IN THE
SEGMENT WILL BE PRIVILEGED. It is
therefore a good idea to keep all privileged
code together, and not mix the privileged
procedures with ones that run strictly in user
mode.

Continuing outward, we must ask how the
program file or SL file is built. In each case,
the answer is the same: the SEGMENTER.
Whether used directly via the :SEGMENTER
command, or indirectly via a :PREP com-
mand, the SEGMENTER is used to transform
a USL file segment or segments into 2 finished,
linked Program file or S segment. It is at this
stage that about half of the security implica-
tions of PM are realized. Obviously, this is
a much higher level than that which the
hardware imposes.

When the :PREP (or -ADDSL) command is
entered, and the segment (or outer block, in
the case of a program) is entered, the SEG-
MENTER checks two things. First, it checks
to see if the proper capability is present. In
the case of a program file, this implies that
the user has entered CAP=PM on the :PREP
command. The second check made, and one
key to the implementation of MPE security
regarding PM, is that the :PREP’ing user has
PM capability assigned. If not, the :PREP (or
~ADDSL) fails.

One exception must be noted at this point
regarding the SEGMENTER’s check of
capabilities. In a program file, there are two
different kind of segments. There is a
special segment, called the OUTER BLOCK,

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

and there are all the other segments of the
program. The Outer Block can be privileged
in addition to the other segments. It is also
possible for the other segments to be
privileged and the Outer Block to not be, or
vice versa. In any case, if the Outer Block is
privileged, the ;PREP will fail if CAP=PM is
not specified. A minor point, but one worth
mentioning.

The next level of capability checking is done
when the program is actually loaded. In fact,

the LOADER performs more checking than’

any other entity except perhaps the microcode.
When the program is :RUN, the LOADER
first checks to see if any segments are
privileged. This is done by scanning the CST
remapping array mentioned previously. If
any segment is privileged, and the capability
word stored in record 0 does not have the PM
bit set on, then the load fails with “IL-

LEGAL CAPABILITY". The capability word
1s set by the SEGMENTER based upon the
CAP= parm of the :PREP command. If none
is specified, then IA BA are assigned, but not if
fhosie capabilities do not exist at the group
evel.

Assuming that the capability word is in order,
a check is made to be sure the capabilities of
the program do not exceed that of the group.
In other words, if 1A,BA PM are assigned to the
program, all three must be present at the
group level. (Also at the account level but this
not verified by the LOADER)." It is lmportant
to note that the same checks are made for any
privileged SL segments being loaded as a result
of external calls made by the program. Theé
only difference is that the LOADER differen-
tiates between illegal capability of the program
file and of the SL file in the error message.
(Thank heavens for small favorsl).

Compiler Options

We have seen so far what is necessary from
the machine and operating system point of
view to make a program privileged. Various
areas were mentioned as having a PM bit set,
such as the CST remapping array. However
we have not addressed how these bits magxcal—
ly get set. Thissection will-deal with this sub-
ject. Since SPL is the only language that al-
iows full access to PM code and machine in-
structions, this is the only compiler which will
be shown.

As mentioned before, the: smallest entity
within the system that can be privileged is the
segment. In SPL, the way a segment is given
PM is by usmg "the OPTION PRIVILEGED
statement:

PROCEDURE EXAMPLE(A,B.C});
VALUE A .B,C;
INTEGER A.B.C;
OPTION PRIVILEGED;

As mentioned before, IF ONE PROCEDURE IS
DECLARED PRIVILEGED, THE WHOLE
SEGMENT, AND ALL PROCEDURES
WITHIN IT, ARE PRIVILEGED. It is there-
fore a good idea to place all privileged
procedures together in one segment by using
the 3CONTROL SEG= compiler command.
This applies equally to program file segments

as well as segments that are compiled separate-
Iy and placed in an SL.

To make a procedure UNCALLABLE, the fol-
lowing option is used:

PROCEDURE EXAMP,
OPTION PRIVILEGED, UNCALLABLE;

This causes a bit in the Segment Transfer
Table to be set. This table is resident at the
end of every code segment, and is used by the
PCAL instruction to branch to other segments.
If this bit is on and current MODE bit is off,
an STT VIGLATION occurs.

As previously mentioned, a program file has
a special segment called an Outer Block. A
special command is provided in SPL to make
this segment privileged:

$CONTROL USLINIT,PRIVILEGED,MAIN=0B8’

This option implies that the Outer Block is
privileged from the start of the program, and
remains privileged unless turned off. Since
PCAL’ing a user mode procedure from a
privileged one turns PM on, this would mean
that the entire program will be privileged at
all times. If this is not desired, then $CON-
TROL PRIVILEGED should be avoided.

‘RUN Options, Intrinsics, and Things That Go BUMP in the Night

Several things need to be mentioned before
any discussion of PM can be complete. First,
besides the CAP = parm, there is another pa-~-

rameter of the :RUN command which deals -

with PM, and that is the NOPRIV option.

NOPRIV is used by the LOADER to negate
the effects of the PM bits in the prog file
capability word and the CST Remapping Ar-
ray. Thus, no part of the program will run in
PM. However, if an SL segment is called, this

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

WILL run in PM. If this were not the case,
then normal intrinsics, such as FOPEN;,
FREAD, etc, would not work. The implica-
tions are that if any PM code is executed,
then a PRIVILEGED INSTRUCTION
VIOLATION will occur. However, this is a
good safeguard if development is being done
and an added layer of security is necessary
during testing.

There are several Intrinsics which behave dif-
ferently when called from a PM .segment.
First, the file gystetn will allow two things in
PM. One is the ability to open Privileged files
(files with a negative file code). This can only
occur if the correct filecode is supplied along
with being in PM. For filecodes equal or
greater than zero, thisis not necessary. The
second ability granted by the file system is the
ability to do nobuf, nowait IO to non-message
files. (Message files can be accessed thls way
without PM).

The next group of procedures are the Data
Segment Intrinsics. When called from wuser
mode, this set of Intrinsics (GETDSEG,
FREEDSEG, ALTDSEG, DMOVIN and
DMOVOUT) checks for DS capability and
returns a DST index, which is an index into a
local table, not an MPE DST number. When
called in PM, however, the check for DS

capability is ignored, and the index returned is
an actual MPE DST number. This implies that
this number could then be used by MFDS,
MTDS or MDS instructions later. Also, this
must be done if SWITCHDB is to be called.
SW;TCHDB can only be called in privileged
mode.

The GETPRIORITY Intrinsic has an option
where a user can specify an absolute priority
and place a process in a linear queue. Nor-
mally, the process will be placed in a cir-
cular queue. Obviously, this has far reaching
ramifications, as a process in a high, linear
queue could cause a lockout of other processes.

Probably the two most commonly used Intrin-
sics in the realm of PM are the- GETPRIV-
MODE and GETUSERMODE instrinsics.
These intrinsics allow a program PREPed with
CAP=PM to enter PM for a short time, then
leave it. This is definitely the preferred
method for performing privileged functions,
especially if the amount of PM code needed is
small and well contained. Typically, however,
if the program is mostly privileged, it is
probably better to just let it run in PM 21l the
time. This allows the overhead of the calls to
GETPRIVMODE and GETUSERMODE to be
eliminated. Note also that using ;NOPRIV will
cause these intrinsics to fail.

Deciding on PM

If you are a manager, you may still be uncer-
tain whether or not to buy or use applica-
tions which run in Privileged Mode. The fol-
lowing are some guidelines.

If there is a real concern on your part, then
discuss it with the vendor. Most vendors who
use PM have not decided to do so lightly, as
they realize that many people will have doubts
and questions like you. Ask them if the PM
was really necessary. Was it put in just to be
a whiz bang, or i1s there some real benifit?
Now that you’ve read this paper, you can put
your knowledge to work. Is the PM just
there to access some special Intrinsic
capability, such as NOWAIT 10? If so, then it
is probably very safe. Does the code look at
MPE? If so, how secure is it? Is it looking at a
part of MPE that can change drastically, or is
it 2 part that has remained the same since the
Series~CX? What is the reputation of the
vendor? Are they noted for being MPE inter-

nals oriented, and knowing what is going on?
Or did they pick someone off the street, teach
him/her how to spell GETPRIVMODE and set
them loose?

If you are really uncertain, sometimes you can
get an independent consultant or HP invol-
ved. Hewlett-Packard SE’s or System
Specialists will sometimes be willing to look at
an application and bless it "safe". Obviously,
there is a large problem with liability. It will
usually be up to the local management as to
whether or not such a decision will be dealt
out by one of their SE's. It is definately worth
pursuing.

Finally, look at the vendor’s support contract
closely. If they guarantee that the code will
work, then they must feel very good about it,
and are confident that what they have written
will not need much change, or at least that
they will be able to change it if need be.

Conclusion

An attempt has been made to compile a
compendium of options regarding Privileged
Mode. In doing so, explanations were given $o
that it can be understood what is occuring

during various privileged operations. It is
hoped that these explanations would take some
of the mystery of PM away, allowing a less
feagful at—- titude to form in the mind of the
reader.

Prepared by the Southern California Regional User's Group.

Proceedings: HP3000 IUG 1984 Anaheim

Name: Jason M. Goertz
Title: System Specialist Hewleft - Packard Neely Sales Region, Bellevue, W 4. 28006

Jason started working with computers as a senior in high school. While attending
Whitman College, he used computers in his course work. During his senior year,
Whitman purchased an HP 3000 Series 11, which served as both an academic and ad-
ministrative machine, Upon graduation, Jason stayed at Whitman as a Program-
mer/Data Base administrator, and later as system programmer, where he wrote a job
scheduler, BEACON, and a security system, GUARDIAN, both of which employ
Privileged Mode extensively, In addition, during this time, he worked on the HPIUG
Contributed Library, and wrote or helped write many of the Infobase utilities for LIBS
4,5, 6 and 7. In 1980, Jason started working for the Bellevue HP office as a System
Engineer, and within a year had added the role of Field Software Coordinator to his
duties. He quickly became the area resource on MPE and internals, and has taught 4
MPE in- ternals classes, both to customers and to other HP employees. In August of
1983, he was promoted to System Specialist, where he concentrates on internals, spe-
cial projects, and teaching of other SE's. Jason enjoys photography, backpacking and
swimming for recreation, as well as travel and just relaxing. Jason's family consisés of
his wife, Doris, also involved in the HP com- munity, and his black cat, Nerd. All three
reside in Redmond, Washington, north of Bellevue.

8-6

Prepared by the Southern California Regional User’s Group

