Proceedings: HP3000 IUG 1984 Anaheim

Customer Satisfaction Through Quality Software

Dan Coats, Hewlett-Packard
Michael McCaffrey, Hewlett-Packard

Perhaps the most frustrating thing for a
Hewlett Packard customer is updating to a new
release of MPE. The majority of the older cus-
tomers take the "wait and see attitude" before
updating their production systems to the new
software because they have been burned in the
past. A few brave souls and new customer in-
stallations take on the task of being the guinea
pigs. At a point, maybe 3 to & months after
release, when the software has stabilized, the
rest of the customer base is feeling more com-
fortable and gradually migrates onto the new
software. This attitude, though justifiable,
creates 2 number of problems for Computer
Systems Division (CSY). Since the next release
of MPE is based on the most current one in the
field, we need a high percentage of customers
using the current release to insure that we are
not carrying problems forward into the next
release. When bugs are found and fixes are
generated. for the installed customers, they are
then incorporated into the next version of. the
product. Because of the time lag between the
release of new software and the installation of
it on a high percentage of the installed systems,
we are working with a unknown gquality level
of software. What can be done about this
CATCH 22 situation? We believe the most im—
portant thing is to raise your confidence level
in our software. The only way to do this is to
provide the highest quality software possible
with the current technology available. With
the stage set at this point, this paper will dis~
cuss some of the things we are doing at CSY to
address this goal. This paper will first define
the Product Life Cycle, which is a mechanism
for defining the process of software develop-
ment. The quality checks and testing at each
phase will be covered in addition to what we
are doing to automate the system testing to un-
cover as many problems as possible before
software is released to our customers.

Software Product Life Cycle

The software development process is
controlled by a document called the Software

$-1

Product Life Cycle. This document defines the
objectives, results or output, and method of
validation for each phase of the life cycle.

This discussion will deal with a generic life
cycle. While not exactly like the life cycle used
at CSY, it defines the mechanism that most
software divisions model their Product Life
Cycles after, including CSY. There are six
major steps in the process of developing
software.

o Investigation The requirements for the
product to be successful in the
market are determined. The
product objectives, in terms of
functionality, usability, reliability,
performance, and supportability
are defined.

External interfaces, both user
interfaces and product interfaces ,
are defined. Internal specifica-
tions, which state the algorithms
that will be used, are developed.

o Design

o Implementation Code, module test, and
document the product com-
ponents. Plans are made for field
and user training.

o Testing Insure that the product meets
HP and wuser requirements. In-
tegration of the software. System
testing, ALPHA and BETA test-
ing. Field review and suppor-
tability evaluation.

o Release Package and transfer to
manufacturing and the field.

0 Support Ongoing enhancement and

product fixes.

Software Product Life Cycle Testing Activity

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984

Anaheim

In the early steps of the Software Product
Life Cycle a great deal of testing activity oc-
curs. The following chart shows the testing ac~
tivity broken down . for each step of the

Product Life Cycle.

ol Lo . Ce
Phase | Product Development Testing Activity
Investigation Product Requiremenfs ---------------
|
I |
Design External design, and | Desian Inspections |
: . .Internal designs Quality Plans. |
. S Test Plans
Implementation | Coding - Code Inspections
| . | : Module Testing i
Testing‘ Integration of the ' Function Testing
. software . System Testing
ALPHA & BETA Sites
Field Review

Quality Plans

The quality plan is a document that states the
quality objectiives of the project and the means
for achieving them. These measurable objec-
tives and specific plans will come from all
functional areas and-will result in goals agreed
upon by the entire product team. As the
project progresses, the Quality plan is used for
evaluation and planmng throughout the hfe of
the product. e

The quality plan is not a.test plan, nor does the
test plan deal with the functions of a quality
plan. The scope of the quality plan is much
broader, its creation and acceptance must coin-
cide with those of the External Specifications
in order to insure that the -various aspects of
the product’s quality are considered at ap-
propriate points in the product’s life. A test
plan, however, defines specific testing activity,
is much more detailed and is created later in
the product’s development.

In order to successfully define the guality ob-
jectives of a product, the plan addresses each
phase of the product life cycle and includes the
following:

-specific objectives to be met; .
. =the means of ach:evmg these objectwes

-what measures w111 be used to determme
the degree of quality achieved;

-criteria needed before project enters the
next phase; -

~what documentatlon w:ll be kept for all
the activities.

The goals should be expressed in terms of fit-
ness for use, There are five major aspects of
fitness for use and each should be addressed for
each phase of the project, These are: :

-functionality '

-usability ‘

~reliability

-performance

~supportability
Quality Plans

5-2

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 JUG 1984 Anaheim

Contents

The following table identifies the major com-
ponents of the Quality Plan:

L. Product Overview

A. Product Identification

B. Related Products and Projects

C. Quality Perspective of Product
I1. Plans by Phase

A. Design

B. !rﬁplementatioﬁ

C. User Acceptance Testing

D. Release to Manufacturing

E. Post-Release

Quality Plans
1. Product Overview

A. Product Identification
1. Name, mnemonic, and number
2, Product Abstract
3. Project Personnel
B. Related Products and Projects

A list of all products and projects that
affect this product is provided in order
that dependencies among products can
be identified.

C. Quality Perspective of Product

A description of the product emphasis,
its market, and its potential end uvse is
provided. In addition, problems that
crop up as a result of the related
products and project investigations are
recorded and contingency plans are
developed as well as methods for
monitoring the problem areas.

11 Plans by Phase

For each of the five development
phases objectives, plans, and methods of
verification should be described. The
quality control procedures should
reflect specific measures to be taken to
insure a high quality result at the com-
pletion of each project milestone; the
quality improvement section focuses on
what items or processes will be
improved as a means of improving the

5-3

resultant product’s overall quality; the
measurement section focuses on how
the project team will know if its goals
have been met. This outline will look
at the objectives only, plans and
ferification methods will be dealt with
ater.

A. Design

The design phase consists of external
and internal subphases which may
overlap, depending on the needs of the
project. In the external subphase the
features of the product and the user
interface are specified. The internal
subphase defines the structure that
will support the product’s externals.
During this phase, a test plan is also
developed by the project team. This
plan will be described later.

1. Objectives
External...

~-to describe the product operating
environment :

--to determine the functional

capabilities
-=-to define the user interface

~-to specify documentation standards
for the ES

Internal....

-=-to describe major elements of the
internal structure

--to develop complete, detailed
descriptions of the algorithms and
data structures to be used in the

im plementationplementation

--to provide design alternatives
B. Implementation

This phase includes the coding of all
modules, the completion of the inter-
nal mainienance specification, testing
of the product, and manual writing.

User reference manuals, programming
guides, and other manuals are com-
pleted so that they will be available
for both alpha and beta test sites. This
is an area known for a large number
of product errors, therefore, particular
care should be taken to review the
.manuals to ensure they are accurate,
complete, and useful.

Prepared by the Southern Californio Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

1. Objectives

--to determine coding standards to be
used

--to provide idea of internal
documentation expected

~~to decide if hooks should be in-
cluded for testing

--to faithfully translate the al-
gorithms and data structures
developed in internal design into
programs, procedures, and data
structure definitions

--to provide complete and function-
ally tested code

Internal Maintenance Specification.....

~-to produce concurrently with the
code

~--to provide a complete description
of the internal design, structure, and
flow of a product

--to detail the development of the
product

~-to provide the information neces-
sary to support and enhance the
product

--to provide sufficient information
so that field training may be
developed

~-to provide for evolution of the
document after the product is
released .

Testing Activities.....

~=to develop tests as outhned in the
test plan

--to document tests in test documen-
tation section

--to choose ALPHA test sites

C. User Testing

This phase’ exposes the product to a
controlled end user environment. In
order to get to this phase, all lab test-
ing is completed, and the product has
completed the implementation phase.

1. Objective

--to evaluate the initial reliability of
the product

-~to determine readiness for BETA
site testing

~~to provide active test site
management

:--to test the product installation files
D. Release '

During this phase, the code must be
tested extensively to insure its
reliability, the performance must be
measured and tuned until the product
is ready for customer use, and control
of the product must be turned over to
manufacturing.

1. Objective

--to provide for thorough product
testing through the use of the BETA
test site

--to stress the product with the in-
tent of causing it to fail

E. Post Release

The life of a product after release in-
volves changes, both fixes and en-
hancements, the necessity to interface
with new products and the require-
ment to minimize d1srupt10n of exist-
ing customers’ activities.

1. Objective

~~t0 demonstrate that new releases
have improved quality as measured
by agreed upon metrics

--to test and prove that the code of
the new release is maintainable

--to insure that documentation of
the new release meets quality
objectives :

--to insure that advantages of fixes
or features in the new release out-
weigh the risk of potentially intro-
ducing new bugs

~~to reduce the time that a critical or
serious problem remains open

The test plan is a strategy for applied testing of
a product. The objective of a test plan is to
define the scope, resources, and timetable of
product testing. All of these will vary depend-
ing on the type of product and the objectives
documented in the quality plan. The quality

5-4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984

Anzaheim

plan makes specific recommendations about the
testing process- the test plan implements them.

The test plan is the driving force for the test~ -

ing process and as such, should address the
following: .

--the types of tests to be used by the
project team

--non-standard test specifics

--frequency of repetitive operations (e.g.,
walkthroughs, regression tests).

It should define a set 6f tests which .wﬂl be suf -

ficient to guarantee the quality of the finished
product upon release.

The test plan is developed as a integral part of
the design and implementation phases; it is
directly applied to the external specification.
The following is an outline of a test plan that
is presently the standard for CSY. The intent,
when developing such a plan, is to use only
those areas that are directly applicable to the
product being tested and this paper will only
deal with some of the aspects of such a plan
Test Plans Contents
I. Product Identification

A. Project name, mnemonic, and project
number

B. Project Abstract
C. Project Personnel
I1I. Development Quality Control Practices
A. Design Walkthroughs
B. Design Reviews
C. Code Inspections and Waikthroughs
D. Code Reviews
II1. Implementation Testing
A. Module or Unit testing -
B. Integration testing
C. Development test tools
IV. Product Testing
A. Function testing
B. System testing
1. Facility

2. Volume
3. Stress

5-5

4, Usability
5. Security
6. Performance
1. Storage requirements
8. Configuration
9. Compatibility/Conversion
10. Installability
11. Reliability
12. Recovery
13. Serviceability
14. Documentation
15. User procedures
16. Certification -
C. Acceptance testing

D. Installation testing
E. Test automation

F. Equipment and configuraﬁon’ needed
for testing

I Product Identification
This section‘is self -explanaiory.
IL Development Quality Control Practices

In order to promote quality in the
design and implementaion phases, the
test plan delineates the ground rules
and frequencies of walkthroughs, in-
spections, and design and code reviews,

IIL lmpleinentation Testing
A Modﬁle or Unit Testing

Attempts to find the discrepancies be-
tween the external description of the
module and its logic as demonstrated
in executing the code. . :

B. Integration Testing

This involves combining the next
module to be tested with the set of
previously tested modules before it is
tested. This tests the interface be-
tween two modules and the logic of
one.of them when the other has been
previously module tested. The order
used in integrating meodules can
simplify the testing process and have
other.important consequences.

C. De\}élopment Test Tools
IV, Product Testmg
A Functlon Testmg
Looks for the discrepaﬁcies between
-the external functions as described in

the externa! specifications and what
the product actually provides.

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 IUG 1984 Anaheim

B. System Testing

The plan selects which of the types of
tests should be run; defines the objec-
tive and what wverification . criteria
will be applied for each of the tests.

C. Acceptance Testing

This is the process of comparing the
product to its initial: trequirements and
the currept needs of its end users.
ALPHA and BETA test sites are the
prime example.

D. Installation Testing

When installing many software
products, a variety of options must be
selected by the user; files and libraries
must be allocated and loaded, a valid
hardware configuration must be

present, and the product must be in- -

terconnected to other products. Instal~
lation testing is the way to weed out
these anomalies. This testing also oc-
curs at-the ALPHA. and BETA sites,

E. Test Automation

F. Equipment and conflguratnon needed
for testmg

Inspections, both design and code, are for-
malized processes used to find defects. The
main idea behind inspections is to reduce or
eliminate bugs as early as possible in the
development cycle, thus increasing programmer
productivity and lowering the product life
cycle costs. Additionally, inspections provide a
technically correct base for the next phase of
the development cycle and insure adherence to
the product specifications. The inspection team
consists of four to five people who are assigned
the following roles:

Moderator This is the key person for a suc-
cessful inspection. The moderator is
responsible for managing the inspec-
tion team, scheduling a suitable
meeting place, reporting the inspec-
tion results, and following up on any
rework

Designer The person . responsible for
producing the design or code.

Reader Any team member other than the
moderator or designer. Responsible
for reading the material, one line at
a time. Also has the responsiblities of
an inspector.

Inspector Responsible for finding defects in
the mater:al being inspected.

5-6

The material to be inspected is distributed at
least one week before the inspection is
scheduled. Along with the material is the
responsibility assignment for each member of
the team. The formal inspection begins with
the reader reading the document aloud, one
line at a time. As defects are found, the
moderator c¢lassifies and records them. Ex-
amples of such classifications are design logic
errors, coding errors, interface errors, etc. The
moderator faces two problems when the defects
are found; one is to keep the remarks deper-
sonalized and the other is to avoid solving the
problem during the inspection. Keeping the
remarks depersonalized is not an easy task. It is
difficuit for people not to say "you didn’t.." or
"vou should have." when they are discussing
something they think the designer should have
done differently. Instead, they should say “the
design is wrong.." or "the code is..". The other
thing to keep in mind is that the mspectlon is
held to find defects. - The resolution of the
defects should be handled outside of the formal
inspection meeting. The moderator should fol-
low up on all defects to ensure they are correc—
ted. The entire inspection should last no longer
than two hours. It has been found that after
two hours, the -error detection efficiency of
most inspection teams begins to dwindle.

A module, used in the structured program-
ming sense, is a procedure or closely related set
of procedures. If you look at two different ap-
proaches to software integration, you begin to
see why module testing can be very important.

“Big Bang" Approach

1. Design, code, and test each module
by itself.

%. Throw all the modules into a large
ag.

3. Shake the bag very hard.

4, Cross your fingers and hope that it
" all works.

Big Bang Approach makes it very difficult
to track down a bug. Which module is caus-
ing the error?

Incremental Approach

1. Design, code, and test one module by
itself.

2. Add znother module.
3. Test and debug the combination.
4. Repeat steps 2 and 3.

Incremental approach allows the process of
debugging to be more scientific. Using the

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 JUG 1984 Anaheim

incremental approach requires the use of
stubs, drivers or both, when testing of a

module begins. The first module is tested
using dummy external calls. When the next
module is ready, the dummy external call is
replaced by a call to the new module. The
tests against each module are saved and
rerun with the addition of each new
module. The incremental approach has al-
lowed us to find things like interface errors
and variable initialization problems very
quickly. This not only simplifies the
debugging process but produces a higher
quality product in the end. Automated Sys-
tem Testing On any new release of MPE,
there are over 800 job streams, containing
over 10,000 separate tests, run against the
operating system and the associated subsys-
tems. In the past, operators worked around
the c¢lock, streaming each job and checking
the output results for errors. Although this
method did get all the tests run, one was
never sure that all the errors were found
and reported. Therefore, the decision was
made to develop a series of tools to auto-
mate the testing process, in the hope of
catching more errors earlier in the system
testing process. The first program to be
developed was the monitor process. This
program is script driven and controls the
streaming of all test jobs. We use user log-
ging to record any errors in the testing
process, and have written a set of intrinsics
to zllow the tests to report the P-relative
code location of an error. In addition, sys-
tem traps are armed by the monitor process
to catch any abnormal aborts of the system
intringics. With the controlling process
written, the next step 'was to write a
program to save the output spool results for
later analysis. This program, called the AR.-
CHIVER, is created by the MONITOR and
copies all spool files to a tape using SPOOK.
With the MONITOR and ARCHIVER in
place, we began to catch a greater number

5-7

of the test errors earlier in the testing
process. The next problem was who was
going to read thru 80,000 lines of spool
output looking for inconsistencies. To solve
this, a spoolfile comparision program was
written. We took a known good run of the
tests and checksummed them into a2 MPE
file. The ARCHIVER now creates the spool-
file comparision program and passes each
completed spoolfile to it for analysis. The
spoolfile is checksummed and compared
against the MPE file created from the
known good run of the tests and errors such
as missing lines, additional lines, and lines
that do not match are reported. The auto-
mated testing has allowed us to catch a
large number of defects in the software
that would otherwise have reached the cus-
tomer. Projects are now in process to en-
hance the automated testing for more
functionality and to increase the testing
coverage of the operating system.
Bibliography Software Product Lifecycle.
Hewlett-Packard; SPLC.83.02
#5955-1756; February, 1983.

Software Quality. DAS Quality Management
Team, Information Networks Division,
Hewlett-Packard; July, 1981.

A Guide to Writing Quality Management
Plans. SNA Quality Management Team,
Information Networks Division, Hewlett-
Packard; August, 1981.

Quality Plan. Memo from Sally Dudley,
Hewlett-Packard; May, 1980,

An Overview of Hewlett-Packard’s Software

Tife Cycle Preliminary from Sally Dudley,
Hewlett-Packard, September, 1983.

Design Inspection Seminar Jim Dobbins, IBM;
January, 1983.

Prepared by the Southern Californic Regianal User's Group

