Proceedings: HP3000 IUG 1984

Anaheim

IMAGE: An Empirical Study

B. David Cathell
Hewlett-Packard

Background

Last April, Jorge Guerrero addressed the Per-
formance Specialist Class that T was attending.
He made a rather bold assertion that "There is

no evidence that a prime capacity for an IM-

AGE master data set gives a better distribution
than a non-prime capacity" In light of the
fact that we had all been trained to believe
that a prime capacity is decidedly better, we
students were shocked to hear Jorges conten~
tion. I began design and implemenation of a
program to read any data base and test the key
values contained in a specified data set using
various capacities. Although the initial goal
was to prove or disprove Jorge’s assertion, the

program was also intended to be a tool to -

evaluate potential capacities should the asser-
tion prove to be true.

Image Theory

The following section deals with the theory
upon which the IMAGE design is based.
Readers who are already familiar with this
theory may wish to jump forward to the dis-
cussion of the program itself. .

IMAGE, like any data base system is an or-
ganized collection of data. The method of or-
ganization is intended to speed the retrieval of
particular data that a user requires. There are
many methods of organization but the design-
ers of IMAGE chose two types of sets of data
which we call master data. sets and detall data
sets.

Master data sets contain key data by which the
rest of the data is retrieved. Names and iden-
tifying numbers (such as social security num-
ber) are common keys with which we are
probably all familiar.

Detail data sets usually contain the bulk data
but are organized with pointers to maintain
linked lists of information with common key
(called search items) wvalues. Data for a
particular person, for example, can be Obtained

4-1

by finding the head of the chain for that
person's name and following the chain.

Because accessing the data in an IMAGE data
base usually requires initially accessing a mast-
er data set, this paper will only deal with ques-
tions pertalnmg to masters.

When a user attempts to access a master data
set, he or she provides a key value.. Somehow,
IMAGE must be able to transform that key
value into a unique address where the desired
record (data entry) resides. The easiest way to
do this is to assign a unique number to every
possible key value and have a correspondingly
numbered data entry location reserved for it.
Unfortunately, even a short data item may
have a huge number of possible values; for ex—
ample, the number of possible file names in
MPE 15 over two trillion,. Although, your HP
sales representative might like to sell you
another disc drive, two trillion records would
require a good sized building full of disc drives.

Therefore, IMAGE has to transform that key
value to some reasonable number of possible
record locations. Whatever method 15 used
must . be repeatable. That is, .once the user
places information in some location, a sub~
sequent request for that same information
must be directed to the same location. Second-
ly, the method must produce a reasonably good
distribution of record numbers. If the trans-
formation algorithm produces the same record
number from two different keys {the keys are
called synonyms), we have-a problem in that
only one data entry can occupy a record loca-
tion, but two entries wish to reside there.

Thus, in addition to selecting a good transfor-
mation algorithm, the designers of IMAGE also
had to contend with a method of handling
synonyms. The method chosen aliows a
synonym to reside in a location other than the
one determined by the transformation algo-
rithm. Such a synonym is designated a secon-
dary entry, whereas an entry which resides in
the correct location is termed the primary
entry. The primary and secondary entries

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 UG 1984 Anaheim

which are synonyms of each other are linked
together in a linked list, with the head of the
chain in the primary location. In order to find
a secondary entry, IMAGE must first find the
primary entry and follow the synonym chain
until it finds the desired entry.

Impertance

With this brief discussion of the theory of IM-
AGE, one now has to ask the question "Why

would anyone care if the capacity of a master-

data set is prime or not?" Actually, one has to
go back to the transformation algorithni men-
tioned above.

IMAGE actually has two parts to the trans-

formation.” The -first part applies only to byte

type keys. It. is called the Bale-Estes-White
hashing algorithm and attempts to fold the en-

tire key into a two word value. (The exact al-

gorithm is given below.) The second part ap-
plies to all keys and consists of simple modulus
arithmetic whereby the right most two words
of the key (or two word hash) are divided by
the capacity. The remainder plus one is the

record location to be used for-that key. It has
been asserted (although I don’t know who made -

the original assertion) that a prime divisor
produces a better- d:stnbutlon of record
numbers. . .

It should be apparent that a poor distribution
would result in an excessive number of
synonyms and thus a greater number of secon-
dary entries. This results in additional over-
head :in accessing the master data set because
IMAGE must more frequently follow a
synonym chain.in order to produce, the desired
data entry.

It can also cause additional overhead in adding
or deleting entries in the master data set. This
condition is termed migrating secondarijes and
results from a rule that IMAGE ernforces; a
data entry has first priority over its horme (cal-
culated) location. If in adding a new data
entry, IMAGE discovers that a secondary entry
{a synonym- of some other key) already resides
in the this data entry’s home -location, the
secondary entry must be moved (migrated) first
to some other empty location. Then the new

primary key may be placed in its rightful home

location. -

The second case of migrating secondary is
caused by the deletion of the primary entry
which has a synonym chain. The second
synonym in the chain is moved (migrated) to
the primary location.

It should be obvious that 1t is very desn'able to
minimize the number of synonyms in order to
avoid excessive overhead in both accessing and
changing a master data set. If choosing a
capacity which is a. prime number-(or any other

specially computed number) produces
significantly fewer synonyms, then 1t is
certainly worth the effort.

The DBCAPCK program

In an effort to answer the question of prime
capacities, I decided that one could argue the
theory of transformation algorithms forever,
but the proof is contained in real data bases
with real user data. Although my primary ob-
jective was to prove or disprove the prime
capacity assertion, 1 also intended that the
design of my program would be flexible enough
so that if the assertion proved to be true, the
program could be used to determine good
capacities for a given data set.

The first step was to obtain the IMAGE trans-
formation algorithm- and adapt it to my
program. I had already decided to use PASCAL
for the program and had to either interface to
the actual SPL code or simulate it. Perhaps it
was intellectual curiousity or perhaps some per-
sonality flaw, but I decided to simulate. For
those who wish to share this experience, the
hashing algorithm follows:

IMAGE Hashing Algorithm

i. Obtain the left most two words (4 bytes)
of the key.

2. If the key length (in words) is an odd
number, shift the two word value to the
right by 16 bits, introducing leading zeros.

3. Shift the two words left by 1 bit, with an
end around carry of the sign bit.

4. If all the words in the key have been used
in the hashing, go to step 9.

5. Get the next two words in the key (begin~
ning at the right) and divide (unsigned) by
31 and add 1 to the remainder.

6. Use the above result as a shift count and
shift the hash accumulated thus far, to
the left with an end around carry of the
sign bit.

7. Perform an unsigned addition of these
next two words in the key with the just
shifted accumulated hash (saved as the
new intermediate hash value.

8. Go back tostep 4.

9. Shift the accumulated hash to the right
by 1 bit, introducing a leading zero bit.

I can assure you that I had no confidence that I
accurately translated the algorithm (written in
SPL but actually every line is part of an
ASSEMBLE statement). Therefore, the

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anpaheim

program contains a check, comparing the
record number computed by the program
versus the actual record number of the primary
key (aha! Finally a use for the mode 8 DBGET)
when the user scans a data set specifying the
original capacity.

Moduius Calculation

The actual calculation of the relative record
number is very straight forward, one only
needs to perform unsigned division of the hash
(byte key) or right most two words by the
capacity, using the remainder plus one as the
relative record number. Or so I thought!

After the program was beginning to run, 1
visited one of my accounts who is a heavy data
base user. They kindly consented to test out
my program on one of their data bases. All
was fine unti] we examined a data set that had
a capacity of 150,000 entries (since it was non-
prime, it looked like a good candidate to
analyze). The program began issuing an error
message indicating that the relative record
number computed -by the program differed
from the data base. There were 50 many mis-
calculations that it couldn’t have been an end
case; in fact, we had the impression that every
entry was miscalculated. But a pattern emerg-
ed, every calculated value was exactly one less
than the value IMAGE had generated. Later
testing revealed that IMAGE has a bug in the

modulus calulation (I even suspected PASCAL)
when the capacity is greater than 65535. Of
course, the "bug” can never be fixed because of
the requirement for repeatibility of the trans-
formation algorithm.

General program description

When the program is run, it initially prompts
the user for a data base name and password. It
then opens the data base in mode 5 (shared,
read only) and using DBINFO lists the master
data sets with information about each. The
user is prompted for a data set, a proposed
capacity and a proposed blocking factor. The.
program reads the indicated data set, calculates
the hash (if a byte key) for each data entry,
stores it in an extra data segment, calculates
the relative record number and records it in a
statistics file. Once all the data entries have
been read, it counts the number of keys which
had no synonyms, the number with exactly one
synonym and so on. It then produces a table of
these results on the terminal display. The user
may also request a graph of the distribution of
entries. The user may then select to repeat
with the same data set changing the proposed
capacity. In the second pass of a data set, the
program wuses the hash from the extra data
segment rather than re-reading the data set.

The following is a sample of the dialogue from
the program.

DBCAPCK Version 1.0 (¢) Hewlett-Packard Company, Inc.

Data Base = dummy
Password = <cr>

No. Name Type BF Entries Capacity
1 PEOPLE M 14 166 200 .
2 INT M 68 36 200
3 ASCINUM M 38 25 200
Data set number = 1
Search item = NAME
Item type = X
Capacity (200) = <¢r>
Next larger prime? (N) - <ci¢>
Blocking factor (14) = <c¢r»
Entry count = 166 {83.0%)
Entries with 0 synonyms - 62 37.3%
Entries with 1 synonyms - 46 27.7%
Entries with 2 synonyms - 45 27.1%
Entries with 3 synonyms - 8 4.8%
Entries with 4 synonyms - 5 3.0%
Overflow block count = 3
Total block count = 15
Would you like a graph? (N) - <c¢cr>
Repeat? (Y) - n

Most of the above is pretty straight forward,
but a few items should be discussed. Why is
blocking factor important? In all of the
previous discussion, we simplified the
explanation so that it would appear that each

data entry has its own physical location on the
disc. In fact, data entries reside in bilocks
whose blocksize 15 determined by the
BLOCKMAX controel option in DBSCHEMA.
The number of data entries that will fit is a

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984

Anaheim

function of the size of the data entries and the
number of paths to associated detail data sets.
As we discussed earlier, there is overhead as-
sociated with synonym chains, but the amount
of overhead is much greater when the synonym
chains span multiple blocks. The time required
to perform the physical I/0 to obtain a second
{or even third) block in following a chain is
considerably greater than if the chain is con-
tained only within one block.

It 15 also for these reasons that the Overflow
Block <Count is reported. This statistic
represents how many blocks in the data. set
could not contain all the data entries which
have their home location in that block. In each
of these blocks there will be at least one
synonym chain which spans into another block.
In many cases, this statistic may be as impor-
tant as the actual synonym counts themselves.

Are prime capacities better?

I have used this program to examine many data
bases with many types of keys and 1 cannot
find any benefit to prime capacities. | realize
that many of us find this hard to accept and
may question the conclusion of one individual.

The following is a2 compilation of the statistics
reported by DBCAPCK making numerous pass—
es through a data set containing a six~-byte key
(TRACKER PICS id consisting of three charac-
ter month abbreviation followed by three AS-
CII digits). The number of entries was 1243
with a blocking factor of 20. The results are
representative of the patterns that 1 have
observed.

% Percentage with synonym count of Blocks
Capacity Ful 0 1 2 3 5+ Ovrflo Total
1380 90.1 40.9 36.8:15.9 5.1 1.2 0.0 19 69
1381% 90.0 43.4 34.6 159 4.8 0.8 0.5 20 70
1382 89.9 39.8 37.3 16.4 4.8 1.6 0.0 20 70
1383 89.9 40.5 38.9 15,9 4.2 0.4 0.0 18 70
1384 89.8 41.6 36.8 15.2 5.1 1.2 0.0 15 70
1385 89.7 41.4 37.8 13.3 6.8 0.8 0.0 15 70
1386 89.7 39.9 35.1 20.0 4.2 0.8 0.0 22 70
1387 89.6 40.2 35.4 18,8 3.5 2.0 0.0 18 70
1388 89.6 41.2 34.8 15.7 6.8 1.6 0.0 18 70
1389 89.5 41.5 3%.% 157 3.9 2.4 0.0 16 70
1390 B9.4 39.3 37.7 140 5.8 3.2 0.0 18 70
1391 B9.4 40.1 37.7 6.4 55 0.4 0.0 19 70
1392 89.3 40.0 39.7 145 4.5 0.8 0.5 15 70
1393 80.2 40.6 34.6 17.1 6.4 1.2 0.0 20 70
1394 89.2 40.8 38.0 15.2 4.8 1.2 0.0 18 70
1395 89.1 43.3 37.0 14.7 4.2 0.8 0.0 16 70
1396 89.0 41.4 35.1 16.9 6.1 0.0 0.5 22 70
1397 89.0 41.8 36.8 13.8 5.5 1.6 0.5 18 70
1398 88.9 43.0 35.2 17.1 4.2 0.4 0.0 17 70
1399% 88.8 41.5 37.2 17.1 3.2 0.4 0.6 18 70
1400 88.8 435 3.5 13.3 5.8 0.4 0.5 19 70
1550 80.2 44.3 38.3 12.8 4.2 0.4 0.0 7 78
1551 80.1 45.7 38.0 11,3 4.5 0.0 0.5 10 78
1552 80.1 44.8 35.9 135 5.8 0.0 0.0 10 78
15653% 80.0 45.2 37.2 12. 5.1 0.4 0.0 12 78
1554 80.0 46.3 36.0 12.6 3.5 1.6 0.0 10 78
1555 79.9 44,0 36.5 13.5 3.9 0.5 0.0 10 78
1775 70,0 50.1 36.7 10.6 2.6 0.0 0.0 6 89
1776 70.0 49.2 36.7 11.3 1.9 6.8 0.0 5 89
1771 69,9 S51.7 31.7 126 3.2 0.8 0.0 5 89
1778 69.9 51.6 36.5 9.7 2.3 0.0 0.0 6 8%
1779 69,9 49,1 37.3 11.3 2.3 0.0 0.0 1 89

Prime capacities are marked with an asterisk (X).

4-4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

General Conclusions

Are there especially good capacities?

Of the data sets that I have examined, there
have not been any instances of a capacity that
was overwhelmingly better than others of ap-
proximately the same value.

Are there especially bad capacities?

I have seen only one class of values that are
clearly to be avoided; that is the powers of two.
These capacities produce large numbers of
synonyms, yet values one greater or less are
perfectily acceptable.

What about percent full?

There does not appear to be a hard rule that
some percentage 15 acceptable and one percent
greater is unacceptable. Generally, a capacity
between 70% and 80% seems to be satisfactory,
especially in the overflow block count statistic.

So do I just pick a number out of the air?

I would suggest that you use a capacity that
will keep your data set between 70% and 80%
full and then if possible check it with
DBCAPCK. If you feel comfortable with a

prime capacity {or if you are forced to use a
prime by third party software which will allow
you to change the capacity of a data set), by all
means, use it. Prime capacities don’t appear to
be bad, they just aren’t demonstrably better
than non-prime.

How do I get to run DBCAPCK?

I have sent a copy of DBCAPCK to the per-
formance library at CSY in Cupertino. Con-
tact the Performance trained SE in your area
to obtain use of the program. Please do not try
to contact the factory directly.

Conclusion

I think the real lesson to be learned by all this,
is that as users we should ali maintain a certain
amount of skepticism when we are asked to ac-
cept “truths" which are not grounded in em-
pirical evidence. And if you have your doubts,
construct an experiment to test the assertion.
You might overturn the next IMAGE myth.
Why you might even discover that integer keys
are all right after alll

B. David Cathell Born 1946 in Showell, Maryland, Raised in Baltimore, Maryland.
Graduated from Fort Lauderdale (Florida) High School in 1964. Graduated from
Purdue University in 1968 with a Bachelor of Science Degree in Mathematics with
specialization in Computer Science, minor in Physics. Employed by Control Data Cor-
poration in Arden Hills, Minnesota, as a Programmer Analyis. Designed and imple-
mented Operating System software for the CDC 3000L Series Computer System.
Transfered with Control Data to Sunnyvale, California in 1976. Designed and imple-
mented Operating System software for the CDC STAR computer system. Employed
by Hewlett-Packard Company in Cupertino, California beginning 1978. Designed and
implemented Factory Automation software on the HP 1000 for internal use. Trans-
fered to Neely Sales Organization in Santa Clara, California in 1980 as a Commercial
{3000) Systems Engineer. Areas of specialization include Data Communications,
Laser Printing, Performance, Personal Computing and Office Automation. Transfer-
ing to the Monterey Bay Sale Office when it opens, expected January, 1984.

4-5

Prepared by the Southern California Regional User’s Group

