Proceedings: HP3000 1IUG 1984 Anaheim

PRIVILEGED MODE -~ HOW TO USE IT SAFELY AND EFFECTIVELY
With Practical Applications
by Joseph C. Felix and Chris Hauck

Software Design Specialists
Educational Computer Systems, Inc.

INTRODUCTION

Privileged mode on the HP3000 is a con-
cept which is often misunderstood by
HP 3000 users. It's the subject of many con~
versations and heated arguments. Many
people are curious about PM but avoid it
out of fear.

The authors feel that when used properly,
privileged mode can be a very powerful
tool. We openly admit that we don’t know
everything thing there is to know about
privileged mode and MPE. We do fee],
however, that countless hours of heuristic
programming with a System Tables Manual
in one hand and a cold load tape in the
other, have given us valuvable knowledge
which we are only too glad to share.

This paper is intended to serve as a
springboard for the experienced program-
mer who wishes to start experimenting with
PM. We also hope to give some new ideas to

PM gurus in return for the techniques we
have "borrowed" from them.

The paper does touch on some internal MPE
tables. Our intent is not to describe the
tables in depth; to do so would be a
monumental task. We, instead, will explain
relationships between tables and describe
how to access the tables. Anyone serious
about privileged mode programming MUST
obtain a MPE System Tables Manual to ef-
fectively make use of the techniques and
information we supply here.

All information here is accurate to the best
of .our knowledge. All examples have been
tested and they do run on the Q-MIT level
C release of MPE. Of course, the authors as-
sume no liability for consequences arising
from or out of the use of information con-
tained herein.

WHAT IS PRIVILEGED MODE?

Hewlett-Packard defines privileged mode as
follows:

Privileged mode is characterized by the
ability to execute privileged instructions and
to call segments which have been declared
UNCALLABLE.

The normal mode of operation on the
HP3000 is cailed user mode. In order for
a program running in user mode to do
anything requiring privileged mode (such as
input/output), it must call a nén-privileged
procedure or intrinsic which in turn calls

37-1

the privileged routines necessary to complete
the task. The ©person running in
privileged mode can skip this intermediate
step and DIRECTLY call the procedures or
execute the machine instructions necessary.

Privileged mode is an attribute of accounts,
groups, users, and code segments. In or-
der for a user of group to possess privileged
mode capability, the account must have it.
Similarly, in order for a privileged program
to run, it must reside on a group with PM
capability.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

WHY USE PRIVILEGED MODE?

Most people realize that one slip while
running in privileged mode can destroy
file integrity or crash the system, and for
them, that’s reason enough to avoid PM.
However, there are many applications in
which privileged mode can be put to good
use.

1. It lets you access files with a négative
file code - specifically, IMAGE data bases.
Hence, you need PM for at’ least OP
capability) if you want to :STORE or :RES-
TORE a data base. Sure,
works just as well, unless you want to store
multiple data bases. Almost all data base
utility programs use privileged mode.

2. Privileged mode is extremely useful for
overcoming MPE bugs or shortcomings.

Have you ever wanted to have a UDC

repeat itself? or switch to a different group

DBSTORE

~LISTEQ2. PUB.SYS?.

differently when

without logging on again? It’s possible; use
privileged mode. How about a utility
program to show you all users on the sys-
tem who are accessing a particular file or
show all files currently accessed by a par-
ticular user? Did you ever want to see
your temp files displayed in a :LISTF,2 for-
mat rather than that printed by

3. Another reason for using privileged mode
is that it lets you take advantage of
“short-cuts" built into MPE by HP for
their convenience. Several intrinsics operate
called in privileged
mode. The privileged user can use
machine instructions not available to others
for transferring data to and from any data
segment on the system. Complex in-
put/output routines become extremely
simple. Read on -- we’ll show you.

HOW TO IMPLEMENT PRIVILEGED MODE ‘

Before gettmg into specnflcs, it’s important
to know exactly how to use privileged mode.
There are basically three different ways of
1mplementmg prmleged mode.

I. IN A PRIVILEGED PROGRAM -~ You
type in the program using EDITOR, and
compile it as usual. The program must be
;PREPped with the parameter CAP=PM in
addition to any other capabilities yol
desire. In order to :RUN the program, you
must :SAVE it on a group which has PM
capability. If you run it as SOLDPASS or
a TEMP file, then the user you are logged on
as must have PM.

2. AS A PROCEDURE IN AN SL -- You
may choose to write your routine as a

procedure or function, omitting the outer
block. Compile your procedure as usual,
then use the SEGMENTER to add'it te an
SL on a group having PM capabilty.

3. DEBUG =-- Another - way to ‘use
privileged mode is in privileged DEBUG.
This is often overlooked by people, but is
frequently the best way to make small
changes, or spot check a system table.
Privileged mode DEBUG can be entered
by any user posessing PM capabililty simply
by typing the :DEBUG command. Once
in PM DEBUG, the inexperienced user
should be cautlous it is very easy to crash
the system while in PM DEBUG.

LANGUAGE CONSIDERATIONS

Once you understand some of the pos-
sibilities of using privileged mode, you must
choose ‘a ‘language for your program A
program for accessing privileged files can be
written in almost any language supported
on the HP3000. However, we don't
recommend using fourth generatlon lan-
guages, or RPG, or BASIC, or COBOL
63. - These languages are awkward to use
when writing programs that involve calling
intrinsics. -COBOL: II, FORTRAN, and
PASCAL make such programs easier, but
we find SPL to be the best choice. SPL is
the "native language" of the HP3000. Since
the MPE operating system is written in SPL,
anything that can be done on the HP3000

37-2

can be done in SPL. This is not
necessarily true of other languages. SPL
provides the programmer with the ability to
call intrinsics easily, the ability to write in
machine language, and the ability to ac-
cess absolute memory locations. Since SPL is
not taught at many universities, it’s hard to
find SPL programmers. However SPL is an
easy language to learn and anyone with a
fairly decent programming background
should have no trouble mastering it. Be-
cause of SPL’s structure, it makes an excel-
lent language for presenting examples,
Anyone familiar with PASCAL,
FORTRAN, or COBOL will have little
trouble understandmg a well- documented
SPL example.

Prepared by the Southern California Regional User's Group

Proceedings: HP3800 1UG 1984

Anaheim

WRITING SAFE PM PROGRAMS

We've compiled a2 list of things to keep in
mind when writing privileged mode
programs or procedures. Most of these apply
to privileged mode programs which access
system tables, but many are applicable to
programs using privileged files and other
types of PM applications.

If you've ever wondered about the “crash

potential” of a particular PM program, -

i3

these guidelines can serve as faily decent
criteria for evaluation of a PM program or
procedure.

1. TEST YOUR PLANNED PROGRAM
WITH PM DEBUG FIRST, IF POSSIBLE.
If you're planning to write a program that
prints entries from an MPE table, or goes in
and modifies one, it’s a good idea to try to
do it in DEBUG first. By checking your ap-
proach step by step, you can spot any flaws
in locating the information you . desire.
Privileged Mode DEBUG is not foolproof,
however, Be sure .your system manager
knows of your activities and by all means,
do your experimentation on an unloaded
system.

2. START BY WRITING READ-ONLY PM
PROGRAMS, NOT PROGRAMS WHICH
GO IN AND CHANGE TABLES. We feel

that one of the shortcomings of MPE is the '

lack of a "Read Only Privileged Mode"
capability. The way MPE was designed, PM
capability gives the user the ability to access
AND CHANGE anything in the operating
systemm. This makes it all too easy to ac-
‘cidentally destroy MPE. Though it .may
seem obvious, we recommend that the novice
PM user stick with programs which read
tables and PM files, and stay away from
programs which change them.

3. USE TEMPORARILY PRIVILEGED
PROGRAMS WHENEVER POSSIBLE. Its
always a good idea to minimize the time
your program spends running in privileged
mode. For this reason, you should use the
GETPRIVMODE and GETUSERMODE
intrinsics to bounce in and out of privileged
mode. Stay in user mode as long as pos-
sible, then GETPRIVMODE, do your thing,
then GETUSERMODE.

4. ANTICIPATE POTENTIAL BOUNDS
VIOLATION SITUATIONS. Since MPE
has been in operation, bounds checking for
programs running in privileged mode has
been minimal (although it’s rumored that
the Series 64 now does PM bounds checking).
Operations which produce bounds violations
in user mode execute OK in privileged

37-3

mode, sometimes destroying data in un-
desired locations. To prevent this, your
program should check DST sizes, and array
boundaries, etc.

5. DST CHECKING. Data Segment number
2 is a table containing information about
all data segments in the system. It’salwaysa
smart move to check this data segment to be

. sure you’re not going to try to access a non-

existent data segment or read past the end of
an existing one.

6. NEVER :RELEASE A PM PROGRAM.

‘Any released file can be written to by any

user on the system. A released PM
program .could be potential disaster.
Anyone can change this program to do what
they want it to, or get into PM debug. We
recommend the use of lockwords to help
you keep a constant watch on the security
of your privileged programs.

7. DISABLE TRAPS WHILE EXECUTING
PRIVILEGED CODE. To prevent un-
wanted interrupts -while your. privileged

- program is running, disable arithmetic traps,

user interrupts, and control Y handling In-
terrupts are not normally a problem, as
long as your program is prepared to handle
them. " To. keep programs simple and
straightforward, we recommend disabling

" traps.

8. DISABLE THE BREAK KEY. The last
thing you want to have happen in your
privileged program is to have a user press

.break and :ABORT in the middle of a

table change. By all means, disable the
break key; especially if your program is
going to do any table or file updating.

9. CHECK THE MPE VERSION OR SYS-

- TEM CONFIGURATION FOR DEPEN-

DANT FEATURES. iIf you know for sure
that your program works on one particular
version of MPE, you might want to check
for that version- before you have your
program do its thing. This is particularly
important if you suspect that the program
may not run on future releases of MPE.
Locations %114-%116 in DST #5 (System
Global Area) contain the current update, fix
level, and version of MPE, '

10. YOU MAY WANT TO CHECK THE
CPU TYPE. Use the privileged instruc-
tion PCN (Push CPU Number) or the
callable procedure THISCPU. We recom-
mend THISCPU for the simple fact that PM
is not needed to call it. The return values
are: ‘

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 JUG 1984 Anaheim

CPU TYPE PCN RETURNS THISCPU
I1 1]
30,33 8 2
II1 2 3
40,44 3 4
64 4 5

11. USE ENTRY SIZE VALUES IN TABLE HEADERS OR ENTRY NUMBER ZERO OF MOST
TABLES. The idea here is to hard-code as little information as possible about system tables within
your program. Many tables contain information about themselves such as the number of entries,
entry size, etc. By using the values contained in the tables, your program is more likely to run on
fuﬂlge gallgases of MPE. If HP changes the table size, your program will pick it up at run time, and
still be OK. '

12, KEEP GOOD DOCUMENTATION. The importance of this can not be overstressed. Major
items to document are: A. Assumptions your program makes, if any. 1. DSTs of particular tables 2.
Sizes of particular tables 3. Relationships between tables B. DEBUG test procedures -- How can you
verify the operation of your program using PM DEBUG C. Table names and entries your program
uses D. Table names and entries your program changes (if any)

Also, keep your documeniation up to date. You'll need it in the next step.

13. Re-evaluate your program after major releases of MPE. HP often restructures tables from
one release of MPE to another. Past experience has shown that though the tables may change and
data may move around, the information you need is still in there somewhere. Your PM program
should require little modification, if any, to go from one release of MPE to another. However, since
there is always the possibility of table changes, we recommend that you do take the time to
analyze your program to prevent disastrous results. .

14. USE SIRS AND SETCRITICAL WHEN APPROPRIATE. MPE handles table contention
through the use of SIRs. Certain tables should only be accessed after you've locked {obtained) the cor-
responding SIR. The MPE System Tables Manual has a list of tables and their corresponding SIRs. It’s
also important that you get SIRs in the correct order. Never attempt to get a SIR with a higher
number than any SIR you already hold. A SIR deadlock could result.

A program running in privileged mode can also call SETCRITICAL and RESETCRITICAL. Once
a procedure is "CRITICAL", the system will continue to execute this procedure only, until it calls
RESETCRITICAL. This is another way to make sure a table has not changed between successive
reads or between a read and an update. Be careful, if your process aborts for any reason while it is
CRITICAL, a system failure 311 will result. Likewise, if you get a SIR, you better release it before
termination or a system failure 314 will ensue.

MPE TABLES

As mentioned in the introduction, we intend 1. Job/Process Tables 2. File System
to provide a brief introduction to some Tables 3. 1/0 Tables
MPE tables. Table descriptions are kept
purposely brief. Our goal is to acquaint you We'll describe the major tables in these
with some important MPE tables, show use- classifications and explain the appropriate
ful examples, and encourage further read- inter-relationships. Following the table ex-
ing on your part. planations, we’ll present examples to aid

understanding. .

The tables we’'ll introduce 'are divided into
three major classes:

JOB/PROCESS TABLES
THE DATA STACK -- Every process has a don’t show is the area beneath . DL. This
stack associated with it. We've all seen area is called the PCBX and is further
the familiar pictures of the stack showing divided into three areas:

the area from DL to Z. What these pictures

37-4

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

PXGLOB - area containing JOB TABLE
pointers & indices

PXFIXED - misc. information about this
process

PXFILE - the file system section of the
PCBX

Since a data stack exists for all processes in a
job, the PXGLOB area is almost identical in
all stacks belonging to the same job. When a
process terminates, its data stack goes away.
A job or session is just a special type of
process. Therefore, if you wish to make any
changes to the PCBX area, you must do it on
the stack of your main process in order for
it to stay until you log off. Since the job-
related information in the PXGLOB area is
the same for zall processes in a job, you can
use the PXGLOB area of the process
(prl;ogram) you are running to get to your job
tables.

The PXGLOB area has pointers {o the fol~
lowing job tabless IMAT, JPCNT, JDT,
NT, and JCUT. The following is a brief
description of these tables. Refer to figure 1
for a related diagram.

JMAT ~~ The JMAT (Job Master Table) is
one table presently located at DST ¥%31.
This table contains a header entry followed
by one entry per logged on job or session.
An entry in the JMAT contains (among
other things) the job/session number, user,
account, group, and job name, input and
output device numbers, time and date of
logon, PIN of the job/session main process,
log on priority, CPU time limit, etc.

JPCNT -~ This table {Job Process Count
Table) contains a byte for each logged on job
or session and is used in the allocation and
deallocation of SIRs for jobs.

JDT -- A JDT (Job Directory Table) exists
for each job on the system. This is un-
like the JMAT and JPCNT which have all
jobs and sessions contained in a single table.
The JIDT is composed of five smaller tables.
These five tables contain information
regarding data segments, temp files, file
equations, line equations, and JCWs used by
the job.

JIT -- The JIT (Job Information Table) is
similar to the JDT in that a different data
segment is used for each job on the system.
A jobs JIT contains information such as
the job’s account security, group security,
account nzme, home group, logon group, user
name, job name, local attributes, ALLOWed

37-5

commands, account- ing information, direc-
tory pointers for the account and group,
the PIN of the main process, etc.

JCUT ~- The JCUT (Job Cutoff Tabie) is a
single table located at DST %44. This table
contains one entry for each CPU limited job
or session. If your job or session has a
limited number of CPU seconds, it will

- have an entry in this table. When your

CPU limit is reached, you will be logged off.

The interesting job tables, in our opinion, are
the JMAT, JDT, and the JIT. Of these
three, only the JMAT has the format of
having one entry per job instead of one table
per job. Since the JMAT has the job/session
numbers in it, it is the prime starting place
for any program looking for a particular ses-
sion, or job; or a program - which will
print something for all logged on jobs and
sessions. The MPE command :SHOWJOB
simply scans the JMAT and reports it in a
meaningful format.

An interesting exercise for the novice PM
programmer is to write a program to print
a SHOWIJOB by reading the JMAT. SHOW -
JOB tells you the day of the week that a
person logged on, but did
OPERATORXSYS log on last week or last
month? It’s in there, but MPE won't tell
you.

As mentioned earlter, if you want to change
anything in the PCBX area, you've got to
do it on the stack of your main process. To
do this, you need to know the DST number
of your main process stack. This number
is stored in the PCB (Process Control Block)
DST (data segment #3) with one entry for
each process -- PROCESS not JOB!
Remember, a job or session is a special
type of process. The PCB entries are in-~
dexed by the PIN (Process Identification
Number) of the process whose entry you are
looking for. The PIN of your job/session
main process can be found in your JMAT
entry, your JDT, and your JIT. Take your
pick. Figure P1 shows a listing of a proce-
dure which will return your main process'
PIN and the DST number of your main
process’ stack. This procedure GET'MAIN
calls a procedure GET'DATA which uses the
MFDS (Move From Data Segment) machine
instruction to retrieve data from any
data segment on the systemm. The comments
in the two procedures make them virtually
self -explanatory. Figure 1 shows the
relationships between the job/process
tables. For specifics, refer to the MPE Sys-
tem Tables manual.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 1UG 1984 Anaheim
Job [Process Table Relationships

Process' Stack

|
| Job Master Table Process Control Block
i JMAT (PCB DST)
FOKIORRRRACK AR KA RK < - FAREAKAK AR AR KKK KK AokAOKRARIOK K KRR KK
X JMAT Index L CET I header * * header %]
--------- X JPCNT Index * | X information X X information X |
| —mm-—- ¥ JDT DST # X] Kemeomemecenn-a- * R L *
| wem=- * JIT DST # X | X% X * X
| --=% JCUT Index L S *x 3 *
| Kocwrormcre— e cua X == Keemwmcrenooeeooo X =) Kecommammrar—enm X
111 ¥ Job/session # X X User entry * | ¥ Process entry ¥ |
| 11 | *--eeeemcceenem- X (main PIN) *%--- ¥ (stack DST #) *¥----
| { | * File System X Keommmmcmamncmas X Komemmommmmmcae *
1 % Information X * * X x
* b . x X . 4
sk koK kKK KKK RO R RO RRAORIACHAR R AKX
1 per process } per System 1 per System
DST from PCB DST DST=%31 SIR=%17 DST=%3 SIR=%42
SIR - see note 1.
-see also fig 2-
! JCUT offset = JCUT index * %3

Job Directory Table

| ———

JDT
> JORRRERICKRRKIORKOK K
* Job/session # X

- e -

X
*
X
|

b 3
*
*
* X
X
X x
x

¥ CS/DS lines X
kR kRokkk KKk kK
1 per main process
DST in data stack

Job Process Count

Job Information Table
(JIT)
=3 XRkiokRkEkRkREKKR

Y Y T T R T L

Job Cut-0ff Table
(JCuT)
ok EpiciolooRkK

X Job/session # X X header x
--------------- * X information X
* main PIN X% R L *
SRR X X X
* X | % x
* . x -3 Kacmmemmmemee——— b 4
% Account name X* X process entry X
¥ Group name X ¥ CPU count & ¥
X User name * X maximum time ¥
¥ Job/ses. name ¥ D
X Allow masks ¥ X *
X . X X X
* . X X . 4
RREROIORR 0K Focksokioior ok oRKK
1 per main process 1 per system
DST in data stack DST=%44 SIR=%16

{JPCNT) Notes: 1. Process job SIR =
BORRRRAIANOKKAKERK --=-- BASE (%50) + JPCNT index.
¥ header info X 2. JCUT index only valid for
Xem—rsimmm - X CPU limited processes,

b 4 % zero otherwise.
| e e L L L L x 3. JMAT offset = JMAT index ¥ %32.
------- > % Zero - | byte ¥ 4. PCB DST offset = PIN * %20.

X , X

REAAER AR AAAKAK KKK

1 per system
DST=%30 SIR=%15
-- Figure #1 --
37-6

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

Process Data Stack Structure (PCBX)

KRRk ROk kokokokkokoKRER | -

----------- * DST Offset to DL (wds)- 0x | . rmmesaee
[* DST Offset to DB (wds) 1 [P .
I * User Attributes 2% | X
¥ JIMAT Index | Input EDEV 3x > G
¥ JPCNT Index] Output LDEV 4% | L
* Dump flags | JOT DST Number 5% | 0
I 3 | JIT DST Numbe 6k | B
X JCUT Index | ‘ 7* 7
e T L T SR L 3
----X PXFIXED Length X\ C-mmmoma
| DT TR TR TP SRR x|
X x |
* * P P
| Koo x X
| E 4 PXFIXED EXPANSION AREA * F
x BIT MAP (4 wds) ; x > I
P R X | X
¥) x E
| . PXFIXED EXPANSION: LV D
- X . x /
| . S e X
| 1 =% PXFILE Length X\, <mmee-
DT TR TR x) P !
X X X
| X % F
| L el T T A N Sy X > 1 |
| X) X L
. PXFILE Expansion/Contraction . - E -
ma) Kemamma e c e e mcdccecrrwremmm e m——— / .
| ¥ Count of sectors allocated for * DL-4 |
: PXFIXED expansion : :
! : DL -> PXFILE Offset : DL=3 - e~---
: DL -> PXFIXED Offset X DL-2 ~------
---------------------------------- X I
: DL -> DST Base Dffset . : DL-1 - =----- ren
wf\~---> X X <--- DL
L 4 X
X b 3
| . .
X x
Kemmmm e m e — e *
------ > X ¥ «---DB
X 3
* . X
X x

***************************X**X*****
1 Data Stack per process

-- Figure #2 --

377

Prepared by the Southern California Regional User's Group

Proceedings; HP3000 1UG 1984 Anaheim

File Syste

SaCESCSSEER

m Area of Proce

- = EEESRER
AARRAARAE AR KA KA KA AR KKK KKK ¢~ - =
PXFILE Overhead *

(%20 wds) X
x
Keoomm

contains AFT size (wds)

Block

Available
File X

Table (AFT) *

FRRFARIAAOIRKKRIOR KRR KRR IR KR KRRK [/

\
|

fe-

*
x
¥
x
X
* x
* *
* 4
x X
*x X
* X
* X
E] *
x *
X

x

The Available File Table (AFT) is in-
dexed in reverse order by file number,
ie. the entry for file #1 is at DL-8 thru

ss Data Stack {PXFILE)

CEEEESSSSRSEIaZaIISSSSS

PXFILE
BASE

\

MrEETX0

¢--- DL-§

number of entries in the AFT (# of files) =
AFT Size from PXFILE Qverhead / 4. There is
a 4 word AFT entry for each file of the

DL-§, file #2 isat DL-12 thru DL-9, et¢c. For
unused file numbers, the entry is all zeros. The

process, formatted as follows:

0o 1 2 3 5 6 7 8 9101112131418 Entry Type: 0-File system
F0KK | 30K | 3K | 0K [40K | 30K | 30K | 30K 30K | KK | 0K | 30K | 0K | oK | 3ok | ok 1-Remote file
XEnt. type INl /7 /7 2 0 0Lt X0 2,3-DS files
T et o e L S P EEE L ELLEEE LR X 4.5-CS files
X Physical Access Control Block Vector X 6-KSAM files
T T e LT * 8-MSG files
x Logical Access Control Block Vector x2 N File is $NULL, no
it deiebitieieieitebuhs * ACB vectors used.
Xx No-wait I/0 I0QX % 3 LACB: Only for multi-
FARAKRR RO IOR KKK KRR AR KA KR AORIRRRACK KR KK IOk KAk access files.

PACB: Valid for all files

except $NULL.

The PACB and LACB vectors, are indexes into tables known as Control Block
Tables (CBT). The general structure of a CBT is:

TR AR KA OO ROR XK KRR KK

The ACB vectors of the AFT entry
consist of a six-bit vector table
entry number & a Data Segment Table
number containing the CBT. ¥AllX
pointer information for the CBT's are
relative to the CBT beginning address.
The vector table entry contains a
peinter into the Control Block Area
which is then the actual LACB, PACB
or FCB. The CBT may be located in
two places: 1) on a process’ data
stack, or 2) in a separate segment.
Since all pointer addressing is
relative to the CBT starting address,
care must be taken if the CBT is located on a process’ stack. {You can deter-
mine if a data segment is a process' stack by checking flags contained in the
Data Segment Table (segment #2) entry for that segment). The same repetitive
procedure is used when finding the LACB, PACB and FCB.

Overhead Area

L EEE R E R X K & 2

Control Block
Area

A EEE R RS2 R E KK

% %

sckokok kR Rk kR RAok KKK K KK

37-8

Prepared by the Soumthern California Regional User's Group

Proceedings: HP3000 IUG 1984

Anaheim

/0 TABLES

The input/ocutput tables in MPE have.a
much more complex structure than the job
tables. We don’t recommend modification of
these in any program. The important 1/0
Tables in our opinion are the LPDT --
Logical/Physical Device Table, DIT --
Device Information Table, ILT -~ Interrupt
Linkage Table, and the 10Q -- Input
Cutput Queie. We use these tables solely
for verification in our programs, to make
sure we're communicating .with the device
we think we are. It's very possible to at-
tempt to read or write beyond the physical
limits of a disc if you don’t know the type
of disc youre using. Also, you wouldnt
want to think you're writing to a ter-
minal and actually be writing to a disc. For

these reasons, we check device information
in the I/O Tabless The System Tables
Manual contains an entire section on 1/0
tables for the interested reader.

All 1/0 requests are processed through
the 10Q Table. A procedure called AT-
TACHIO handles the interfacing to the
I0Q. All our information on ATTACHIO
has come from what we have read in con-
tributed programs, so we know what works
but not exactly how or why. A page
toward the end of this paper explains
parameters to ATTACHIO as we know
them. Use this procedure with extreme
caution.

FINDING OUT MORE ABOUT MPE

So you haven’t had enough? You '_vant to
find out more? Here’s how we continuous—
ly learn more about MPE internals.

1. Get yourself an up to date set of
manuals. We specifically recommend the
following:

A. HP3000 System Reference Manual
(HP Part # 30000-90020) This manual is
found at most HP3000 sites, but few people
bother to read it. It is an excellent source of
information on stack operation, code
segments, data segments, and the 1/0 sys-
tem. Skim the book and make notes (men-
tal or otherwise) on what information is
in t‘liae book and where to find it in case you
need it. :

B. HP3000 Machine Instruction Set (HP
Part # 30000-90022} Anocther seldom-
referenced manual found in most HP3000
shops, it is often hidden in the same binder
as the Sysyem Reference Manual We
recommend that you become familiar
with HP3000 machine language for reasons
mentioned later. Perhaps the most valu-
able page in this manual is page A-1.
Always look there first -~ it’s a real time
saver. .

C. HP3000 Intrinsics Manual (HP Part
30000-%0010) For .anyone program-
ming in SPL, this is a MUST. Pay par-
ticular attention to what the intrinsics
DON'T do and you've got a nice privileged
mode program to write.

reference
mentioned

D. Programming Language
manual of your choice. As
earlier, we recommend SPL.

37-9

E. MPE System Tables Manual --
Another MUST for the serious privileged
mode programmer. We hang on to our old
System Tables Manuals even though they
are now outdated and often totally inac-
curate. It’s interesting to see the advances
made in MPE over the years. Looking back
also gives us a good idea as to what types
of things are likely to change from one ver-
sion of MPE to the next.

2. The second thing you can do to find out
more about MPE is to learn to read
HP3000 machine language. You don’t need
to have every mnemonic mnemorized, but
you should get intimate with the Machine
Instruction Set manual. The next best thing
to knowing something is knowing where to
find it. You’ll be surprised how fast it
comes to you. .

3. Thirdly, use your newly acquired
knowledge of machine language to set
breakpoints in HP supplied code. How does
SPOOK open a spool file? Set breakpoints,
use DEBUG, step through the code and find
out. It’s easier than you think.

4. Equally enlightening is the use of
so~called "program dumpers". SEGMENT-
ER can tell you a lot about SL.PUBSYS.
Use it to find the location of “interesting"
procedures. Numerous contributed
programs will tell you what external
procedures are used by a program. So, you
find out that SPOOK calls a procedure cal-
led FSOPEN. Find it in SL.PUBSYS using
SEGMENTER then “decompile” it wusing
DEBUG with the C (CODE) option or the

Prepared by the Southern Colifornia Regional User’s Group

Proceedings: HP3000 IUG 1984 Anaheim

Jatest version of DECOMP which lets you
ook at SL procedures.

5. Look in the contributed library for PM
programs. We try to check out all new
ones on each tape we get. One rule -of
thumb: No source =- it gets purged. It’s
surprising how many HP employees with
a knowledge of MPE internals and .PM
techniques will contribute programs (often
anonymously). You can frequently get good
ideas or find out how ‘to call those "un-
documented uncallables". You can always
.customize the program to meet your specific
needs {(now that you know how). One
final word of caution: don’t assume that
all privileged mode contributions are clean.
For that matter, don't assume that ANY
PM contrlbutlons are clean. Treat each

one with caution, and evaluate the source
thoroughly before you even THINK of
typing :RUN.

6. Finally, vou’ve got to write privileged
mode programs. You can’'t learn anything
unless you do it. Be prepared for the worst
and don’t be afra1d to try things. That’s easy
for us to say, we're not in charge of keep-
ing your computer running.

Remember that HP doesn’t like for you to
use privileged mode (and we don’t blame
them). When you get system failures, you
should remove PM capability from any ac-
count having it (except SYS) so you can be
ABSOLUTELY sure that -your PM
program is not the culprit.

HOW TO MAKE YOUR SPL PROGRAM RUN IN PRIVILEGED MODE

If you are writing a program:

No special capabilities are needed to compﬂe
it. The USER (and thus the ACCOUNT)
needs PM capability in order to PREP with
CAP=PM

$CONTROL PRIVILEGED in your source
causes a program to start in privileged mode
when it is run, unless ;NOPRIV is specified
on the :RUN command

Without $CONTROL PRIVILEGED you
can still call the GETPRIVMODE intrinsic
at any time, if and only if your program has
been 'PREPped with CAP=PM

SAVEd programs must reside on a group
wlth PM capability.

lf youre running JOLDPASS or a TEMP
file, then the user must have PM capability.
This prevents you from naming a temp file
X.PUBSYS and running it.

EXAMPLES. USING PM DEBUG

As mentioned earlier, PM DEBUG is an ex-
cellent way to make small changes to a
system table or to take a quick look at one.
Here are some examples to illustrate. .

To enter privileged DEBUG, make sure you
are logged on to. a user having PM
capablhty Then type the MPE command

37-10

If you are writing a procedure:

. Prwﬂege& procedures must reside in an SL

on a privileged group.

The USER (and thus the account) needs PM
capability to be able to ~ADDSL a segment
containing a privileged procedure in
SEGMENTER

Usmg OPTION PRIVILEGED, you are run-
ning in privileged mode as soon as you call
the procedure.

Using $CONTROL PRIVILEGED you can
use GETPRIVMODE to jump into prwxleged
mode when you desire.

OPTION PRIVILEGED puts you into
privileged mode whenever you call ANY
procedure in the same segment as the proce-
dure declared OPTION PRIVILEGED.

DEBUG DEBUG is not very user'-friendly
and it responds witha ? prompt

:DEBUG -
+DEBUG* PRIV.A30.14
? _

Prepared by the Southern California Regional User’s Group

Proceedings: HP3000 IUG 1984 Anaheim

To look at a system table, use the DDA
{Display Data Segment) command. The
DDA is followed by the data segment num-
ber you wish to examine, an optional offset
into the data segment, optional number of
words to display, and optional display mode.
Everything entered into DEBUG and dis-
played by DEBUG is in: octal unless
otherwise specified. So, suppose we want to
look at the number of seconds allowed for a
user to log on. The System- Tables
Manual. tells us that this number is at word
#120 in the SYSGLOB (System Global Area).
It also tells us that the SYSGLOB is DST
#5. So, to display this value in decimal
(base 10), you would type:

DDAS+120]1
and DEBUG will print something like:
DAS+120 - +00120

You type: ' ?MDAS+120,1

DEBUG says: DAS+120

At the = prompt, enter your new value.
Four minutes is. 240 seconds. Prefix it
with a #-symbol like this: S

DAS+120 +00120 = #240

and it's changed. Presto. No cold start.
You can use this technique to change
many things without having to take down
the system for a cold start. If you need to
change the maximum extra data segment
size or the maximum number of extra data
segments per process, for example, these
numbers are stored at locations DAS+111
and DA 5+112 respectively. .

For example, increase the maximum number
of extra data segments per process to 32.
:DEBUG
¥DEBUG* A30.14:
7DDAS+112 .1
DAS+112 +00004
?MDAS+112,1
DAG+112 +00004 :=#32
7R

Note that the R command is used to exit
DEBUG. In this example, the previous
maximum number.-was 4. This change
takes effect immediately; there is no need
for a cold load.

+00120

37-11

which tells us that all users have 120
seconds to log on after they establish con-
nection with the computer. Shortening this
time to a ridiculously low value is one way
of keeping people off the system. Similarly,
lengthening the amount of time may be
desired if you have many new users who
have a great deal of trouble typing their
:HELLO command. You can change this
value on the fly by typing:

MDA $+120,1

Which does the same thing as the DDA
command, except that it prompts you for
a new value. Remember that your input is
octal unless you specify otherwise. To enter
a decimal number, - prefix your entry with a
sign. For example, to change the log on
time to 4 minutes instead of two minutes:

Suppose you want to check on a job or ses-
sion to find out what command it is
currently executing (ie. How far along is
your job?) Try the following:

1. Locate the main pin of the desired job
or session using the MPE :SHOWQ com-
mand. The PIN will be preceded by the let-
ter M and followed. by the session number.
For example:

C MI14 #5639

tells"you that session #639's main PIN is 14
(decimal).

2. Enter PM DEBUG and do the following
steps. Find the size of a PCB entry.
This is located at location 1 in the PCB DST,
which is DST #3. The number on most
recent versions of MPE is 16 (3%20) but
check to make sure. . -

:DEBUG . :
¥DEBUGX PRIV.A30.14

DDA3+1,1
DA3+1 +00016

3. Calculate the offset into the PCB DST
for this process by multiplying the PIN
times the entry size. In this case, our offset
is equal to 16*24 which equals 224
(decimal). This number is the starting loca-
tion of the PCB entry:for the process main
PIN. We want to examine word #3 of the

Prepared by the Southern Californic Regionol User's Group

Proceedings: HP3000 1UG 1984

Anaheim

process’ PCB to get the DST number of its
stack. We can do this manually, or let
DEBUG handle the arithmetic as follows:

7TDDA3+#224+43
OR WE COULD ENTER <7DDA3+#H16%H#14+3
' DA3+343 005020
4. Manually extract bits 1:10 from this

value to get the stack DST number. In this
example, %¥005020.(1:10) = %120

5. Word number 1'in the stack DST gives us
the offset to the stack’s DB area.

- DDA 120+1
DA120+1 , 000444

6. We want to look at the string located at
DB+1, so by adding one to the DB offset,
and dumping the area in ASCII, we can look
at the last command executed by this main
process.

IDDA120+444+1,30,A

The command will be displayed, and it
may be incomplete or followed by garbage.
We have no way of determining the length
of the command except by inspection. The
command ends with a carriage return,
which is displayed in the ASCII dump as
a period.

Granted, this procedure is somewhat com-
plex, and you'd probably be better off
writing a program to handle such a task.
The example is only intended to show how
easily information can be retrieved from
system tables.

We have written other programs which do
nice things in Privileged Mode. It’s not hard
to switch to another group without logging
on again. This involves verifying that the
group exists, looking up its pointers in the
directory, and putting these pointers in the
right places in the job tables. The name of
the group you are logged onto must be
changed in the job tables also, or the
SHOWME command will be inaccurate,
What the contributed programs don’t do (for
the most part) is update the directory

with pertinent information. It may or may
not be important to you if your GROUP
CPU seconds and CONNECT time values are
accurate. We think they should be up-
dated when you switch to a new group.
Another item in the directory that needs to
be updated and is often ignored is the
usage counter. Each account and group
within the account has a counter that keeps
track of the number of users currently
Jogged on to the account. This prevents
someone from purging a group or account
while it is in use, leaving the user of it in
limbo. With most contributed group and
account jumping programs, these group
usage counters get out of whack.

Another nice program is one which will al-
low you to do a "GOTO" while executing
a UDC. MPE provides an IF condition,
but no GOTO. The most popular application
of this is when you have a MENU type
environment. Your UDC runs a program (or
any number of programs) then when a
program ends, you want to start the entire
command all over again. To exit the loop,
get a JCW in your menu program (perhaps
triggered by a function key) and test it
using the MPE :IF command. Our
program uses the PARM value as a relative
index for branching within the UDC. For
example, when run with PARM=-5, the
program moves the pointer back 5 lines in
the UDC. Similarly, PARM=3 skips execu-
tion of the next three lines in the UDC.
This has proven to be a very powerful en-
hancement to UDCs.

The simple program operates as follows. It
uses our procedure GET'MAIN to locate
the DST number of the main process’ stack.
On the stack, DB+%1635 contains the record
number in the UDC file of the next line in
the UDC to be examined for execution. The
program simply adjusts this value up or
down depending on the value of the PARM.
Note that because recursion.is used when
executing UDCs, this will work only on
your outermost UDC. For example if your
MENU command invokes another UDC,
such as RUNP, don’t expect the UDCLOOP
program to work correctly in the RUNP
command.

CONCLUSION

Privileged Mode is not for éverybody. We
have attempted to explain it here in
detail, and to cover a few system tables to
get the interested programmer started. We
may have tried to <cover toe much
material in this paper, but we want to
provide as much information as possible to
assist any presént or future privileged
program writer. We invite questions and/or
comments, and we apologize in advance

37-12

since we may not be able to reply to alf of
them. Thank you.

Here are some other userful {and sometimes
necessary) MPE internal procedures, that we
have come 2cross in contributed software
programs. These procedures are all found in
the system SL, SL.PUBSYS.

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

I IRy
FLAG:= GETSIR (SIR'NUMBER);
This procedure is used to lock a SIR (system
internal resource) to prevent data accessing
problems when more than 1 user ntay be in-
volved. The SIR must be ‘unlocked’ before
termination of the program or a sysiem
failure will result. The value of 'FLAG’ is
passed to the procedure RELSIR.

Iv IV
RELSIR (SIR'NUMBER, FLAG);

This procedure is used to unlock a SIR after
it has been locked by GETSIR. FLAG is the
value returned by the corresponding GET-
SIR. A locked SIR must be unlocked
(released) before ending the program, or a
system failure will result.

ATTACHIO

Normally, all Input & Output is accomplished
via calls to file system intrinsics. However,
through the use of privileged mode, all the
normal checks and limitations 1mposed upon
the user by MPE may be by-passed. This is

L

FLAG:= SETCRITICAL;

This procedure causes the system to only ex-
ecute this process unti] RESETCRITICAL is
called. If SETCRITICAL has been called, a
RESETCRITICAL must be executed before
terminating the program or a system failure
will result.

v
RESETCRITICAL (FLAG);

This procedure reverses the critical status of
a process after a SETCRITICAL. This must
be called if a process has been made critical
or 4 system failure will result. FLAG should
be zero. Use of SETCRITICAL &
RESETCRITICAL will insure (like the use
of SIR’s) that no other process will be access~
ing data you are attempting to modify.

achieved by calling an MPE internal procedure
called ATTACHIO. ATTACHIO simply for-
mats parameters and queues requests to the
device drivers.

----- Normal I/0 operation sequence =-=----3»
NGOk RAOR AR R ACKOK pirortessoesre s XKk KNI
X User I/0 %X -—--> X File * ----> X ATTACHIO * ---=> X I/O0 ¥
* request X% --- %X System X .o % X Queue X
ok oRR ARk KK | *************** | X************** REORRK KOk K
| i
| |
I/0 Directly via ATTACHIO
The parameters to ATTACHIO are as follows:
Iv Iv Iv 1v v Iv v Iv v
ATTACHIO {LDEV, QMISC, DSTX, ADDR, FUNC, COUNT, PARM1, PARM2, FLAGS)
Parameters '
LDEV Logical Device Number for I/O request.
QMISC Request state & flags. Only observed to be zero.
DSTX DST of target data area. Only observed to be zero.
ADDR Address of data buffer to be written or read into.
FUNC Function Specification.

0 - Read from specified LDEV.
1 - Write from data buffer to LDEV.

37-13

Prepoared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

COUNT Transfer count. Number of words (or bytes if COUNT < 0)
to be read or written.

PARMI1 & 2 Zero for terminal 1/0. Contains disc address for disc 1/0.

FLAGS Observed to be:
1 - Disc 1/0.
%401 - Terminal 1/0.

ATTACHIO returns two words (double integer) after execution. The first word contains the actual
transfer count, exactly like the count returned by FREAD, in the second word, bits &:8, the general
status is given:

0 - Awaiting completion.

1 - Successfully completed.
2 -~ EOF detected.

3 ~ Unusual Condition

4 - Irrecoverable error.

This procedure is probably the most powerful (and consequently most dangerous) procedure available to
the privileged mode user. Use of this procedure should never be done casually, and every possible check
should be performed. (Such as verifying LDEV information from internal device tables, ADDRESS in-
formation from device type & subtype tables, etc.).

LOGICAL PROCEDURE GET'DATA (DST'NUM, OFFSET, COUNT, ADDR);
VALUE DST'NUM, OFFSET, COUNT;

LOGICAL DST'NUM, OFFSET, COUNT;

LOGICAL ARRAY ADDR;

OPTION CHECK 3;

BEGIN
ENTRY PUTDATA,;
INTRINSIC GETPRIVMODE, GETUSERMODE;

LOGICAL ARRAY ENTRY'BUF (0:3);
LOGICAL WRITE'DATA;

WRITE'DATA:= FALSE;-
GO TO LET'S'START; -

PUT'DATA: << ENTRY FOR WRITING TO DATA SEGS >>
WRITE'DATA:= TRUE;

LET'S'START:
GETUSERMODE; << JUST TO BE SAFE >>

ADDR (0)= ADDR (0}, << MAKE SURE IT WILL FIT >>
ADDR (COUNT - 1}= ADDR (COUNT -~ 1} '

GETPRIVMODE; << LETS SEE IF THERE IS SUCH A SEGMENT >>

TOS:= @ENTRY'BUF;

TOS= 2;

TOS:= 0,

TOS:= 4

ASSEMBLE (MFDS 4), << GET DST ENTRY 0 >>

1IF DST’NUM > ENTRY'BUF (0) THEN GO RETURN'FALSE; << BAD DST >>

TOS:= @ENTRY’BUF

TOS= 2;

TOS= DST'NUM * 4

TOS:= 4;

ASSEMBLE (MFDS 4); << GET DST'S ENTRY >>

37-14

Prepared by 1he Southern California Regional User's Group

Proceedings: HP3000 1IUG 1984 Anaheim

IF ENTRY'BUF (0)(3:13) = 0 THEN GO RETURN'FALSE; << NOT USED >>
ENTRY'BUF (0)= ENTRY'BUF (0).(3:13} * 4; << LENGTH OF SEGMENT >>

IF OFFSET + COUNT > ENTRY'BUF (0) THEN GO RETURN'FALSE; << BAD LEN >>
<< LOOKS OK, GET THE DATA >>

IF WRITE'DATA THEN BEG]N
TOS:= DST'NUM,; -
TOS= OFF5ET;,
TOS:= @ADDR
TOS:= COUNT; .
ASSEMBLE (MTDS 4), - END; << WRITE THE DATA >>

ELSE BEGIN
TOS:= @ADDR,
TOS:= DST'NUM;.
TOS:= OFFSET;
TOS:= COUNT,
ASSEMBLE (MFDS 4) END << GET THE REQUESTED DATA >>

GET'DATA:= TRUE;

GETUSERMODE;

RETURN,

RETURN'FALSE:

GET'DATA= FALSE;

GETUSERMODE,;

END;

LOGICAL PROCEDURE GET'MAIN {(MAIN'PIN, MAIN'STACK'DST);

LOGICAL MAIN'PIN, MAIN'STACK’DST;
OPTION CHECK 3;

BEGIN
INTRINSIC GETUSERMODE, GETPRIVMODE;

LOGICAL POINTER PXGLOB, 5'0=5-0,
LOGICAL JIT'DST, PCB'DST, PCBENTRY’SIZE, PCBPT;

PCB'DST= 3;
GETPRIVMODE;
PUSH(DL); << PUT CONTENTS OF DL ON STACK >>
TOS:=S0(~1); << PUT ON CONTENTS OF DL-1 >>
ASSEMBLE (SUB), << THE DIFFERENCE IS PXGLOB BASE >>
@PXGLOB:= TOS;
JIT'DST:= PXGLOB(6).(6:10); << GET THE T DST NUMBER >>
GETUSERMODE;
IF NOT GET'DATA(IT’DST, 10, 1, MAIN'PIN)
THEN GO RETURN'FALSE;
MAIN'PIN:= MAIN'PIN.(8:8);
IF NOT GET'DATA(PCB'DST, 1, 1, PCBENTRY'SIZE)
THEN GO RETURN'FALSE;
PCBPT:= MAIN'PIN * PCBENTRY'SIZE;
IF NOT GET’'DATA(PCB'DST, PCBPT+3, 1, MAIN'STACK’DST)
THEN GO RETURN'FALSE;
MAIN'STACK’DST:= MAIN'STACK'DST.(1:10};

37-15

Prepared by the Southern California Regional User's Group

Proceedings: HP3000 IUG 1984 Anaheim

GET'MAIN = TRUE;

RETURN;
RETURN'FALSE:
GET'MAIN = FALSE;
END;

Joseph C. Felix is a Software Design Specialist for Educational Computer Sys-
tems, Inc. of Cincinnati, Ohio. He has a BS. from the University of Cincinnati in
Information Processing Systems. As one of the founders of Educational Com-
puter Systems, Joe has been with the company since its inception in 1977. He has
been writing SPL programs ysing privileged mode since 1978. His work with HP
operating’ systems dates back to 1974 when he customized TSB, the HP2000
operating system, while employed by Cincinnati Public Schools. In his free time,
Joe enjoys amateur radio, community theater, music and electronic tinkering.

Chris Hauck is a Software Design Specialist for Educational Computer Sys-
tems, Inc. of Cincinnati, Ohio. He has a B.S. degree in Computer Science from the
University of Dayton. He has been using HP computer systems since 1976,
beginning with the HP 2000. In 1979, at Educational Computer Systems, he began
using SPL and privileged mode on the 3000 and has since written countless
privileged mode programs and procedures.

37-16

Prepared by the Southern Californioc Regional User’s Group

