
Techniques for Testing On-Line
Interactive Programs

Kim D. Leeper
Wick Hill Associates Ltd.

Kirkland, Washin~ton

ABSTRACT
This paper will describe various strategies for testing

on-line interactive programs. These strategies include
acceptance/functional testing, regression testing and
contention testing. The paper will also discuss the me
chanics of testing including testing by human interven
tion and various forms of automated testing. This in
formation will allow you 'to create a viable test plan for
software quality assurance in your shop.

INTRODUCTION
Program Testing. Those two words undoubtedly con

jure up thoughts of long boring hours sittig in front of a
terminal typing in all kinds of data looking at error m~s
sages produced by the program. This paper will present
alternatives to this type of program testing. It will also
describe a prototype test plan or quality assurance cycle
which may provide the reader with ideas for implement
ing his/her own test plan for his/her own shop.

We must make sure we are all talking the same lan
guage so some definitions are in order at this point.

f

What is Testing?

Software testing may be thought of as a series of data
items which when presented to the program under test
(PUT) cause the software in question to react in a pre
scribed or expe,cted fashion within its intended envi
ronment. The purpose of testing is to expose the exis
tence of mistakes in the program or to show the absence
of any such bugs. If the soft:ware does not act in'the
expected way then one has found a bug or mistake in
the program.

Vocabulary

SCRIPT - a list of inputs or data items given to the
PUT for testing purposes.

DATA CONTEX OF BUG - the collection of inputs
required to cause the PUT to fail or return results which
are not expected.

TYPES OF TESTING

Acceptance/Functional Testing

This type of testing is used to demonstrate that the
various functions of a given software package actually

works as described in its documentation. This is not
exhaustive testing as it only examines one or two
transactions per function. This is the typical type of
testing the vast majority of users perform now.

Regression Testing

This type of testing can be used to test all the various
logical paths within a given software system. Regres
sion testing tries all the data extremes per function that
the program could be expected to respond to. This type
of testing is rarely performed because it i's resource, that
is to say hardware and personnel, intensive.

Contention Testing

This type of testing is used to determine if the
database or file locking strategies that are used in your
application programs actually work. Two programs are
executed at the same time, one performs a transaction
which locks a given item in the database. The second
program attempts to access this same data that is sec-

,ured by the lock via another transaction type different
than the one used in the first terminal. The designer in
this instance is interested in the message of action of the
software to this challenge. This type of testing becomes
particularly relevant when the installation has many
programmers implementing many systems dealing with
the same database.

THE TEST PLAN OR
QUALITY ASSURANCE CYCLE

The keystone of any successful testing program is to
have a viable test plan. This plan should describe all the
phases a software development project goes through
and then ties all the phases together in one comprehen
sive flow of data and actions. The plan should exten
sively use feedback loops so that when problems are
discovered there are clear paths for the problem rectifi
cation process to follow. One possible quality assurance
cycle that can be proposed may be seen in Figure 1.

The diagram indicates that the test script should be
generated along with the design of the software. 'Many
times in the design process the designer realizes some
weakness in the design and will want to specify a special
test in the scriptfile. S/he is encouraged to do so. Many
companies that use this methodology specify programs

4-90-1

by a test script and V/3000 screens.
Examining this diagram more closely one can see that

the flow of debugging actions is closely tied to the
design/maintenance of the original test script. The rea
son for this is to force the implementors to keep track of
the bugs they discover and place them in the test script.
This script should then be run against the application
program whenever a new fIX or correction has been
applied to the original program. This script will con
stantly force the program to re-execute all the previous
transactions which caused bugs to occur in the past, to
assure the program maintenance team that no additional

start

!
design software

~
design test script

·t
implement software

mistakes h~ve been introduced by fIXing the last bug.
In this version of the QA cycle the users are always in

a mode of testing the delivered software. Eventually the
users will fmd a bug which will start the whole cyclic ~
process over again. If they don't find a bug, don't think"'"
it is not for trying. The users have eight hours per day
per person to fmd bugs. It does not take very long be-
fore they have more execution time on the application
software than the designer/implementator has. This is
the time when more bugs can and will be found which
will start the cycle once again.

modify test script

to include bug

I
implement fix

I

acceptance test

p t I_F---------~W;
contention test

p tIF ---.l

deliver to users

users find bugs

y

Figure 1
Quality Assurance Software Cycle

THE MECHANICS OF TESTING
Obviously, the type of testing that is currently being

used is, human intervention testing. This is where a pro
grammer of analyst sits in front of a terminal and simu
lates a user by following a handwritten script. This ap
proach to testing is less than desirable for a number of
reasons, among those being:

, 1. input data error due to arrogance/boredom in ap
plications tester;

4-90-2

2. non-repeatability of exact timing due to human
tester;

3. the tester might not record everything happening
off the screen;

4. an expensive employee is being utilized for testing
purposes when s/he could be designing/
implementing more applications

A possible solution to the dilemma outlined above is
to mechanially examine the software by exhaustively

r

testing all the paths in the program by computer. Using
completely random data types as input you could auto
mate the testing process. However, as there is only so
much time available during a 24 hour day it might take
all day to exhaustively test a very small application pro
gram. This technique is machine bound in terms of both
creating the random data and testing all the paths in the
application code.

A saner approach would be to combine the above two
techniques into a testing procedure that utilizes a
human being's capacity for creative thought and a ma
chine's capacity for highly efficient repetition. This
technique would rest in the programmers designing the
scripts used for automated testing at the same time as
they design the application itself. Once the test script is
produced then the machine itself tests out the applica
tion program under the watchful eye of a human. In fact
the script can be used as a specification for implement
ing the system. As Yourdon has written, "What we are
interested in is the minimum volume of test data that
will adequately exercise our program. "1

It is now possible, using VTEST/3000, to automate
this testing procedure and achieve a real manner of
quality control. VTEST/3000 includes full V/3000 test
ing capability. The compiled code runs as though it
were in a live situation with VTEST/3000 providing full
documentation of all errors occurring on the screen of
the terminal.

In order to use VTEST effectively one must appreci
ate the diagram in Figure 2. There are two types of tests
that VTEST can perform, block mode testing for those
programs that use V/3000 and non-block mode testing
for those not .using V.

The frrst type of test~g that will be discussed is non
block mode application testing. In this case VTEST
looks like a non-block mode glass TTY terminal. The
script file contains the actual commands and data that a
user would normally type into the screen of a real ter
minal, everything between and including HELLO and

BYE. This script ftIe is built and maintained by the
standard HP EDITOR. The script file is input to
VTEST. VTEST transmits this file a line at a time to the
application and VTEST prints out a report of the termi
nal screen before the return key was depressed and
after along with the number of seconds that the re
sponse took to come back to VTEST.

The second type of testing that will be discussed is
block mode application testing. In this case VTEST
looks like a HP2645 block mode terminal. The script ftIe
is the same as above with an important extension. The
script file now can tell VTEST when it must transmit
data to a V screen. The data for a V screen must come
from a different type of file. This file is called the
BATCH file. This BATCH file is created and
maintained by another program called CRBATCH.
CRBATCH allows the user to specify the formftIe name
and the form to be displayed. Data is then entered and
CRBATCH reads the screen and puts the data into a
BATCH file. CRBATCH allows the user to insert sc
reens, to delete screens and modify the data in screens
already in the BATCH file. It is a general purpose
maintenance program or editor for BATCH files.
Whenever the application program under test wants
some block mode data the next record is read from the
BATCH fue. VTEST then transmits this record com
plete with all the special characters that V requires to
the application. VTEST prints out a report for every
transaction before the ENTER key was depressed and
after the next screen was received along with the
number of seconds that the response took to come back
to VTEST.

One can see quite easily that VTEST fits right into a
well designed quality assurance cycle.

REFERENCES
lEdward Yourdon, "Techniques of Program Structure and Design,"
"Prentice-Hall, 1975.
2Software Research Associates, "Testing Techniques Newsletter,"
(415) 957-1441.

4-90-3

V3000
FORMSPEC

CRBATCH

Atcompletion, a fully documentedprint-out is
produced.

EDIT 3000

4-90-4

VTEST

APPLICATION

Figure 2

~--~........])
ATC/ADCC

LINK

	Section 4—Language Support
	Techniques for Testing On-Line Interactive Programs

