
Management Options For The 80's
Giles Rider

Project Manager Rex Development

Mr. Rider has been reponsible for development of
PAL - the User-friendly Front-end to REX/3000,
Gentry, Inc. 's general purpose programming language
and report writer. Gentry, Inc. is a HP OEM and Con
tracting company in Oakland, Ca. Mr. Rider was edu
cated at MIT' and the University of Connecticut. Prior
to joining Gentry, Mr. Rider was an independent con
sultant.

INTRODUCTION

HP's choice of the phrase "Interactive Information
Management" as it's theme for the beginning of the
1980's reflects the changing emphasis and the quicken
ing pace of the industry as a whole. By the middle of the
decade much of today's hardware and software will be
obsolete, and many traditional DP concepts will also
have fallen by the wayside. The continuins rush of
hardware developments cc=s increasing speed and reduc
ins cost per calculation == make it practical to cost·
justify new applications dally. New powerful software
=- Data Dictionaries, report Generators, turnkey appli
cations =::I holds out a lot of promise for simplifyins
application development. Yet each new application prea

sents risks a both personal ones, in terms ofjob security,
and company risks, in terms of survival and growth of
the business.

In this paper we seek to identify guidelines and prina

ciples that can be followed to minimize these risks ==

guidelines that' will also help to identify new oppor
tunities as they arise, and to exploit them fully. We will .
examine each of the areas that are mentioned in the title
and attempt to provide ideas for action that are both
practical and useful. These ideas are intended to sup
plement, rather than to supplant the conventional wis
dom on each of the following subjects, while providing a
unified viewpoint - a grand scheme - from which it all
makes sense.

Before we begin the detailed analysis of the areas, a
few general remarks are in order. Economics indicates
that the scarcity of a resource determines its price, and
that cheaper resources are always substituted for more
expensive ones when they are available. When the CPU
was the most expensive component of a system and
software was cheap, it made sense to use keypunches
and run alljobs in batch mode; now it doesn't. Now that
maintenance of old applications is the single largest
people cost in DP, does it still make sense to keep build
ing applications that will need to be maintained in the

traditional ways? We saw that CPU power was substi
tuted for people power in the transition from batch to
on-line; doesn't it make sense economically now to
begin to substitute CPU power for people power in the
area of system maintenance?

Applications development is another area where peo
ple cost is the major expense - and this isn't because
applicat~on development is the kind of "creative" activ
ity where only "artists" can do the work. More often
than not, the main reason for the cost is that suitable
automated tools either do not ~xist or are not used, so
that manual reports are the mainstay of most develop
ment projects. Many automated project control systems
stress accounting for the cost of the project more than
supportins the design and implementation activities,
which reflects DP's traditional accounting-support func
tion and orientation.

The use of Data Dictionaries in applications, devel
opment represents another application of CPU power to
reduce the effort involved in application development
-==- and in maintenance as well. In application develop
ment, the use of dictionaries tends to bring dis
asreements' about the use and meanins of the data out
early enough in the project so that the contlicts can be
resolved in the system deslsn. rather than by after-the
fact administrative procedures and manual forms, In the
maintenance area, where about 70% of the program
ming dollars are currently spent, a properly constructed
dictionary can result in enormous savings, as the dictio
nary is the only place changes to applications have to be
made by hand. and proper safeguards c~ be set up and
followed to ensure that the integrity of the databases is
not compromised.

Application packages can also help to ensure that the
limited DP budget buys the most in DP service. Appli
cation packages cost so much less than "home-made"
programs that the justification of "in-house" program
ming for common applications like AIR is very difficult,
especially for new users. Another powerful reason for
moving to packages is that the shortage of programmers
makes it disadvantageous to waste them on re-inventing
a General Ledger system, when they could be creating a
new system for your company that could give it a lead
on its competition. Programmers know this too, and are
more likely to stay with companies that promise them a
future working on new development and "state-of-the
art" projects than with companies that offer
maintenance of an obsolete GIL system.

3 -85-1



Contract programmers are about the only ones who
are willing to get involved with maintenance program
ming as a steady diet, and if you use them properly, they
can benefit your company, allowing you to make more
profitable use of your regular employees, while not
causing salary riots because of their higher rates, be
cause they are doing the work that no one else wants to
do.

Microcomputers in user departments are often seen
as a symptom of DP department unresponsiveness - a
"sagebrush rebellion" in the user area. There's an old
saying that a problem is just the wrong way of looking at
an opportunity, and that's especially true of the Mi-·
crocomputer. A proper response to the Micro invasion
can actually improve the situation, both for the DP de
partment, and for the users; cutting costs while building
user confidence in your DP expertise.

Programmer productivity tools, software tools, Pro
grammer's workbench - all of these buzzwords carry
thru the concerns that we've previously mentioned 
how to apply CPU power to make the programmer's job
easier. But there's two sides to' this one, and there's
good reason for caution. Here's where the approach
that de-skills the programming function can cause the
same kind of worker problems that plague the assembly
line factory and the so-called "office of the future." Yet
good productivity tools do exist, and should be used
whenever,. possible to reduce the drudgery and repeti
tion that is often found in programming. Programmers
are one of your most expensive resources, and to watch
one using a. line editor can be a real eye-opener.

DATA DICTIONARIES:
Rule #0: Select the right data dictionary for your envi
ronment.

Data Dictionaries differ in capabilities and in their
interlaces to the outside world. Ideally, you want a Dic
tionary that allows you to create your application code
via the most powetful application generator that your
environment will allow (this could be a manual applica
tion generator - Le. a programmer - or an automated
one that produces COBOL or other source code.)

Your dictionary will also be a central place for man
ual changes - when the length of a data item changes,
for instance, you should only have to change the entry
in the data dictionary, not in the programs that access
the data. You'll see the importance of this when you
remember that in many shops these kinds of
maintenance costs make up 70% of the programming
bills.
Rule #1: Get a technJcally strong and personally
forceful person in charge of the Data Dictionary.

The "Data Administrator" is the person who is going
to have to tell a lot of people in your company that they
can't have what they want, and that their use of a data
element conflicts with another use of the element. A
person who' is too weak to do this can result in your

3-85.-2

dictionaries and applications becoming complex very
quickly. He's also going to have to deal with sneaky
programmers who will try to use data elements in
strange and undocumented ways; he has to be forceful
enough to show them that they can't get away with it.
Rule #2: Use the data Dictionary at the beginning of
the development Phase to detect and resolve conflicts in
requirements.

If each data element is added to the dictionary as it is
defined you can use the dictionary's reports to detect
conflicts and in-consistencies. Here's where your
strong "data administrator" gets called in to resolve the
conflicts, before your programmers go ahead and build .
the conflicts into the application, or devise some arcane
method to get around the conflicts that will work until
they leave.
Rule #3: Create and enforce standards and procedures
for the Dictionary.

Your statIwon't give the dictionary any more respect
than you give it; if you make it important and vital, they
will follow you. Dictionary updates should be in the
hands of the data administrator only; this will give him
enough power to deal with the programmers and
analysts. Standards for development that ensure that
no-one can by-pass the dictionary are also vital to
proper maintenance of the developed systems. Ideally,
nothing should go into production that isn't fully de
scribed in the dictionary.
Rule #4: Retrofit existing systems into the dictionary in
order of their estimated lifetime.

"Doomed" systems should go in first, if they are to be
replaced. Stable, low maintenance systems have lowest
priority, while systems due for extensive maintenance
should be dictionarized before the maintenance is
started (see rules 2-3 for why this is a good idea.)

APPLICATION PACKAGES:
Rule #5: Let your users select the package they want,
from the best ones that you know are available.

With any new application, there will be problems. If
your staff is programming the application for the user,
the problems will be your problems, affecting your
budget and your schedule. If you can avoid being the
cause of problems, you'll be able to continue to be of
service to your company.
Rule #6: Select a strong member of your group to serve
as liason to the user group.

Ideally, this will be someone strong enough to be
promoted out of your group and into user management,

. where he can carry your message into areas that you
can't reach, and help build support for you in the vari
ous user departments. Remember, your representative
speaks with your voice, so don't send a pure technician;
send a heavyweight.

Rule #7: Ensure that the users contract with the pack
age vendor for maintenance.



This is important enough to justify rule #6, for users
are never happy with the OP's response to maintenance
requests. They hate all the paperwork involved. Manag
ing maintenance is a classic "no win" situation - no
matter how it's handled, users are never satisfied, so
whenever possible, let the vendor handle it. The fIrst
task of your "strong" liason person is to convince the
user to go with a vendor maintenance contract; let him
know that if he fails, he's going to be doing the
maintenance for the user.

MICROCOMPUTERS IN
END-USER DEPARTMENTS

Many OP shops see Micros as a real menace to the
OP department's control of the corporate information
resource. They try to make it difficult or impossible for
end-users to get and use Micros by blocking any pur
chases or evaluations of them.

This "dog-in-the-manger" approach to the situtation
will be self-defeating in the long run, with serious con
sequences to the OP department's credibility and sta
ture within the organization. It's far better to encourage
end-users to use Micros properly, and to support them
in their efforts. You can build your credibility within the
organization, while improving the profitablity of the the
company by supporting the judicious use of the proper
mixture of computer resorces.

Rule #8: Don't fight user-owned Micros - encourage
them, instead.

Development of a system is a small part of the total
effort involved; maintenance and operations are far big
ger pieces of the job. What happens in the long run is
that the systems that the users develop on their micros
become prototypes for systems that can be developed
on the mainframes, if the users have developed a suc
cesful system. ~f their development effort was a failure,
it is buried within the user department; the only systems
that the DP department will have to support will be the
succesful ones that .have outgrown their micro, and

. need a larger machine to work on.

Rule #9: Encourage your technical people to get in
volved with micros. This is one rule that it probably will
be easy to enforce. Let your programmers help out the
users with their technical questions about their micros;
encourage your technical people to become familiar
with the succesful applications, so that when the time
comes to put that application up on the mainframe,
they'll know how to do it.

Rule #10: Use micros yourself if you haven't already.
Tryout the HP-125; the VISICALC package can

make your budgeting easier. You will also get a better
understanding of why your users want to by-pass the
whole DP department applicatio development process
with its paperwork and problems.

APPLICATION GENERATORS:

You already have some manual ones in your shop
the programmers. They can be used to create both sim
ple, repetitive reports or complex applications systems,
but they can't do both at the same time. They can also
be your liason with the user departments, or write sim
ple, repetitive reports and database update programs.
An application generator can free them up to do the
things that are more important for the long-range suc
cess of the department and the company. It can also
shift some of the report-creation into the user depart
ments and out of your budget.
Rule #11: Identify and forecast your programming
needs.

If a substantial part of your work is either
A. Ad-hoc report requests or
B. Moderately complicated systems,

then an 'application generator can ease your burden and
reduce your costs. (If your applications needs are sim
ple, you probably should be looking more towards
packaged software than to applications generators.)
Rule #12: Select a generator that can be used by both
programmers and end-users.

End-users who can produce their own reports using
applications generators and who can do their own data
entry, are getting what they need from the computer
without involving the DP department. Their applica
tions are part of their budget, not yours. Programmers
who can use an application generator will typically use
it like a ladder, to extend their reach. An application
generator tl).at can handle most of the boring detail work
reduces the number of programming errors dramatically
because boredom causes errors. Application generators
can also be very useful with trainee programmers, to
take them thru the process of writing a program from
specifications by examples.
Rule #13: Select an application generator that is com
patible with your Data dictionary.

The application generator should make the maximum
practical use of the data dictionary to reduce the
drudgery of programming and to control the access to
the data in some standardized way. Ad-hoc report
generators that interface to the dictionary must provide
for separate logical views for each user, as most users
have different reporting needs, and do not need ex
traneous detail.

USING CONTRACT PROGRAMMERS

Many shops are reluctant to use contract program
mers but the proper use of contract people can multiply
your productivity. One criticism of contract people is
that the expertise goes away with them; this criticism
conceals an error about what is important. The exper
tise that is important to the business is the knowledge of
the applications, not the knowledge of the computer and

3 -85-3



its processes. At any time, you could switch computers,
but the business will continue to do what it has been
successful at.

This fundamental truth underlays many of the rules
that I have suggested so far - that you try to build a
staff of people that know the business. This is why con
tract people can be useful, because you can bring them
in to do work that is only technical- language conver
sions, maintenance, etc, while your stronger staff peo
ple work with your users to develop an understanding
for and appreciation of the business.
Rule #11: Hire the company, not the program~er.

Find a contracting company that understands your
business and your needs and build a long-term relation
ship with them. You'll soon find that a seasoned profes
sional contractor costs less in the long run than a trainee
employee, unless your plan for the trainee is user
support work. Hiring trainees to do maintenance is a
sure plan for building plenty of fires to flght, and lots of
turnover in the long run.
Rule #12: Use contractors as followers,'not leaders.

The best use for contract people is on temporary jobs
that have a clearly defined beginning and end; in devel
opment projects, they should code programs, set up
databases, do documentation, or even be project
leaders, but they should not be in charse of defining the
user's requirements, as you want to keep the business
expertise in-house.

It's also lood to put contract people on maintenance
work, to reduce your employee tum-over, and the cost
should always be billed back to the user department
budget. This can be a positive morale-booster for your
resular people, who will be setting only the interesting
work.If one of your regular employees wants to leave
you to become acontractor, with the hope of makins biS
money doinS maintenance work, then you're probably
better off, because that's not the kind of employee that
you should be trying to develop.

PRODUCTIVITY TOOLS
A software tool is a computer program that a pro

grammer uses to do something useful for someone. The
first programmer tools were thinss like COBOL and
SORT programs, while current programmer tools in
clu·de preprocessors that generate programs from
pseudocode. The basic thrust is to automate some sim
ple, but repetititous part of the programmer's job, as
opposed to the alternative approach of breaking the job
down into simple parts and using an assembly-line tech
nique to do the work.

Programmers like software tools because their jobs
become less boring; most people are drawn to prog
ramming because of the creative aspects of the job, and

3 -85-4

a properly crafted tool multiplies their power to create.
In addition, tools can substitute for other changes in
working conditions by providing a work atmosphere
that is more pleasant, in the sense of less boring work.
Rule #13: Start with the Data Dictionary.

The role of the Data Dictionary is so central to system
development that it is the one productivity tool that you
shouldn't try to do without. (see rules #0-#4 for clarifi
cation) A properly used dictionary can create savings
far in excess of its cost, while reducing development
time proportionately. The Dictionary can be so power
ful a tool, that the question becomes not "Should I get a
Dictionary" but "Which dictionary should I get"?
Rule :#14: Get a preprocessor that inenaces to the Dic
tionary.

The combination of a dictionary and an preprocessor
can reduce your programming effort by 30-70% almost
immediately, allowing you to get rid of your backlog of
user requests quickly, without hiring additional staff.
One very important point is a compiler-data dictionary
interface, so that the physical location and characteris
tics of each data item are taken from the data dictionary
at compile-time - which effectively eliminates most
maintenance programming.
Rule *15: Enforce structured programmins, via a pre
processor or use of a PASCAL-like lansuase.

Structured programming, in the narrowest sense of
OOTO-Iess coding, results in easier-to-maintain code
and I easier-tolldebus applications. Programmers, how
ever, are lazy and will use a OOTO anytime they think
themselves into a comer in a program and can't find a
simple logical way out. That's one big reason why
aOrOllless coding is easier to maintain m==r p~Olrammers

don't set to take the easy way out in the first place.
PASCAL and it's relatives are what is being taught in

school these days, so usinS a PASCAL-like lansuase
otTers the added benefit of not havins to train prosram
mers in COBOL, while offering a "state-ot-the-art"
programmins shop as a morale-builder and PASCAL
offers the GOTO-Iess syntax that enforces structured
programming painlessly.

CONCLUSION
The set of rules given above is based on the idea that

your people, and their knowledge of your company's
business, constitute your most important resource. The
technical aspects of computing are constantly changing,
while the business changes much more slowly. The sec
ret to success is to offer your people an environment
where their professional growth is directly related to the
growth of the business, and to realize that you can't be
promoted until you've found someone who can take
your place.

'----


	Section 3—Utilities
	Management Options For The 80's


