
Computerized Typesetting:
TEX on the HP3000

Lance Carnes
Independent Consultant
Mill Valley, California

ABSTRACT
TEX is a program which allows the ordinary user to

produce professional quality typeset output. TEX was
developed by Donald E. Knuth of Stanford University
and is currently used throughout the world for typesett
ing both technical and. non-technical material. This
paper will describe the use of TEX and show some ex
amples of its output. The transportable version ofTEX,
written in PASCAL, has been successfully moved to the
HP3000. The second part of the paper describes the
tasks involved in this process.

INTRODUCTION

1. What is TEX?

Tau Epsilon Chi (TEX) is a system for typesetting
technical books and papers. It can also be used for ordi
nary non-technical material. The system does not re
.quire the user to have a knowledge of typesetting rules
or conventions.

The original TEX system was developed at Stanford
University by Donald E. Knuth. Frustrated in his at
tempts to print a second edition of The Art ofComputer
Programming in the same printing style as the first edi-

tion, he looked for alternatives in the area of com
puterized typesetting. Finding nothing that suited him,
he embarked on a project which was to become the
TEX system. This system is described in detail in his
informative and hu.morous book, TEX and METAFONT
[Knut79].

The TEX system is currently used throughout the
world, partly for technical work in mathematics and
physics, and partly for various other uses. The Journal
of the American' Mathematical Society now accepts
TEX input files for publication. Some major corpora
tions and universities use it for typesetting their internal
documentation, user manuals, newsletters, etcs. The
TEX Users Group accepts ·articles and letters for their
Journal in TEX format.

2. How Does It Work?

The TEX program accepts an input file consisting of
text and control sequences, aild generates a device in
dependent output file (DVI file) which contains com
mands for driving a raster printer device. Once TEX has
processed the input and produced a DVI file, it is up to a
device driver program to interpret the commands in the
DVI file and produce printed output. This sequence of
events is shown in Figure 1. .

input
file program

DVI
file

Device
driver'

program
Device "--_.i1�

Figure 1. Functional Diagram of the TEX System

Most of the typesetting is done by TEX automati
cally. TEX operates on many levels, composing pages,
paragraphs lines and words. All of these are interre
lated, with the intention of producing professional qual
ity printing. In cases where TEX needs to be guided, for
example in printing the TEX logo, the user intervenes
by specifying a control sequence (see 3 below).

The TEX system does not" typeset a single word or a
single line at a time. Rather, it typesets a page or more
at a time. This is done for a variety of reasons. Mainly,

we want the printed page to consist ofpleasantly spaced
paragraphs, lines and words. Also we want to avoid
other unwanted phenomena, such' as "widow" lines. A
widow Ime is the first line of a paragraph appearing at
the bottom of a page with the paragraph continuing on
the next page. To eliminate widows, TEX returns to the
paragraphs already layed out and expands them slightly
so as to use one more line on the page. This forces the
widow line to the top of the next page.

Paragraphs are composed to reduce the number of

5 -79-1

hyphenations and so as not to leave a single word
stranded in the last line. In addition, the spacing be
tween words is equalized throughout the paragraph.

Lines of text are composed of words and other sym
bols (e.g., mathematical formulas) with the space be
tween words equalized.

Words are typeset with the letters placed one charac
ter width apart. Unlike standard computer printers
which print all characters in the same width (usually 1/10

inch), typesetting separates characters by the exact
width of the character, depending on the "font" or
character style used. In addition, TEX will place
characters closer together or farther apart in accor
dance with traditional typesetting rules~ For 'example,
when typesetting the word "AVIATOR" the "A" and
"V" are placed closer together; this is called "kerning."
Notice in the word "find" that the "f" and "i" are
pushed together to form the "ligature" fie Thes'e
typesetting conventions and more are known to TEX,
freeing the user from having to memorize them.

The basic concepts TEX uses are "boxes" and
"glue." A box contains something which is to be
printed, and glue specifies the spacing between boxes.
For example, a character is a box, a word is a collection '
of character boxes, a line is a group of word boxes, a
paragraph is a collection of line boxes, and a page is a
box composed of paragraph boxes. The space between
boxes can expand or contract by carefully defined
amounts, called the stretchability or shrinkability of the
glue. For example, when TEX composes a paragraph
that has a hyphenation it tries to back up and redistri
bute the spacing of the words in the paragraph to avoid
the hyphenation. It does this by increasing or shrinking
the space or glue between the boxes by allowable
amounts.

For further details on the inner workings of TEX, see
[Knut79] or [Spiv80].

3. Submitting an Input File to TEX

The input file for TEX is edited using any text editor.
The text and any control sequences are contained in this
file. When TEX is run, this file is designated as the input .
file.

Basically, text is entered in a standard fashion with
spaces between words, and one blank line between par
agraphs. The input need not be formatted in any particu
lar manner beyond this. Control sequences are defined
as a" "followed by a word or symbol. They allow the
user to specify a special command. For example, "\it
IMPORTANT" would cause the world IMPORTANT
to be set in italic font.

The TEX system can be run in either interactive or'
batch mode. In interactive mode, if TEX finds an error
the user is allowed to make modifications on the fly. For
example,
!Undefined control sequence
\iy

5 -79-2

IMPORTANT..
The TEX program is indicating that it does not know

the control sequence "\iy" and shows what it has scan
ned on the first line, and what it has not yet scanned on
the following line. At this point the user may correct the:
input by typing "1" to erase one symbol or control se- .
quence, and then "I" to insert the correct sequence "\
it". Any corrections made in this manner are recorded
in an errors file for future reference.

As TEX is processing the input, it is writing to the
DVI file. After the input is successfully processed, the
DVI file is ready for the device driver program.

Two other important facilities are available with
TEX. These are alternate input files and macro defini
tions. Alternate input files are TEX input IDes which are
read in conjunction with another input file. For exam
ple, if a paper has an abstract and three sections, and
each is in a separa~e file, a main file would draw them all
together as follows:
% paper on TEX for the HP3000

, \input basic % basic control sequences
. \input texabs % abstract file
,.\input sect1
. \input sect2
: \input sect3
\end

Each of the alternate input files could have had \input
commands also. The max·imum nesting depth is nine.

Macro definitions allow the user to specify a common
sequence by defining it and giving it a name. For exam
ple, the logo TEX was specified by inserting" \TEX".
.\TEX was previously defined' as
\def TEX{\hbox{lowercase{\:a

, \uppercase{T} hskip-2pt\lowerl.94pt
\hbox{\uppercase{E}}\hskip-2pt \uppercase{X}}}}
It is much easier to write "\TEX" than to insert the
above expansion.

4. Fonts

A font is a, specific design of an alphabet and as
sociated symbols. Most typewrites have Pica or Elite
type fonts. The different "balls" or "daisy wheels" on
some printers allow the user to change fonts.

The TEX system allows up to 64 different fonts to be
specified within the same job. A control sequence is
given to switch from one to the other. Naturally you
must have a device which can support all of these dif
ferent fonts.

Knuth also wanted to define his own fonts and
created a system called METAFONT to do this. Using
METAFONT one can design a font which is coded into
a file for use by TEX. For more information on
METAFONT see [Knut79].

5. The DVI File

The DVI file consists of a series of 8-bit ,codes which

.~

fIiII"'h'
\

. tells a device driver how to typeset the job. The format
of the DVI files is given in Appendix B.

Basically, a DVI file command is of the form "set the
letter d and advance the character width" or "change to
font 3" or "advance vertically 12 rsu's". No inherent
intelligence on the part of the device is assumed. In fact,
TEX gets along best with devices which have no inter
nal programming, such as proportional spacing or
typesetting firmware.

6. Device drivers.

The assumed printer is a raster scan printing device.
This implies that all spacing between characters and
lines is u,ser specified. A typical computer line printer is
not a raster device since it will always print 10
character/inch~ and six lines/inch (or some variation of
this). Most of the daisy wheel terminals available now
can be used as raster devices. The actual device TEX is
'aimed at is a commercial computer-driven typesetting
device, such as a Xerox Graphics Printer, a Mergen
thaler Linotron 202, or an HP2680 Laser Printer.

The TEX program has no knowledge of any particular
printing device. It creates the same DVI file regardless
of the output device. It is the job of the Device Driver
program to interpret the DVI commands and produce
output ona specific device. While there is only one
TEX program, there will be one Device Driver program
for each output device.

TEX ON THE HP3000

1. TEX in PASCAL

The TEX system was originally written in a language
called SAIL (Stanford University Artificial Intelligence
Language). The SAIL compiler and the original TEX
system ran on the DEC-20 computer only. TEX is in the
public domain, but was not even remotely transport
able. Due to the popularity of the system, a project was
undertaken to translate the TEX system into a com
puter language which was available on most modem
computer systems.

The language chosen for the transportable system
was PASCAL. The method for translating the system
was as follows. First, a well documented pseudo
PASCAL source was developed. This source has only a
slight resemblance to a PASCAL program and was in
tended to serve mostly as documentation, and to give all
the algorithms. This file is often referred to as the DOC
file.

The second step was to produce syntactically correct
PASCAL source code from the DOC file. There is a
program called UNDOC which performs this step. The
resulting PASCAL source is distributed to anyone
wanting to transport TEX to another computer.

The DOC file is actually typeset, and a photocopy is
provided with the distribution tape. The PASCAL
source is almost unreadable, but will compile. Exam
ples of both of these files is in Appendix C.

2. Moving TEX to the HP3000

The Stanford TEX-in-PASCAL project brought the
system to a point where it could be transported to other
computer systems. The transportation process, how
ever, requires a good deal of time and a patient systems
programmer.

At the time of writing, this author has successfully
transported TEX to the HP3000. The project was by no
means trivial, as will be shown.

Bringing TEX to the HP3000 had a lot of problems
right from the outset. First, there was no supported
PASCAL compiler at the time this project was begun.
Second, the design of the TEX program assumes a large
address space, something on the order of 600K words of
addressable memory. .

The tasks broke down ~s follows:
a. Edit the PASCAL sources. While the system was

translated to a "Standard" PASCAL, there are still
many variations and assumed extensions which had to
be accounted for. With 23,000 lines of PASCAL source
this took considerable time and effort.

b. Rewrite the "System dependent" routines. These
are the procedures and functions which inteIface TEX
with the file system, terminal I/O and other traits par
ticular to the host system. About 25 routines had to be
modified or rewritten.

c. Implement a virtual memory scheme. TEX refer
ences several large arrays throughout, some as large as
50,000 elements with 4 32-bit words per element. An
addressing scheme was developed to allow the .array
contents to reside in secondary storage.

d. Revise· the PASCAL compiler to allow 32-bit inte
gers and to compile large array references. TEX as
sumes 32-bit integers throughout, and the Portable P4
compiler from the HP Users Contributed Library was
modified to allow them.

e. Optimize the performance of the system. When the
above tasks were completed and the system first ran on
the HP3000, it was incredibly slow. Where the original
TEX system at Stanford processed a document ~ less
than two minutes, the initial HP3000 TEX took 40 min- .

. utes. By analyzing TEX's operation, some optimiza
tions have been made reducing the run time to about 6
minutes. Additional optimizations will be made to allow
the system to run as fast as possible. One tool which has
been particularly useful for identifying inefficient code
is APG/3000 from Wick Hill Associates.

3. Device drivers

A device driver for a daisy wheel printer has been
developed for use on the HP3000. While only one font is
available at a time with this device, satisfactory results
have been obtained. The output is suitable for internal
documentation, and for proofing a document. Future
plans are to develop a driver for the HP2680 Laser
printer.

However, it is not necessary to have a high quality

S -79-3

printing device on-site. There is one commercial print
ing house in San Francisco which uses TEX for
typesetting on a Mergenthaler Linotron 202; the output
from this device is camera ready. DVI files produced by
TEX on the HP3000, once proofed on the daisy wheel
printer, will be sent to this commercial printer.

CONCLUSIONS
This is a truly remarkable system. It ·gives the ordi

nary person the ability to print professional quality
copy. The user will not have to explain to a typographer
what is wanted, but will have personal control.

The HP3000 implementation of TEX will be a boon
for any organization desiring to improve the quality of
documentation, .user manuals and other printed mate
rials. Good results can be obtained with an inexpensive
daisy wheel printer. Where camera-ready copy is de~

sired, several higher quality devices are commercially
available.

Hopefully more org~nizations will begin to use TEX
for documentation,manuals, annual reports and
newsletters. Perhaps one day soon the HP General Sys
tems Users Group will accept papers for publication in
TEX format.

5 -79-4

ACKNOWLEDGEMENT
My thanks to Prof. Luis Trabb-Pardo and Charles Restivo of Stan

ford University for their assistance in learning the TEX system; and to
GENTRY, INC. of Oakland, California, for providing time on the
H~OOO. .

REFERENCES
[Knut79] Donald E. Knuth, TEX,and METAFONT. New Directions in

Typesetting. Digital Press, 1979.
This is a beautifully printed book, an acknowledgement of the TEX

system. Don Knuth's writing style is at once brilliant and'witty.,lt
contains a User's Guide to the TEX and METAFONT systems
and a paper on Mathematical Typography.

[Spiv80] Michael SpiVak, The Joy of TEX. A Gourmet Guide to
Typesetting Technical Text by Computer. Verson -1. American
Mathematical Society, 1.980.

This is a real book. It gives a lighthearted introduction to the use of
AMS-TEX, the version ofTEX used by the AMS.

TUGboat, The TEX Users Group Newsletter. Published by the Amer
ican Mathematical Society.

The TEX Users Group is sm~ currently, but enthusiastic and
helpful. For information on membership write to:

TEX Users Group
c/o American Mathematical Society

P.O. Box 6248
Providence, Rhode Island 02940

\noindent {\bf ABSTRACT:} \TEX\ is a program which allows
the ordinary user to produce professional quality
typeset output.
\TEX\ was developed by Donald E. Knuth of Stanford
University an~ is currently used throughout the world
'for typeset'ting both technical and non-technical material.
This paper will describe the use of \TEX\ and show
some examples of its output.
The transportable version of TEX, written in Pascal,
has been successfully moved to the HP3000.
The second part of the paper describes the tasks involved
in th is process.

\vskip 0.4 cm
\noinden~ {\bf I. INTRODUCTION}

\vskip 0.3 cm
\noindent l\bf 1. What is \TEX\ ?}

\vskip 0.1 cm
{\it Tau Epsilon Chi} (\TEX\) is a system for typesetting
technical books an dpapers.
~t can also be used for ordinary non-technical material.
The system does not require the user to have a knowledge of
typesetting rules or conventions.

The original \TEX\ system was developed at Stanford University
by Donald E. Knuth.
Frustrated in his attempts to print a second edition of
{\it The Art of Computer Programming} in the same printing
style as the first edition, he looked for alternatives in the
area of computerized typesetting.
Finding nothing that suited him, he embarked on a project

ABSTRACT: 'lEX is a program which allows the ordinary user to produce professional
quality typeset output. 'lEX was developed by Donald E. Knuth of Stanford University and
is currently used throughout the world for typesetting both technical and non-technical
material. This paper will describe the use of '"J."EX and show some examples of its output.
The transportable version of TEX, written in Pascal, has been successfully moved to the
I-IP3000.· The second part of the paper describes the tasks involved in this process.

I. INTRODUCTIO'N

1. What is lEX ?

Tau Epsilon Chi (lEX) is a system for typesetting technical books and papers. It can
also be used for ordinary non-techni'cal material. The system does not require the user to
have a knowledge of typesetting rules or conventions.

The original 'lEX system was developed at Stanford University by Donald E. Knuth.
Frustrated in his attempts to print a second edition of The Art of Computer Progra"!1ming
in the same printing style as the first edition, he looked for alternatives in the area of
computerized typesetting. Finding nothing that suited him, he embarked on a project

APPENDIX A
A PORTION OF THE TEX INPUT FILE

5 -79-5

Command Name Command Bytes
Description

VERTCHARO o
Set 'c.haracter number' 0 from the curreDt font luch that,
its reference point is at the current position on the page,
and then increment horilontal coordinate by the character'.
width.

VERTCHAR1 1.
Set character Dumber 1, etc.

VERTCHAR127 127
Set character number 127, etc.

NOP 128
No-op, do nothing, ignore. Note that NOPs come between
commands, they may not come between a command and
its parameters, or between two parameters.

BOP 129 cOr4] c1[4] ... c9[4] p[4]
Beginning of page. The parameter p is a pointer to the
BOP command of the previous page in the .OVI file (where
the first BOP in a .OVI file has a p of -1, by convention).
The ten cts hold the values of 'lEX's ten \counters at the
time this page was output.

5-79-6

EOP

PUSH

POP

HORZRULE

130
The end or all commands for the page bas been reached.
The number of PUSH commands on this page should equal
the number or POPa.

132
Push the current values of horizontal coordinate and vertl·
cal coordinate, and the current W-, S-, y-, and ,-amount,
onto the stack, but dOD't alter them (so an XO after a PUSH
win get to the same spot that it would have had it bad been
given just before the'PUSH).

i33
Pop tbe 1-, Y-, X-, and w-amounts, and vertical coordinate
aDd horizontal coordinate ofT the stack. At no point in a
.DVI file will there have been more POPs than PUSHes..

135 h[4.] w(4)
Tl'peset a rule of height h and width w, with its bottom left
corner at the current position on the page. If either h < 0
or w< 0, no rule should be set.

APPENDIX B
DVI COMMANDS

~
.....--

VERTRULE

HORZCHAR

FONT

X2

X3

X4

xo

W2

W3

W4

. WO

134 h(4) .[4]
Same as HORZRULE, but also increment horilontal eoor
dinate by w when done (even 'if h S 0 or • SO).

136 ell]
Set character c just as if we'd gotten the VERTCHARc
r-ommand, but don't change the current position on the
page. Note that c must be in the range [0..127].

137 t [4]
Set current font to f. Note that this command is not
currently used by 'JFI{-it is only needed if f is greater than
63, because or the FONTNUM wmmands below. Large
font numbers are intended for use with oriental alphabets
and for (possibly large) illustrations that are to appear in a
document; the maximum legal number is 232

- -2.

144 m(2]
Move right mrsu's by adding mto horizontal coordinate, and
put minto x-amount. Note that m is in 2'8 complement, 80

this could actuaUy be a move to the left.

143 m[3]
Same as X2 (but has a 3 .byte long mparameter).

142 m[4)
Same as X2 (but has a 4 byte long mparameter).

145
Move right x·amoun~ (which can be negative, etc).

140 m[2]
The same as the X2 command (i.e., alters horilontal coor
dinate), but alter w-.mount rather than x-amount, so that
doing a WO commud can have different results than doing
an XO command.

139 m[3]
As above.

138 m[4]
As above.

. 141
Move right w-amount.

148 n[2]
Same idea, but now it's I'down" rather than "right", &0

vertic.al c.oordinate changes, as does y-amount.

5-79-7

5 ~79-8

Y3

Y4

YO

Z2

147 n(3)
As. above.

146 n(4)
As above.

149
Guess.

152 m[2]
Another downer. Meets vertical coordinate and ,-amount.

.~

18 'Jt?C: SYST~M D~PUNDENCIES §36

36. The procf:durc print takes an integer as argunlcnt and prints the
corresponding strngpool entry both in the terulinal and in the errors file.

procedure Print(mes : integer);
var i : Integer; { index in the string}

c : asciiCode;
begin i := strng (mes]i c := strngpool(i);
while c <> null do

begin t~TOutl := chr(c); err/ill := chr(e); put(tcrOut); put(err/il);
lncrement(i); c := strngpool(i)
end;

end; .
procedure J'rintLn (fIles : integer);

{ l,ikc Print, but beginning at a new line. }
begin terO-ut T ':= ,hr (cQTriageTtturn); err/ill :=- terOut t; putt tcrOut).
put(errfil); terOutl := chr(linc/eed); err/ill:= terOuttj put(terOut);
put(err/ill; Print(me!)
cud;

1224 PROCEDURE PRINT(MES: INTEGER);
1224 VAR I: INTEGER;

3 S: ASCIICODE;
5 8

1224 I:=
1233 C: =ST
1247 BEGIN
1247 TEROUT":= HR();
1251 ER FIL":= HR();
1255 PUT (T P UT);
1257 PUT (ERPFIL);
1259 1:=1+1;
1263 C:=STRNGPOOL[l]
1270 ENDi
1274 END;
1275 PROCEDURE PRINTLN(MES: INTEGER);
1275 BEGIN
1275 PRINT(MES)
1279 iWRITELN (TEROUT);
1282 WRITELN(ERRF1L);
1284 END;

APPENDIX C
FRAGMENTS OF TEX DOC AND

PASCAL SOURCE

5-79-9

5 -79-10

APPENDIX D
AN EXAMPLE OF TECHNICAL TYPESE'ITING

	Section 5—Data & Text Processors
	Computerized Typesetting: TEX on the HP3000

