Considerations for the Design
of Quality Software

Jan Stambaugh
Hewlett-Packard Company
Business Computer Group

The design of software, like the design of hardware, is
a science and not an art. Computer programming is a
discipline and, as such, must be disciplined. There are
specific procedures and considerations which can help
to ensure reliable, high quality, software products.

What is meant by quality? Quality is the basic charac-
teristic or property of something. A particular property
could be physical, such as weight, size, and color, or
chemical, such as composition. For example, the prop-
erties of a batch of chocolate fudge might be stated in
terms of the hardness, the sweetness, the size and shape
of the pieces, and so on. Any element that can be used
to define the nature of a product can be called a quality
characteristic.

How then can we define software quality? Software
quality can be looked at in two ways: first, the quality of
the design itself and, second, the quality of the con-
formance to the design. The first classification deals
with the degree of excellence of the ideas which define
the product design. The second classification relates to
the degree of excellence to which the product conforms
to the design specifications.

The goal in software development is to create
software that performs reliably, meets user require-
ments, and does nothing that it is not supposed to do.
However, there is currently no standard definition of
what qualities should be considered in developing
software. There is no standard means for measuring
quality quantitatively. Because the production of
software is finally making the transition from an art to
an engineering discipline, quality is now being given
more objective and less subjective consideration. While
the current state-of-the-art in software design imposes
specific limitations on our ability to automatically
measure quality, software researchers and developers
are beginning to find ways to evaluate the quality of
software quantitatively.

How can quality be designed into software? There are
three primary considerations. The first is the establish-
ment and adherence to standards for the use of a (1)
STRUCTURED SYSTEMS DEVELOPMENT
METHODOLOGY. _

At Hewlett-Packard, software products developed by
the R&D labs follow a product lifecycle plan. Many of
the elements of this plan are appropriate and relevant to

the design of applications software by our users.

The software product lifecycle plan stresses the im-
portance of scheduling by first defining all the tasks
which need to be done. It suggests that software proj-
ects are frequently late because the amount of work
required to complete the entire project is not made ob-
vious from the start. A software project must be divided
into as many identifiable operations as possible. The
product lifecycle helps to simplify scheduling by identi-
fying the milestones which are common to all software
projects and by explaining how to determine other fac-
tors which may be unique to a particular project.

Documentation is necessary for the long term success
of any software effort. The product lifecycle proposes a
standard for documentation which defines what needs
to be recorded as well as when it should be. It also
addresses the archiving of these documents so that they
can be easily referenced at a later date.

The. project review cycle advocated by the lifecycle
plan defines formalized sign-offs during the progression
of a product’s development from one phase to the next.
The review cycle provides a check and balance function
to ensure that what is being developed is in fact what
will be needed.

The lifecycle plan describes two types of project
classifications for every software project. These
classifications provide guidelines to the project man-
agement team in establishing priorities. The first
classification deals with the value of the project relative
to all concurrent efforts in each of the functionally re-
sponsible areas. The second classification is a develop-
ment category. Each project is tagged as an enhance-
ment, a new product, or the conversion of an existing
product. This second classification conveys the extent
to which previous projects may reduce the development
effort.

The software product lifecycle stresses an iterative
design philosophy. The design of a product is continu-
ally refined throughout the product’s pre-release cycle.
Rather than finalizing the external specifications and
then beginning the internal design, the software product
lifecycle proposes that both be outlined early on and
refined as the project progresses. This allows the proj-
ect team to maintain a global perspective of both sides
of the development effort.

2—74—1



Project review policies and procedures are defined
explicitly in the product lifecycle plan. A lab review
team, chosen by lab management, is responsible for the
evaluation of one specific project from start to finish.
The product team members are chosen from marketing,
manufacturing, the R&D lab, and product assurance
and the responsibilities of each member are defined in
detail.

Each project utilizes the software development net-
work, a generalized PERT-like scheduling tool designed

to aid in project planning and control. It provides an .

overview of the milestones to be met and an indication
of their relative timing.

Each software project goes through five phases: in-
vestigation, design, implementation, testing, and re-
lease. During the investigation phase, a proposal is de-
veloped which describes a possible area for a software
contribution, suggests a software project team, and sets
a date for reviewing the research findings. The investi-
gation report describes the results of the research and
identifies pertinent issues which have a bearing on the
decision of whether to continue with the development
of a product. A product datasheet is generated to pro-
vide a quick overview of the product’s key points. Dur-
ing the investigation phase sign-off review, the fact that
a complete investigation has been conducted by the
product team is verified. A decision can now be made as
to whether or not to proceed to the design phase.

The design phase of product development is where
the product is defined in detail. Two major documents
are produced during this phase: the design outline and
the external specifications. The design outline is -a first
draft description of the internal structure necessary to
implement the product. It establishes the basic system
modules and identifies key shared data structures and
tables. It also establishes a plan for the detailed design
of the product. The external specifications describe the
functions of a product and how to use it. They provide
the basis for the internal design of the product. The
external specifications include hardware requirements
and restrictions, software requirements and restric-.

tions, user documentation réquirements, detailed

functional specifications, individual function descrip-
tions, the user interface, compatibility specifications,
security specifications, installation instructions, per-
formance predictions, reliability/recoverability specifi-
cations, special capabilities and features, and error mes-
sages, meanings, and actions. A resource and schedule
summary is created at this stage, outlining the financial
cost of the project at each major milestone and and
updating previous estimates for project completion. The
design phase sign-off review provides a formal review
of the external characteristics of the proposed product
to ensure that the product team is in agreement that
what is being proposed is in fact the appropnate solu-
tion to the problem being addressed.

The implementation phase involves the creation of
the internal design document. This document describes

2—74—2

in detail the algorithms and the data structures to be
used in implementing the product. It serves as the inter-
nal documentation for the product throughout the re-
mainder of its lifecycle. During the implementation ph-
ase, test sites are selected. There are three types of test
sites: Alpha, Beta, and foreign language. An Alpha site
is internal to HP; a Beta site is typically external; a
foreign site may be either, depending on the scope of the
project. For a product to go to Alpha test, it must be
functionally complete and have very few known bugs.
For a product to go to Beta test, there must be no
known bugs that would seriously impede the user, and
the preliminary documentation must be complete. Just
prior to the development phase sign-off review, the
product team is responsible for making a presentation to
the lab which serves as a brief introduction to the use of
the product. Once again the resources and schedule
summary is updated to outline the financial cost of the
project at this stage and to establish updated estimates
for project completion.

A product cannot be developed and then tested. Con-
sequently, testing is not really a phase but an integral
part of the development and release of a high quality
software product. The goal of testing is to uncover er-
rors and deficiencies at the earliest possible moment,
thus eliminating the possibility of fatal surprises. The
majority of the test effort is aimed at ensuring that the
end product fulfills the original specifications and that
the particular implementation of the product is well
executed. Many different testing techniques and pro-
cesses are used. A code inspection is a set of proce-
dures and error-detection techniques for group code
reading. The general procedure involves the distribu-
tion of a program listing and related design specifi-
cations to participants several days in advance of the
inspection session. The programmer narrates, state-
ment by statement, the logic of the program. Questions
are raised to determine if errors exist. The program is
analyzed with respect to a checklist of historically
common programming errors. The errors identified are
also analyzed and used to refine the error checklist to
improve the effectiveness of its future use.

The structured walkthrough, like the inspection, is a
set of procedures and error-detection techniques for
group code reading. Rather than reading the program or
using error checklists, the walkthrough participants
“play computer.” A person who has been designated as
the tester comes to the meeting armed with a small set
of paper test cases for the program or module. During
the meeting, each test case is mentally executed.

Module testing, or unit testing, is a process of testing
the individual subprograms, subroutines, or procedures
in a program.

Incremental testing or integration is a method of
combining the next module to be tested with the set of
previously tested modules before it is tested. Incremen-
tal testing has two strategies: top-down testing and
bottom-up testing. The top-down strategy starts with



the initial module in the program. The rule for the next
module to be eligible as the next module to be tested is
that at least one of the module’s calling modules must
have been previously tested. The bottom-up strategy
starts with the terminal modules in the program, the
modules which do not call other modules. Here the rule
for a module to be eligible as the next module to be
tested is that all of the modules it calls must have been
tested previously. Top-down testing requires the gener-
ation of stub modules and bottom-up testing the genera-
tion of driver modules.

Function testing is the process of attempting to un-
cover discrepancies between the program or system and
its external specifications. It is not intended to check
out the interactions between functions, but rather the
functions themselves.

System testing is a process used to compare the sys-
tem or program to its original objectives. It is a set of
tests to verify that all components work together har-
moniously. System testing includes the following: facil-
ity testing, volume testing, stress testing, usability test-
ing, security testing, performance testing, storage test-
ing, configuration testing, compatability/conversion
testing, installability testing, reliability testing, recovery
testing, serviceability testing, documentation testing,
and procedure testing.

Acceptance testing is the process of comparing the
program to its initial requirements and the current needs
of its end users. This testing is accomplished by the test
sites.

Installation testing takes place as a means of finding
installation errrors. The test cases check to ensure that
a compatible set of options has been selected, that all
parts of the system exist, that all files have been created
and contain the necessary contents, and that the
hardware configuration is appropriate.

The testplan is a crucial part of the testing process. It
outlines the types of test which will be used by the
project team and specifies any non-standard tests, as
well as the frequency to be used for repetitive opera-
tions such as walkthroughs. It should define a set of
tests which will be sufficient to guarantee the quality of
the finished product upon release from the lab. The
testplan is developed as an integral part of the design
and implementation phases, and not as an afterthought.

The automated test specification documents individ-
ual test programs, data sets, and procedures. It de-
scribes the purpose of each test as well as providing
some detail about the internal workings.

The release phase involves reliability certification,
performance specification and tuning, and turning con-
trol of the product over to manufacturing. Up until this
phase, performance has been an issue of prediction and
calculation. Now it is an issue of measurement. What
the end user will see must be quantified, and the internal
quantities which might affect these tangible values must
be identified. The manufacturing release sign-off review

establishes the product’s completion and readiness for
sale and distribution, and signals its release from the
R&D lab and its entry into the maintenance phase of the
product lifecycle. Six months after the product has been
released to the field, a post release review meeting is
called for the purpose of reflecting on the acceptability
of the product in the marketplace. All members of the
product team are required to attend.

The second consideration for the design of quality
software is the use of (2) QUALITY-ENHANCING
TOOLS AND TECHNIQUES. Some of the tools for
enhancing quality are: database management systems,
data dictionaries, report generators, graphics products,
software monitors and optimizers, flow analyzers,
cross-reference generators, languages, preprocessors,

debugging software, program and test data libraries, an

interactive programming facility, file maintenance sys-
tems, and project management systems.

Some of the techniques which can be utilized to en-
hance quality include structured walkthroughs, struc-
tured testing, development support libraries, excessive
training, follow-on consulting, project audits, and
software quality checklists.

The third and perhaps the most important considera-
tion for ensuring the design of quality software is the (3)
INTELLIGENT MANAGEMENT OF PEOPLE. The
best structured systems development methodology
combined with the best tools and techniques will be of
little value if there is a lack of appropriate management.

Demonstrate leadership by example. Show that you
care. Clearly define and communicate strategy and go-
als, but don’t define every tactical step. Encourage your
employees to participate in planning tasks. Allow them
to be a part of the decision-making process. Ensure that
they have adequate professional training. Provide them
with feedback and recognition. And develop a con-
structive spirit of teamwork and cooperation.

To summarize, the three factors which most greatly
influence the design of quality software are: the use of a
structured systems development methodology, the use
of quality-enhancing tools and techniques, and the intel-
ligent management of people.

BIBLIOGRAPHY
Cho, Chin-Kuei. An Introduction to Software Quality Control. John
Wiley & Sons, Inc., 1980.

Crowley, John D. “The Application Development Process: What's
Wrong With It?” 1981 ACM Workshop/Symposium on Measure-
ment and Evaluation of Software Quality. JDC Associates, 1979.

McCall, James A. “*An Introduction to Software Quality Metrics.” In
Concepts of Software Quality, 1978.

Myers, Glenford J. Software Reliability Principles and Practices. John
Wiley & Sons, Inc., 1976.

Myers, Glenford J. The Art of Software Testing. John Wiley & Sons,
Inc., 1979.

Welburn, Tuler. Structured Cobol Fundamentals and Style. Mayfield
Publishing Company, 1981. )

Zachmann, William F. Keys to Enhancing System Development
Productivity. Amacom, 1981.

2—-74—-3



Characteristics of Software Quality. TRW Systems and Energy, Inc.,
North-Holland Publishing Co., 1978.

“Program Design Techniques.” In EDP Analyzer, March, 1979, Vol.
17, No. 3. :

2—74—4

“The Production of Better Software.” In EDP Analyzer, February
1979, Vol. 17, No. 2. ’

Software Product Lifecycle. Hewlett-Packard Company, March,
1981. :

.



