
Considerations for the Design
of Quality Software

Jan Stambaugh
Hewlett-Packard Company
Business Computer Group

The design of software, like the design of hardware, is
a science and not an art. Computer programming is a
discipline and, as such, must be disciplined. There are
specific procedures and considerations which can help
to ensure reliable, high quality, software products.

What is meant by quality? Quality is the basic charac
teristic·or property of something. A particular property
could be physical, such as weight, size, and color, or
chemical, such as composition. For example, the prop
erties of a batch of chocolate fudge might be stated in
terms of the hardness, the sweetness, the size and shape
of the pieces, and so on. Any element that can be used
to define the nature of a product can be called a quality
characteristic.

How then can we defme software quality? Software
quality can be looked at in two ways: first, the q:uality of
the design itself and, second, the quality of the con
formance to the design. The fIrst classification deals
with the degree of excellence of the ideas which defme
the product design. The second classification relates to
the degree of excellence to which the product conforms
to the design specifications.

The goal in software development is to create
software that performs reliably, meets user require
ments, and does nothing that it is not supposed to do.
However, there is currently no standard defmition of
what qualities should be considered in developing
software. There is no standard means for measuring
quality quantitatively. Because the production of
software is fmally making the transition from an art to
an engineering discipline, quality is now being given
more objective and less subjective consideration. While
the current state-of-the-art in software design imposes
specific limitations on our ability to automatically
measure quality, software researchers and developers
are beginning to fmd ways to evaluate the quality of
software quantitatively.

How can quality be designed into software? There are
three primary considerations. The fIrst is the establish
ment and adherence to standards for the use of a (1)
STRUCTURED .SYSTEMS DEVELOPMENT
METHODOLOGY.

At Hewlett-Packard, software products developed by
the R&D labs follow a product lifecycle plan. Many of
the elements of this plan are appropriate and relevant to

the design of applications software by our users.
The software product lifecycle plan stresses the im

portance of scheduling by frrst defming all the tasks
which need to be done. It suggests that software proj
ects are frequently late because the amount of work
required to complete the entire project is not made ob
viou~ from the start. A software project must be divided
into as many identifiable operations as possible. The
product lifecycle helps to simplify scheduling by identi
fying the milestones which are common to all software
projects and by explaining how to determine other fac
tors which may be unique to a particular project.

Documentation is necessary for the long term success
of any software effort. The product lifecycle proposes a
standard for documentation which defmes what needs
to be recorded as well as when it should be. It also
addresses the archiving of these documents' so that they
can be easily. referenced at a later date.

The. project review cycle advocated by the lifecycle
plan defines formalized sign-offs during the progression
of a ,product's development from one phase to the next.
The review cycle provides a check and balance function
to ensure that what is being developed is in fact what
will be needed.

The lifecycle plan describes two types. of project
classifications for every software project. These
classifications provide guidelines to the project man
agement team in establishing priorities. The first
classification deals with the value of the project relative
to all concurrent efforts in each of the functionally re
sponsible areas. The second classification is a develop
ment category. Each project is tagged as an enhance
ment, a new product, or the conversion of an existing
product. This second classification conveys the extent
to which previous projects may reduce the development
effort.

The software product lifecycle stresses a~ iterative
design philosophy. The design of a product is continu
ally rermed throughout the product's pre-release cycle.
Rather than fm~izing the external specifications and
then beginning the internal design, the software product
lifecycle proposes that both be outlined early on and
refined as the project progresses. This allows the proj
ect team to maintain a global perspective of both sides
of the development effort.

2-74-1



Project review policies and procedures are defmed
explicitly in the product lifecycle plan. A lab review
team, chosen by lab management, is responsible for the
evaluation of one specific project from start to fInish.
The product team members are chosen from marketing,
manufacturing, the R&D lab, and product assurance
and the responsibilities of each member are defmed in
detail.

Each project utilizes the software development net
work, a generalized PERT-like scheduling tool designed
to aid in project planning and control. It provides an .
overview of the mile"stones to' be met and an indication
of their relative timing.

Each software project goes through five phases: in
vestigation, design, implementation, testing, and re
lease. During the investigation phase, a propo'sal is de
veloped which describes a possible area for a software
contribution, suggests a software project team, and sets
a date for reviewing the research fmdings. The investi
gation report describes the results of the research and
identifies pertinent issues which have a bearing on the
decision of whether to continue with the development
of a product. A product datasheet is generated to pro
vide a quick overview of the product's key points. Dur
ing ~e .investigation phase sign-off review, the fact that
a complete investigation has been conducted by the
product team is verified. A decision can now be made as
to whether or not to proceed to the design phase.

The design phase of product development is where
the product is defined in detail. Two major documents
are produced during,this phase: the design outline and
the external specifications. The design "outline is·a frrst
draft description of the internal structure necessary to
implement the product. It establishes the basic system
modules and identifies key shared data structures and
tables. It also establishes a plan for the detailed design
of the product. The external spe~ifications describe the
functions of a product and how to use it. rhey provide
the basis fOf the internal design of the product. The
external specifications include hardware requirements
and restrictions, software requirements and restric-.
tions, user documentation requirements, detailed -"-'.
functional specifications, individual function descrip
tions, the user intetface, compatibility specifications,
security specifications, installation instructions, per
formance predictions, reliability/recoverability specifi
cations, special capabilities and features, and error mes
sages, meanings, and actions. A 'resource and schedule
summary is -created at this stage, outlining the fmancial
cost of the project at each major milestone ~d and
updating previous estimates for project completion. The
design phase sign-off review provides a formal review
of the external characteristics of the proposed product
to ensure that the product team is in agreement that
what is being proposed is in fact the appropriate solu
tion to the problem being addressed.

The implementation phase involves the creation of
the internal design document. This document describes

2-'74-2

in detail the algorithms and the data structures to be
used in implementing the product. It serves as the inter
nal documentation for the product throughout the re
mainder of its lifecycle. During the implementation ph
ase, test sites are selected. There are three types of test
sites: Alpha, Beta, and foreign language. An Alpha site
is internal to HP; a Beta site is typically external; a
foreign site may be either, depending on the scope of the
project. For a product to go to Alpha test, it must be
functionally complete and have very few known bogs.
For a product to go to Beta test, there must be no
known bugs that would seriously impede the user, and
the preliminary documentation must be complete. Just
prior to the development phase sign-off review, the
product team is responsible for making a presentation to
the lab which serves as a brief introduction to the use of
the product. Once again the resources and schedule
summary is updated to outline the fmancial cost of the
project at this stage and to establish updated estimates
for project completion. .

A product cannot be developed and then tested. Con
sequently, testing is not really a phase but an integral
part of the development and release of a 'high quality
software product. The goal of testing is to uncover er
rors and deficiencies at the earlie"st possible moment,
thus eliminating the possibility of fatal surprises. The
majority of the test effort is aimed at ensuring that the
end product fulfIlls the original specifications and that
the particular implementation of the product is well
executed. Many different testing techniques and pro
cesses are used. A code inspection is a set of proce
dures and error-detection techniques for group code
reading. The general procedure involves the distribu
tion of a program listing and related design specifi
cations to participants several days in advance of the
inspection session. The programmer narrates, state
ment by statement, the logic of the program. Questions
are raised to determine if errors exist. The program is
analyzed with respect to a checklist of historically
common programming errors. The errors identified are
also analyzed and used to refme the error checklist to
improve the effectiveness of its future use.

The structured walkthrough, like the inspection, is a
set of procedures and error-detection techniques for
group code reading. Rather than reading the program or
using error checklists, the walkthrough participants
"play computer." A person who has been designated as
the tester comes to the meeting armed with a small set
of paper test cases for the program or module. During
the meeting,·each test case is mentally executed.

Module testing, or unit testing', is a process of testing
the individual subprograms, subroutines, or procedures
in a program.

Incremental testing or integration is a method of
combining the next module to be tested with the set of
previously tested modules before it is tested. Incremen
tal testing has two strategies: top-down testing and
bottom-up testing. The top-down strategy starts with



the initial module in the program. The rule for the next
module to be eligible as the next module to be tested is
that at least one of the module's calling modules must
have been previously tested. The bottom-up strategy
starts with the terminal modules in the program, the
modules which do not call other modules. Here the rule
for a module to be eligible as the next module to be
tested is that 311 of the modules it calls must have been
tested previously. Top-down testing requires the gener
ation of stub modules and bottom-up testing the genera
tion of driver modules.

Function testing is the process of attempting to un
cover discrepancies between the program or system and
its external specifications. It is not intended to check
out the interactions between functions, but rather the
functions themselves.

System testing isa process used to compare the sys
tem or program to its original objectives. It is a set of
tests to verify that all components work together har
moniously. System testing includes the following: facil
ity testing, volume testing, stress testing, usability test
ing, security testing, performance testing, storage test
ing, configuration testing, compatability/conversion
testing, installability testing, reliability testing, recovery
testing, serviceability testing, documentation testing,
and procedure testing.

Acceptance testing is the process of c~mparing the
program to its initial requirements and the current needs
of its end users. This testing is accomplished·by the test
sites.

Installation testing takes place as a means of fmding
installation emors. The test cases check to ensure that
a compatible set of options has been selected, that all
parts of the system exist, that all fdes have been created
and contain the nec~ssary contents, and that the
hardware configuration is appropriate.

The testplan is a crucial part of the testing process. It
outlines the types of test which will be used by the
project team and specifies any non-standard tests, as
well as the frequency to be used for repetitive opera
tions such as walkthroughs. It should defme a set of
tests which will be sufficient to guarantee the quality of
the finished product upon r~lease from the lab. The
testplan is developed as an integral part of the design
and implementation phases, and not as an afterthought.

The automated test specification documents individ
ual test programs, data sets, and procedures. It de
scribes the purpose of each test as well as providing
some detail about the internal workings.

The release phase involves reliability certification,
performance specification and tuning, and turning con
trol of the product over to manufacturing. Up until this
phase, performance has been an issue of prediction and
calculation. Now it is an issue of measurement. What
the end user will see must be quantified, and the internal
quantities which might affect these tangible values must
be identified. The manufacturing release sign-off review

establishes the product's completion and readiness for
sale and distribution, and signals its release from the
R&D lab and its entry into the maintenance phase of the
product lifecycle. Six months after the product has been
released to the field, a post release review meeting is
called for the purpose of reflecting on the acceptability
of the product in the marketplace. All members of the
product team are required to attend.

The second consideration for the design of quality
software is the use of (2) QUALITY-ENHANCING
TOOLS AND TECHNIQUES. Some of the tools for
enhancing quality are: database management systems,
data dictionaries, report generators, graphics products,
software monitors and optimizers, flow analyzers,
cross-reference generators, languages, preprocessors,
·debugging software, program and test data li~raries, an
interactive programming facility, rue maintenance sys
tems, and project management systems.

Some of the techniques which can be utilized to en
hance quality include structured walkthroughs, struc
tured testing, development support libraries, excessive
training, follow-on consulting, project audits, and
software quality checklists.

The third and perhaps the most important considera
tion for ensuring the design of quality software is the (3)
INTELLIGENT MANAGEMENT OF PEOPLE. The
best structured systems development methodology
combined with the best tools and techniques will be of
little value if there is a lack of appropriate maDagement.

Demonstrate leadership by example. Show that you
care. Clearly define and communicate strategy and go
als, but don't define every tactical step. Encourage your
employees to participate in planning tasks. Allow·them
to be a part of the decision-making process. Ensure that
they have adequate professional training. Provide them
with feedback and recognition. And develop a con
structive spirit of teamwork and cooperation.

To summarize, the three factors which most greatly
influence the design of quality software are: the use of a
structured systems development methodology, the use
of quality-enhancing tools and techniques, and the intel
ligent management of people.

BIBLIOGRAPHY
Cho, Chin-Kuei. An Introduction to Software Quality Control. John

Wiley & Sons, Inc., 1980.
Crowley, John D. "The Application Development Process: What's

Wrong With It?" 1981 ACM Workshop/Symposium on Measure
ment and Evaluation of Software Quality. JDC Associates, 1979.

McCall, James A. "An Introduction to Software Quality Metrics." In
Concepts of Software Quality, 1978. .

Myers, Glenford J. Software Reliability Principles and Practices. John
Wiley & Sons, Inc., 1976.

Myers, Glenford J. The Art of Software Testing. John Wiley & Sons,
Inc., 1979.

Welburn, Tuler. Structured Cobol Fundamentals and Style. Mayfield
Publishing Company, 1981.

Zachmann, William F. Keys to Enhancing System Development
Productivity. Amacom, 1981.

2-74-3



Characteristics of Software Quality. TRW Systems and Energy, Inc.,
North-Holland pUblishing Co., 1978.

"Program Design Teclmiques." In EDP Analyzer, March, 1979, Vol.
17, No.3. . .

2-74-4

"The Production of Better Software." I~ EDP Analyzet:, Feb111ary
1979, Vol. 17, No. 2. .

Software Product Lifecycle. Hewlett-Packard Company, March,
1981.


