
An Experimental, Comprehensive
Data Dictionary

Thomas R. Harbron
Professor of Computer Science

Anderson College
Anderson, Indiana

ABSTRACT
This paper describes an experimental Comprehensive

Data Dictionary (CDD). The purpose of the CDD is to
describe all data objects precisely, from bits to
databases, so that programs may manipulate these ob
jects without continually redefming them.

The most complex part of the description concerns
the ways in which data objects relate to each other. By
precisely describing these. relationships, the eDD al
lows relatively simple processors to perform the
functions of database management systems (IMAGE),
screen drivers (V/3000), report generators, query pro
cessors (QUERY) and other subsystems.

Application programs may be developed with rela
tively little effort since all descriptions, relationships,
and conversions are described by the eDD and need not
be included in the program.

The experimental CDD is described in detail and the
experience of mapping applications into it is shared.
Strengths and weaknesses are assessed and the direc
tion of future developments indicated.

INTRODUCTION

Centrality of Data

A mature view of data processing is that programs are
functions operating on data. This idea may be expressed
in mathematical notation as:

Y:=F(X)
where Y is the set of output data, X is the set of input
data and F is the function of the program.

Very often the function is fairly simple and, when the
program is examined, one fmds that most of the pro
gram is concerned with describing either the data in sets
X and Y, or elementary transformations between them.
The actual, functional parts of the program constitute a
relatively small portion of the total code. The problem is
compounded by the need to repeat the data descriptions
and elementary transformations in each and every pro
gram.

It is the purpose of a Comprehensive Data Dictionary
to provide these descriptions in one central location.
This has three immediate benefits for programs. First it

Christopher M. Funk
President, C. M. Funk & Co.

Lafayette, Indiana

eliminates the need to repeat the descriptions in each
program, thereby consiqerably shortening the pro
grams. Second, it provides a single, consistent descrip
tion for all programs, thus eliminating conflicts. Third, it
makes it possible to build general-purpose programs
such as query processors, report generators, etc.,
thereby eliminating the need for most programming.

Traditional Weakness of Data Descriptions

The problem may not have begun with FORTRAN,
but as the fast popular, high-level language, FORTRAN
did much to promote the idea that code was the main
problem of data processing and data was only incidental
to the code. Early FORTRAN compilers not only didn't
require data declarations but, except for arrays, did not
even permit them. Variables were "declared" simply by
mentioning their names in the program. Data type was
determined .by the first letter of the variable name.

Later languages such as COBOL, and most recently
PASCAL, have done much to restore data descriptions
to their proper position where data within the program
is concerned. Likewise systems developed in the last
decade have included descriptions of data external to
programs such as the schema of IMAGE and forms fIle
of V/3000.

Each of these data descriptions, however, has only
spanned a small and specific portion of the data used by
an application. Not only does this result in a fragmented
description, but numerous problems are created when
the various descriptions do not totally coincide at the
boundaries b~tween them.

The Comprehensive Data Dictionary

The purpose of the Comprehensive Data Dictionary
(CDD) is to provide a single source for descriptions of
all data elements in an application. This includes simple
data items, aggregations such as arrays, records, inter
nal fIles including databases, and external fIles including
reports and screens. Although not properly part of the
data descriptions, it is easy to add access and security
information to the CDD as well.

It is important to implement the CDD in such a way
that it can be easily read by an automatic processor

2-71-1

NAME

USER-NAME,
APP-NAME

USER-APP

NAME,
APP-NAME

FILE-Ace

PROGRAM

FILE-NAME,
USER-NAME,
Ace-NAME

FILE-NAME,
PGM-NAME,
ACC-TYPE-NAM

NAME,
DEV-CLASS

GRP

O\-1NER-FILE
NAME

MBR-FILE-!'IAM
IT~1-NAME

NAME,
FILE-NAt-IE

K ..
NAME,
FILE~NAME,

TYPE,
UNIQUE

REC-FMT

RECORD-NAl-IE,
ITEM-NAME,
ORDINAL-POS,
FORMAT

KEY-ITEM
ITEM-NAME,
KEY-NAME,
ORDINAL-POS

TYPE-FUN ITEM RECORD FILE ACC-FUN ACCESS-TYPE
AME, NAME, FILE-TYPE-

NAME, ATA-TYPE- NAME FILE-TYPE- NAME, NAME
DATA-TYPE- NAME,

NAME ACC-TYPE-NAMCCURENCES(3)NAME DEFAULT UNIT REC-NAME FUNCTION

DATA-TYPE
NAJ.'tE. BITS,
MIN,MAX,CHEC
FIX,INEX,EXI

I
~

GRP-FMT
REC-NAME,
GRP-NAME,
CONTROL

SEL-RULE
PREDICATE,
FlJNCTION,
FATHER-GRP-

NAME
SON-GRP-NAME

ITEM-ACC
REC-NAME,
ITEM-NAME,
USER-NAME,
ACC-NAME

NAME,
PASSWORD

Figure 1

(report generator, query processor, program generator,
etc.) as well as by people. Typically, the processor
would read and store internally the descriptions rele
vant to the particular function being performed at the
time.

f The Experiment

There comes a point where theoretical work must be
reconciled with the "real world." That is the purpose of
this experiment. The CDD model has been derived on a
solid theoretical basis. The model conforms to that of a
normalized network database. It has been implemented
using a relation database system.

The CDD, thus implemented, has been used to, fITst,
describe itself, a non-trivial exercise. Next a variety of
applications, drawn from a production environment,
have been described in the CDD. Some weaknesses

have been uncovered by this process, as well as some
things that work very well.

THE COMPREHENSIVE
DATA DICTIONARY

A data structure diagram is used to describe the COD
as shown in Figure 1. This model, with its 22 entities, 29
relationships, and 37 attributes, is too detailed to de
scribe as a whole. Instead, it will be described in six
parts in the following sections. The reader may, how
ever, wish to refer to Figure 1 from time-to-time to see
how the various parts are related.

Data-Item Part

This part of the CDD describes data items, their
aggregations, and their components. This part of the
CDD is shown in Figure 2'.

DATA-TYPE ITEM
NAME. BITS, NAME,
MIN,MAX,CHEC.........DATA-TYPE-
FIX,INEX,EXI OCCURENC~~~)

RECORD

NAME

NAME,
DATA-TYPE-

. NAME

Figure 2

Before data items can be defmed, it is necessary to
define the basic data-types. Data-types may be defmed
in terms of their descriptions and the operations that
may be performed on them. The descriptions and a
basic set of functions are contained in the DATA-TYPE
entity. Arithmetic, logical, and other functions are
named, but not described in the TYPE-FUN entity.

An item may be a single occurrence of a date-type, or
an array of up to three dimensions. A record is an
aggregation of items and may be either an internal fue,
such as a disk fue or database, or an external fIle such as
a screen or report.

Record-format describes how items are related to re
cords including position and format.

The following contains a description of each entity,
its attributes, and relationships for this part.

ENTITY: DATA-TYPE

This entity describes a fundamental data-type such as
byte, integer, real, etc. Only rarely should it be neces
sary to add a data-type once the basic set is in place.
However, provision is made to describe new data-types

in terms of their attributes. No semantic descriptions
are provided. .
Attribute: NAME

An ASCII character string of eight bytes containing
the name of the ,data-type. This name will be referenced
from other entities.
Attribute: BITS

The number of bits required by this data-type. Data
types will be assumed to start on word boundaries (high
order end) except where assembled into arrays where
they may be packed.
Attribute: MIN

This is the minimum value allowed for data of this
type. Sixty-four bits are allowed for its representation.
However, only the number of bits specified by the
"BITS" attribute are used. If the numeric value of MIN
cannot be represented in sixty-four bits or less, the
value will be left justified and all truncated bits will be
assumed to be zeroes.
Attribute: MAX

This is the maximum value allowed for data of this
type. Storage is the same as for "MIN." If the numeric
value of MAX cannot be represented in sixty-four bits

2-71-3

or less the value will be left justified and all truncated
bits will be assumed to be zeroes.
Attribute: CHECK

This is the name of a procedure which will check
representations of this data-type to see if they contain
legal values. It returns only a true/false indication.
Attribute: FIX

This is the name of a procedure which will check
representations of this data-type to see if they contain
legal values. In case of an illegal value, it will replace
the illegal value with a default value appropriate to the
illegal value. It may also return an indication of the
error.
Attribute: INEX

This is the name of a procedure which will convert an
internal representation of this data-type to an external
(ASCII) form. In addition to the value of the data-item,
it may also use a format description (see REC-FMT) to
specify options in the conversion.
Attribute: EXIN

This is the name of a procedure which will convert an
external representation of this data-type to an internal
form. Again, a format description may be used to
specify options in the conversion.
Relationship: TYPE-FUN

DATA-TYPE is related I:N to TYPE-FUN. Each re
lated TYPE-FUN is a legitimate function to use with
this DATA-TYPE. The linking data-item is DATA
TYPE-NAME.
Relationship: ITEM

DATA-TYPE is related I:N to ITEM. Each related
ITEM is of this DATA-TYPE. The linking data-item is
DATA-TYPE-NAME.

ENTITY: TYPE-FUN

This entity represents each function that is associated
with a data-type.
Attribute: NAME

An ASCII character string of eight bytes that gives
the name of the function.
Attribute: DATA-TYPE-NAME

The name of the data-type for which this is a function.
Relationship: DATA-TYPE

DATA-FUN is related N:l to DATA-TYPE. The
linking data-item is DATA-TYPE-NAME.

ENTITY: ITEM

This entity describes each unique data-item. The item
may be a simple variable, or an array in 1,2, or 3 dimen
sions.
Attribute: NAME

An ASCII character string of 12 bytes containing the
name of the item.
Attribute: DATA-TYPE-NAME

The data-type of which this item is one occurrence.

2-71-4

Attribute: DEFAULT
A default value which is to be used for this item when

no other value is available. Sixty-four bits are allowed
for its representation, but only the bits required are
used. In the case of array items, only the value for one
element of the array is given.
Attribute: OCCURRENCES

This is a triple valued attribute which gives the three
dimensions of the array if this item is an array. For a
simple data-item, this attribute will have the value 1,1,1.
For a one-dimensional array of order N, it will have the
values N ,1,1. For a two-dimensional array, values
M,N,I; for three dimensions, values L,M,N.

Attribute: UNIT
This attribute is an ASCII string of eight characters

used to indicate the unit of measurement, such as feet,
yards, meters, etc. if no units of measurement are re
quired, this field will be null.
Relationship: DATA-TYPE

ITEM is related N:l to DATA-TYPE. Each item is of
exactly one DATA-TYPE. DATA-TYPE-NAME is the
linking data-item.
Relationship: REC-FMT

ITEM is related I:N to REC-FMT. The linking data
item is ITEM-NAME.
Relationship: KEY-ITEM

ITEM is related I:N to KEY-ITEM, with ITEM
NAME as the linking data-item. This relationship indi
cates which items are used as keys.

ENTITY: RECORD

This entity names a logical record which can be a part
of one or more fues. The record contains one or more
data-items and may be of internal or external value.
Attribute: NAME

An ASCII character string sixteen bytes long contain
ing the name of the record. This name will be referenced
by other entities.
Relationship: REC-FMT

RECORD is related l:N to REC-FMT, with
RECORD-NAME as the linking data-item. This rela
tionship dermes the items contained in the record, their
location, and their format.
Relationship: FILE

RECORD is related I:N to FILE, and the linking
data-item is RECORD-NAME. This relationship exists
only for internal fIles and identifies the ftles in which
each record occurs.
Relationship: GRP-FMT

RECORD is related I:N to GRP-FMT, with the link
ing data-item being RECORD-NAME. This rel~tionship

exists only for external fues and identifies the groups
(and ultimately files) in which each record occurs.

ENTITY: REC-FMT

This entity (record format) represents the unique in-

tersection of one item and one record. The entity con
tains information on how the item is related to the re
cord.
Attribute: RECORD-NAME

The record name of which REC-FMT is a member.
Attribute: ITEM-NAME

The name of the item being described.
Attribute: ORDINAL-POS

An integer stating the ordinal position (1st, 2nd, 3rd,
etc.) of the item in the record.
Attribute: FORMAT

This is a description of the format of the item for this
particular record. This attribute will be used to deter
mine dollar signs, commas, and other external features.
The internal representation is indicated by a default
format.
Relationship: ITEM-ACC

RECORD

REC-FMT is related l:N to ITEM-ACC, and the
ITEM-NAME provides the link. This relationship
exists as part of the security provisions and determines
the access allowed each user-class to each item within
each record.
Relationship: ITEM

REC-FMT is related N:l to ITEM. The linking data
item is ITEM-NAME.
Relationship: RECORD

REC-FMT is related N: 1 to RECORD, with
RECORD-NAME providing the linkage.

* * *

Internal File Part

This portion of the CDD describes internal ftles in
cluding disk files, databases, etc. This part of the CDD
is shown in Figure 3.

FILE

NAME

ITEM-NAME,
KEY-NAME,
ORDINAL-POS

NAME,
.... FILE-TYPE-

NAME,
REC-NAME

NAME,
FILE-NAME,....~-.... TYPE ,UNIQUE

Figure 3

RELATIONSHIP
WNER-FILE-

NAME,
MBR-FILE-NAM
ITEM-NAME

Each record type occurs in one or more ftles. Each
rtIe, usually has one or more keys by which records may
be identified and retrieved. Each key, in tum, may con
sist of one or more ·data-items. The relationship be
tween keys and data items is described by the entity
KEY-ITEM.

The entity RELATIONSHIP is used to describe the
relationship between records in one ftle and records in
another ftle. For a given relationship, a ftle is either the
owner or a member of the relationship. If a ftle is the
owner of a relationship, the following conditions pre
vail:

1. Each owner record is related to zero or more re
cords in the member rtle.

2. Each owner record shares with its member records
a common value of the linking data-item.

3. An owner record may not be deleted if it is related
to one or more member records.

The reader may recognize IMAGE "master" records
as being owner types. In IMAGE the relationships are
indicated by "chains" of pointers. Likewise, from the

following constraints on member records, it may be
seen that IMAGE "detail" records are member records.

1. Each member record is related to exactly one
owner record in the relationship.

2. All member records share with their owner record
a common value of the linking data-item.

3. A member record may not be added if no owner
record exists with which it shares a common value of
the linking data-item.

These rules not only define how a relationship is es
tablished between records in different rtIes, but also
prevent the infamous insertion and deletion anamolies
from occurring in a normalized database. A file may
simultaneously be a member of zero or more relation
ships and the owner of zero or more relationships. Note
that in data structure diagrams, such as Figure 1, the
arrow always points from the owner to the member in a
relationship.

This description of internalIties with keys and rela
tionships, is equivalent to a database schema. Thus the

2-71-5

CDD subsumes the part of the database management
system.

The entities not previously described are as follows:

ENTITY: FILE

The entity FILE describes a unique fIle of a given
name. Files can be external in form, such as reports and
screens, or internal in the form of disk and other storage
medium files. External fIles may contain a variety of
records and these records are collected into groups. The
entities GRP and GRP-FMT are used to relate records
to external ftIes. Internal fIles normally contain one type
of record. This relationship is shown by the l:N rela
tionship from record to file. An internal fIle may have
one or more keys and relationships between' internal
fdes are given by the RELATIONSHIP entity. .

Attribute: NAME
An ASCII character string with a maximum of

twenty-six bytes containing the fIle name, group name,
and account name necessary for accessing the fue. This
name will be referenced by other entities.
Attribute: FILE-TYPE-NAME

The name of the fde-type to which a given fIle be
longs.
Attribute: RECORD-NAME

The name of the record which occurs repeatedly to
form the ftle. This attribute is valid only for internal fIles
and will default when the file is of external form.
Relationship: FILE-TYPE

FILE is related N: 1 to FILE-TYPE. The linking
data-item is FILE-TYPE-NAME. This relationship in
dicates the file-type and, by implication, the functions
for each file.
Relationship: FILE-ACC

This is a l:N relationship between FILE and FILE
ACC with a linking data-item 'of FILE-NAME. The re
lationship indicates the access modes allowed to spe
cific user-class for this fde.
Relationship: PGM-ACC

FILE is related l:N to PGM-ACC. The linking data
item is FILE-NAME. This relationship indicates the
access mode used by a given program for each ftIe.
Relationship: RECORD

FILE is related N:l to RECORD with the linking
data-item being RECORD-NAME. This relationship is
valid only for files of an internal form and shows the
normal pattern of one record type for an internal fIle.
Relationship: KEY

FILE is related l:N to KEY and the linking data-item
is FILE-NAME. Entity KEY and this relationship are
valid only for internal ftIes. Each key is a legitimate
search item for the related ftIe.
Relationship: GROUP

FILE is related l:N to GROUP with the linking data
item being FILE-NAME. This relationship is valid only

2-71-6

for external files and indicates the groups of records
that are included in this file.

Relationship: OWNER-RELATIONSHIP
FILE is related to the entity RELATIONSHIP on the

order of I:N with OWNER-FILE-NAME being the
linking data-item. This links each owner fde to its corre
sponding relationships.
Relationship: MEMBER-RELATIONSHIP

FILE is related to the entity RELATIONSHIP on the
order of I:N with MEMBER-FILE-NAME being the
linking data item. This links each member ftIe to its
corresponding relationship.

ENTITY: RELATIONSHIP

Attribute: OWNER-FILE-NAME
An ASCII string of 26 bytes that names the ftIe which

"owns" the relationship.
Attribute: MEMBER-FILE-NAME

An ASCII string of 12 bytes that names the fde which
is a "member" of the relationship.
Attribute: ITEM-NAME

An ASCII string of 12 bytes that names the data-item
whose value is shared by the owner record and member
records in this relationship.
Relationship: OWNER-FILE

RELATIONSHIP is related N:l to FILE with
OWNER-FILE-NAME being the linking data item.
This links each member fde to its corresponding rela
tionships.
Relationship: MEMBER-FILE

RELATIONSHIP is related N:l to FILE with
MEMBER-FILE-NAME being the linking data-item.
This links each member file to its corresponding rela
tionships.

ENTITY: KEY

This entity identifies any and all keys for each inter-
'nal file. The entity contains infoimation on the name of
the key, the file name to which it belongs, and the type
of key.
Attribute: NAME

An ASCII string of 16 bytes containing the name of
the key. This name will be referenced by KEY-ITEM.
Attribute: FILE-NAME

The name of the file to which a given key belongs.
Attribute: TYPE

This attribute is used to define the method of acces
sing a record by using the key. The type will differ
according to whether the file is a sequential file,
database file, etc.
Attribute: UNIQUE

This attribute has a value which is either true or false.
If true, then each value of the key must be distinct from
all other values of the key.

Relationship: KEY-ITEM
KEY is related l:N to KEY-ITEM, with KEY

NAME providing the linkage. Any given key consists of
one or more occurrences of KEY-ITEM. This allows a
key to consist of composite data-items.
Relationship: FILE

KEY is related N:l to FILE, with FILE-NAME pro
viding the linkage.

ENTITY: KEY-ITEM

This entity represents the unique intersection of one
key and one item. The entity contains information on
how the item is related to the key.
Attribute: ITEM-NAME

The name of the item being described.
Attribute: KEY-NAME

The key name of which KEY-ITEM is a member.
Attribute: ORDINAL-POS

An integer stating the ordinal position (1st, 2nd, 3rd,
~tc.) of the item in the key.

E
NAME,
FILE-TYPE

NAME
REC-NAME

N~E

Relationship: KEY
KEY-ITEM is related N:l to KEY, with KEY

NA:M;E being the linking data-item.
Relationship: ITEM

KEY-ITEM is related N:l to ITEM, with ITEM
NAME being the linking data-item.

"If "If "If

External File Part

External rues are those which are displayed exter
nally from the computer system and generally are in
tended to be read and/or written by people as well as
machines. Included in this category are formatted sc
reens, reports, and graphical presentations.

Unlike internat'rI1es, wh~ch normally contain only one
type of record, external files typically contain a variety
of records. Organizing and sequencing this variety of
records is the principal challenge in this part. The en
tities concerned in this organization are shown in Figure
4.

NAME,
FILE-NAME

SEt-RULE
REC-NAME,
GRP-NAME,
CONTROL

PREDICATE,
FUNCTION,
FATHER-GRP-

NAME
SON-GRP-NARE

Figure 4

Each file consists of an aggregation of "groups"
(GRP). A group is a group of records. The placement of
each record within the group is controlled by the entity
"group-format" (GRP-FMT).Since, typically, the rules
for determining which group follows the previous one
are data dependent, 'provision is made for a "selection
rule" (SEL-RULE) to determine the sequence of
groups within the file.

Descriptions of the entities from this part are as fol
lows:

ENTITY: GROUP

This entity exists for external fdes only and names
each specific group of records which are part of a given

fIle. An external fIle consists of one or more groups,
each group containing one or more records.
Attribute: NAME

An ASCII character string of 16 bytes that names
each group.
Attribute: FILE-NAME

The name of the file to which the group belongs.

Relationship: GRP-FMT
GROUP is related l:N to GRP-FMT, with GROUP

NAME providing the link. Any given group consists of
one or more occurrences of GRP-FMT. This relation
ship defines the records con~ained in the group.
Relationship: SEL-RULE

GROUP is related l:N to SEL-RULE, with the link-

2-71-7

ing data-item being GROUP-NAME. SEL-RULE
(selection rule) determines if the current group will be
repeated or a new group will be selected.
Relationship: FILE

GROUP is related N:l to FILE, with the linking
data-item being FILE-NAME.

ENTITY: GRP-FMT

This entity (group format) represents the unique in
tersection of one record and one group. It contains in
formation on how the record is related to the group.
Attribute: RECORD-NAME

The name of the record being described.
Attribute: GROUP-NAME

The group name of which GRP-FMT is a member.
Attribute: CONTROL

An ASCII string of eight bytes used to indicate the
placement of the record within the group.
Relationship: RECORD

GRP-FMT is related N: 1 to RECORD, with
RECORD-NAME being the linking data-item.
Relationship: GROUP

GRP-FMT is related N:l to GROUP, with GROUP
NAME being the linking data-item.

vious group (this option is designed for
use with screens).

NEXTA Next group, appended; this function
obtains the next group and appends it
to the previous group.

NEXTC Next group, cleared; this function ob
tains the next group and will clear the
screen (or go to the top' of the next
page) before displaying the group.

TERMINATE End of file; no new groups are ob
tained.

Attribute: FATHER-GROUP-NAME
The GROUP-NAME of the father of the current

group. This attribute is used when the rule references
the previous group.
Attribute: SON-GROUP-NAME

The GROUP-NAME of the son of the current group.
This attribute is used when the rule references the next
group.
Relationship: GROUP

SEL-RULE is related N:l to GROUP, with the
GROUP-NAME providing the linkage. The GROUP
NAME can be either the father of the current group or
the son of the current group.

* * *
ENTITY: SEL-RULE

This entity (selection rule) is used to determine if the
current group will be repeated, a new group will be
s~lected,or the file terminated. The entity contains in
formation on which group is to be selected and which
function to use (append, replace, add, 'etc.).
Attribute: PREDICATE

An ASCII string of 28 characters which is tested to
determine which rule will be selected. The following
conditions prevail:

1. Each predicate is a proposition which is either true
or false when tested.

2. The predicates are tested in the order given, and
the fIrst predicate found true prevails. Subsequent pre
dicates are not tested. '

3. Each predicate consists of a ,data-item name, an
operator, and either a constant or another data-item
name.

Access Part

Like data-items, a complete description ,of fues must
include the functions that operate upon them. These are
the access functions which this section is concerned
with. The relevant entities are shown in Figure 5.

FILE-TYPE ACCESS-TYPE

NAME,
DEV-CLASS NAME

FILE .~ ACC-~ , FUN
NAME, FILE-TYPE-
FILE-TYPE- NAME,

NAME, ACC-TYPE-NAME
REC-NAME FUNCTION

Figure S

Each file must be of a type described by FILE-TYPE.
These types may include sequential, direct access
(hashing), indexed (KSAM, RELATE), IMAGE or
other rtles. Each file contains an attribute which links it
to a previously defined file type.

Likewise, there is a set of generic functions for ftIes
including read only, append only, update, read/write,
etc. These are described in ACCESS-TYPE.

For each rde-type and access-type, there is usually
one function which provides that mode of access for

Repeat, appended; this option repeats
the current group and appends it to the
previous group.
Repeat, overlayed; this option repeats
the current group and overlays the pre-

REPEATO

4. Data-items must be described in the CCD. All con
stants and variables must be of the same data-type.
Operators are >, =, <, >=, <=, <>.
Attribute: FUNCTION

An ASCII string of eight characters containing the
function to be used. The following functions are avail
able:
REPEATA

2-71 ~8

that particular ftIe type. Not all ftIe-types support all
modes of access.

The descriptions of these entities are as follows:

ENTITY: FILE-TYPE

This entity specifies the type of each rtIe, and by rela
tionship, the access function for each file type.
Attribute: NAME

An ASCII character string of eight bytes used to
name the various file types.
Attribute: DEV-CLASS

An ASCII character string of eight bytes which con
tains the device class name on which the ftle type resid
es.
Relationship: FILE

FILE-TYPE is related I:N to FILE, with FILE
TYPE-NAME being the linking data-item. Thisrela-
tionship links all files of a given type. .
Relationship: ACC-FUN

FILE-TYPE is related I:N to ACC-FUN, with
FILE-TYPE-NAME being the linking data-item. This
relationship indicates the functions for access of a given
ftle-type.

ENTITY: ACCESS-TYPE

This entity represents the various access modes that
are available for items, files, and programs. In the at
tribute ACCESS-TYPE, each bit of the integer repre
sents an access function. If the bit corresponding to a
given function is set to 1 then that function is allowed in
the access type. An access type can consist of one or
more functions. The functions - and their correspond
ing bit positions - available as part of the dictionary
are:

Bit Function Explanation
7 Exclusive Access to data is given to this

user only
8 Read User is allowed to read data
9 Append User may append new data

10 Update User may modify existing data
11 Delete User may delete records
12 Create User may create rtIes
13 Purge User may delete fdes
14 Execute User is allowed to execute or

stream files
15 Locking Files or items may be locked to

prevent concurrent access
Examples are shown below.

Decimal
Access Type Bit Pattern Value

Read only shared access OOOOOOOO10000000 128,.. Read, update shared
access with locking OOOOOOOO10100001 161

Read, append, update
exclusive access 00000oo111100000 480

Attribute: NAME
An integer containing the bit code representing the

corresponding access type. NAME is referenced from
other entities.
Relationship: ACC-FUN

This is a I:N relationship between ACCESS-TYPE
and ACC-FUN which indicates the functions which are
used for data manipulation when a particular access
mode is prevalent. The linking data-item for this rela
tionship is ACCESS-TYPE-NAME.
Relationship: PGM-ACC

ACCESS-TYPE is related I:N to PGM-ACC with the
linking data-item being ACCESS-TYPE-NAME. This
relationship indicates the mode of access used by a
given program to a given rue.
Relationship: FILE-ACC

The entity ACCESS-'TYPE is related I:N with
FILE-ACC and has a linking data-item of ACCESS
TYPE-NAME. This relationship indicates the files
which are accessible by a given user.
Relationship: ITEM-ACC

The entity ACCESS-TYPE has a I:N relationship to
ITEM-ACC which represents the items which are ac
cessible by a particular user. The linking data-item is
ACCESS-TYPE-NAME.

ENTITY: ACC-FUN

This entity represents the function· that is used with a
given access mode to reference a certain fde type.
Functions are external to the Data Dictionary and will
be referenc~dwhen a file access is requested.
Attribute: FILE-TYPE-NAME

The name of a rue type for which a function is used.
Attribute: ACC-TYPE-NAME

The name of an access type for which a function is
used. '

Attribute: FUNCTION
The ASCII character string of eight bytes which

names the function.
Relationship: ACCESS-TYPE

ACC-FUN is related N:l to ACCESS-TYPE with a
linking data-item of ACCESS-TYPE-NAME. This rela
tionship indicates the functions which are used by a
given access type.
Relationship: FILE-TYPE

This is an N:l relationship between ACC-FUN and
FILE-TYPE which indicates the functions that are used
by a given fIle type. The linking data-item is FILE
TYPE-NAME.

* * *

Application Part

Although not properly a part of the data descriptions,
it is helpful to have information on programs and appli
cations in the CDD. Particularly useful is knowledg~ of

2-71-9

the relationships between programs and fIles; which
programs use which ftIes and in which mode of access. .

This information is stored in the application part of the
CDD as shown in Figure 6.

APPLICATION PROGRAM FILE
NAME,

NAME ... NAME, FILE-TYPE-
- APP-NAME NAME,

REC-NAME

,. PGM-ACC ~ ~

FILE-NAME,
PGM-NAME,
ACC-TYPE-

NAME

Figure 6

Each application area is given a name which is re
corded in the entity APPLICATION. Each application
owns a set of programs which are named in the PRO
GRAM entity. For each file accessed by each program,
there is an entry in PGM-ACC which shows the mode of
access for that particular program-file pair.

Since ftIes commonly bridge application boundaries,
there is no attempt to assign fues to applications. The
linkage exists implicitly through the programs.

The application part entities are described as follows:

ENTITY: APPLICATION

The entity APPLICATION represents the various
applications whose data is described by the Data Dic
tionary. The users allowed to access an application are
shown by the relationship to USER-APP.
Attribute: NAME

An ASCII character string of eight bytes containing
the name of an application. This name will be refer
enced from other entities.
Relationship: PROGRAM

APPLICATION is related l:N to PROGRAM with a
linking data-item of APPLICATION-NAME. This rela
tionship indicates the programs included in an.applica
tion area.
Relationship: USER-APP

This is a l:N relationship between APPLICATION
and USER-APP which indicates the user's given access
to an application. The linking data-item is APP-NAME.

ENTITY: PROGRAM

This entity gives the name of each program which is
currently part of the Comprehensive Data Dictionary.
The entity will also indicate the relationship any pro
gram has to an application area. The relationship be
tween PROGRAM and PGM-ACC shows the access the
program has to ftIes.

2-71-10

Attribute: NAME
The ASCII character string of a maximum 26 bytes

which contains the program name, group name, and ac
count name necessary for accessing the fue. This name
will be referenced by other entities.
Attribute: APP-NAME

The name of the application to which this program
belongs.
Relationship: APPLICATION

PROGRAM is related N:l to APPLICATION. The
linking data-item is APPLICATION-NAME. This rela
tionship indicates the application area to which a pro
gram belongs.
Relationship: PGM-ACC

This is a l:N relationship between PROGRAM and
PGM-ACC which indicates the various access allowed
between files and programs. The linking data-item is
PROGRAM-NAME.

ENTITY: PGM-ACC

This entity is the unique intersection between
ACCESS-TYPE, FILE, and PROGRAM. The entity
represents the allowed ftIe accesses for a given pro
gram. This entity is used to determine the mode of ac
cess allowed by each program to each fue.
Attribute: FILE-NAME

The name of the file being accessed.
Attribute: PROGRAM-NAME

The program name of the program accessing the ftle.
Attribute: ACCESS-TYPE-NAME

The access type name which indicates the access
mode for the access being defined.
Relationship: PROGRAM

PGM-ACC is related N:l to PROGRAM with a link
ing data-item of PROGRAM-NAME. This relationship
indicates which program is given access to the given
ftIe.

Relationship: FILE
This is a N:l relationship between PGM-ACC and

FILE which indicates the fIle which can be accessed by
the program. The linking data-item is FILE-NAME.
Relationship: ACCESS-TYPE

The entity PGM-ACC is related N:l to ACCESS
TYPE with a linking data-item of ACCESS-TYPE
NAME. This relationship indicates the type of access
the program may use when referencing the file for a

given PGM-ACC.

Security Part

As with the,application part, security is not properly a
part of the data description. However, it is a necessary
part of any application using the CDD and may conve
niently be accommodated here. This information is con
tained in the part of the CDD shown in Figure 7.

USER-CLASS,

NAME,
PASSWORD

ITEM-ACC ~ ~FILE-ACC USER-APP
REC-NAME, FILE-NAME,
ITEM-NAME, USER-NAME, USER-NAM~,

USER-NAME, ACC-NAME APP-NAME
ACC-NAME

~ r. 4~ ~~

REC-FMT FILE ~PPLICATION

RECORD-NAME, ~AME,

ITEM-NAME, FILE-TYPE- NAME
ORDINAL-POS, NAME,
FORMAT ~EC-NAME

Figure 7

Users of the CDD, or applications described therein,
are identified by their USER-CLASS-NAME. Each
such name has a password associated with it to verify
authenticity. The name and password are recorded in
the USER-CLASS entity.

The applications, and hence programs, to which a
given user-class has access are determined by entries in
the USER-APP entity. An entry must occur here for
each user-class/application pair that is allowed.

Data access is controlled at two levels. A user must
be allowed access at both levels to be successful. Where
a conflict exists between the levels, the most restrictive
case prevails.

Access to fIles is controlled by the FILE-ACC entity.
For each allowed user-class/file pair, an entry names
the user-class, fde, and acces mode allowed.

Access to individual data-items is controlled within
the context of records. For example, a certain user
class may be allowed to read the data-item
EMPLOYEE-NAME within the context of a produc
tion record but not allowed to see the same item in the
context of a payroll record.

Data-item access is controlled by the ITEM-ACC en- '
tity. The item, record, user, and access mode are iden-

tified to allow the user access to the specified item
within the specified record.

The'security part entities are as follows:

ENTITY: USER-CLASS

This entity represents the different classes of users
that will be able to reference the data described by the
Data Dictionary. Each user class is allowed access to a
limited set of applications, fIles, and data-items. The
type of access is controlled in each case.
Attribute: NAME

An ASCII string of eight bytes containing the name of
a user classification. This name will be referenced from
other entities.
Attribute: PASSWORD

An ASCII string of eight bytes containing the
password which controls the availability of specific user
classification accesses.
Relationship: USER-APP

The entity USER-CLASS is related l:N to USER
APP with a linking data-item of USER-CLASS-NAME.
This relationship indicates which applications are ac
cessible by a user classification, and the modes of ac
cess allowed.

2 -71-11

Relationship: FILE-ACC
USER-CLASS is related l:N to FILE-ACC. The

linking data-item is USER-CLASS-NAME. The fIles
accessible by a user classification and the mode of ac
cess are indicated through this relationship.
Relationship.' ITEM-ACC

USER-CLASS is related l:N to ITEM-ACC and the
linking data-item is USER-CLASS-NAME. The items
accessible by a user classification and the mode of ac
cess are indicated through this relationship.

ENTITY: USER-.APP

This entity represents the unique intersection be
tween a user classification and an application. The in
tersection shows a user classification that is allowed
access to a given application.
Attribute.' USER-CLASS-NAME

The name of a user classification for which an appli
cation access is being defined.
Attribute.' APP-NAME

The name of an application for which an access is
being defined.
Relationship.' USER-CLASS

This is a N:l relationship between USER-APP and
USER-CLASS. The linking data-item is USER
CLASS-NAME. The relationship indicates the user
classification which is given access to an application.

Relationship.' APPLICATION
USER-APP is related N:l to APPLICATION with

the linking data-item of APPLICATION-NAME. The
relationship indicates the application to which a user
classification is given access.

ENTITY: ITEM-ACC

This entity represents the unique intersection of three
entities REC-FMT, USER-CLASS, and ACCESS
TYPE. The intersection defines an access by indicating
which user classification can reference an item in a par
ticular record and what mode of access is permitted.
Attribute: ITEM-NAME

The name of the item for which an access is being
defmed.
Attribute.' RECORD-NAME

The name of the record for which an access is being
defined.
Attribute.' USER-NAME

The name of the user classification for the access
being defined.
Attribute: ACCESS-TYPE-NAME

The name of the access type or mode for the item
access being defined.
Relationship: USER-CLASS

ITEM-ACC is related N:l to USER-CLASS with the

2-71-12

linking data-item being USER-CLASS-NAME. This re
lationship indicates the user classification that is given
access to an item.

Relationship.' ACCESS-TYPE
This N:l relationship between ITEM-ACCESS and

ACCESS-TYPE indicates the access mode allowed in
referencing the item. The linking data-item is
ACCESS-TYPE-NAME.
Relationship.' REC-FMT

ITEM-ACCESS is related N: 1 to REC-FMT and the
relationship indicates which item of a particular record
will be referenced through the access defmed. The link
ing data-items for this relationship are RECORD
NAME and ITEM-NAME.

ENTITY: FILE-ACC

This entity is the unique intersection of USER
CLASS, ACCESS-TYPE and FILE. This entity repre
sents the modes of access allowed in referencing a given
fIle by a user class. The access is defined by the differ
ent relationships that are present in this entity.
Attribute.' FILE-NAME

The name of the ffie for which the access is being
defined.
Attribute.' USER-CLASS-NAME

The name of the user classification for which the ac
cess is being defined.
Attribute.' ACCESS-TYPE-NAME

The access type name which defmes the fl1e access.
Relationship: FILE

This is a N:l relationship between FILE-ACe and
FILE. The linking data-item is FILE-NAME. This rela
tionship indicates the ffie which will be referenced
through the access defined.
Relationship: USER-CLASS

FILE-ACC is related N:l to USER-CLASS and the
relationship indicates the user classification that is
given access to a fde. The linking data-item is USER
CLASS-NAME.
Relationship.' ACCESS-TYPE

FILE-ACCESS is related N:l to ACCESS-TYPE
with a linking data-item of ACCESS-TYPE. The access
mode allowed by the defined access is indicated by this
relationship.

IMPLEMENTATION
Implementation of the CDD, done to date, is in three

phases. First, a database is built to hold the data of the
CDD. Second, the CDD is used to describe itself - a
non-trivial exercise. Third, the CDD is used to describe
some real-world applications.

The strengths and weaknesses of this CDD are as
sessed, based on the limited experience gained to date.
Finally, future developments are briefly discussed.

Mapping the Model to a Database

The model of the CDD, described in the previous
section, is in the form of a normalized, network,
database. Thus, it is only natural to seek a database
management system (DBMS) with which to implement
it. Although IMAGE is based on the network model, it
was rejected because of its rigidity and the limits of its
two-level structure. Instead, RELATE/3000,* a rela
tional DBMS was selected.

In mapping the model into RELATE, each entity be
comes a Relation, or file. These files may each be inde
xed on any combination of keys. Attributes become
data-items. Relationships cannot be explicitly shown in
a relational DBMS, but are implicitly linked by shared
data-item values.

Mapping the CDD into Itself

As a fIrst exercise in mapping applications into the
eDD, it was decided to map it into itself; Le., use the
CDD to describe itself. Since the CDDcontains 22 en
tities, 37 data-items, and 29 relationships, the exercise is
not trivial.

The initial mapping of the CDD into itself, using RE
LATE, is shown in Appendix A. Notice that some fdes
are empty because the corresponding entities are not
needed in this application. For example, at this time,
there are no external fdes associated with the CDD, so
the corresponding entities are empty.

Several small problems were encountered in this
exercise. Several of the data-item and entity names had
to be modified to conform to the naming conventions of
RELATE. Since a full set of functions was not immedi
ately defined for the standard data types, the TYPE
FUN entity was left empty. Likewise no programs were
intially associated with the CDD.

Some problems of greater significance also appeared.
One, that will doubtless reoccur in other applications, is
that of composite data-items used as links in entity rela
tionships. For example, both record-name and item
name are used as the'linking item between REC-FMT
and ITEM-ACC. Neither alone is sufficient. Yet provi
sion is made for only one linking item in the RELA
TIONSHIP entity.

Another is the magnitude of records that can occur in
some entities. For example, ITEM-ACC is limited only
by the product of the number of records in ITEM, RE
CORD, ACCESS-TYPE, and USER-CLASS. At one
time the number of records in these entities were 37, 22,
13, and 2 respectively giving a potential of 21,164 re
cords in ITEM-ACC. While the actual number was only
284 it is still too large. Some kind of "wild-card" nota
tion is being considered to reduce the number of re
cords.

Another troublesome area is the representation of the

*RELATE is a trademark of Computer Resources Incorporated, 2570
El Camino Real, Mountain View, CA 94040.

values of MIN and MAX in DATA-TYPE, and DE
FAULT in ITEM. The intention is that the binary or
internal representations of these values be stored.
However, this would require that these items be of dif
ferent data-types in different records - a complexity
beyond the ability of ,most DBMSs to handle. Two al
ternatives are apparent; either store them in external
form, in which case all are stored as ASen character
strings; or declare them type long and left justify the
actual value within the 64 bits.

Mapping Applications to the CDD

The press deadline for submission of this paper oc
curred too soon to allow much experimentation with
real applications. The authors will be able to share these
experiences when the pap~r is presented.

However, on the basis of early work done, some
things have become obvious, and several changes or
redefinitions are clearly indicated.

First, there is a substantial weakness in the area of
composite data types. An additional entity needs to be
created to link a composite data-type with its compo
nents. This will have several advantages over the pre
sent mechanism..

1. Arrays of any number of dimensions can be de
clared.

2. Composite types may have components of several
different types.

3. Composite types may become components of
more complex types.

Second, the whole access area is proving trouble
some. Several issues need to be better defmed includ
ing:

1. Better definitions of access modes and allowed
combinations of modes.

2. A notation for item access that does not require a
separate entry for eac~user-record-itemintersec
tion.

Third, some minor changes are needed in GROUP
and GRP-FMT to accommodate the structure clash be
tween external ftIes and physical pages and screens. An
attribute (LINE-NBR) can be added to GROUP to indi
cate the last line on which that group is allowed to be
gin. A current line number greater than this will trigger a
new page.

Likewise a standard group must be added to each
external file which will be inserted whenever a new
page is triggered. This same group will also, automati
cally, begin each external file, thus eliminating initializ-
ing problems. .

On the whole, real applications appear to be mapping
in with very few other problems. In particular, the
group structure for external ftIe descriptions seems to
work well. A final judgment must, however, await trials
with "strange" external fIles as well as more standard
ones.

2 -71·-13

Future Developments

The ne~t, step is to complete the current development
.phase, Le.,;testing the model against a variety of appli
cations and refming it as indicated.

The next phase is to develop a "front-end" program
to interface between the CDD and its manager. This
program would perform the functions of adding, delet
ing, and modifying the contents of the CDD while
checking for consistency. It would also provide format
ted reports on the contents of the CDD.

To this point, the CnD will not ,have been used by
processors to do production data processing. While it
m~y ~rove very useful for documentation purposes, the
pnnclpal value of the CDD is in; its: use in production.,
The development of the processors require<t to apply
the CDD to production can proceed in thre.e phases.
While there is some overlap and interaction, they may
proceed somewhat independently. ~. .

The fIrst processor is a query/report/screen proces-
sor. It will move data between internal and external
flies. Thus, to produce a new report,~it is only necessary
to describe the report in the CDD.1The processor can
then produce the report from internal flies. Likewise
data could be transmitted between screens and internal
fdes.

The second processor integrates the DBMS with the
CDD. As mentioned earlier, presently available DBMSs'
~ac~ have a separate "schema" which describes only

the data in the database. This processor combines the
DBMS with the CDD so that internal fl1es are described
in only one place. .

The third processor is a program generator which re
lies on the CDD for all data descriptions~ This may
either- be a compiler or interpreter. In either case very
h~gh-Ievelstatements would allow most progi-ams to be
expressed in a fraction of the number of state'ments re
quired by typical languages. By removing the data de..
scriptions and conversions from the program, only the
functional parts need be expressed. .

CONCLUSION
The CD!? .ha~', initially, shown the capacity to contain

the total d~t~descriptions' needed for applications.
Thus, it is ;~ ~uitable base on which to build sophisti
cated processors which will greatly reduce the need for
applications:' programming. .
Researc~ :wilJ continue, in this direction. Meanwhile,

it is hoped'tltat ~thers will benefit by this study and, in
turn, contribute their experiences with data dictionaries
to the common body of knowledge..

: ACKNOWLEDGEMENT
The authors wisli to thank Steve Beasley and Ken Knepp for the

considera~le ~ime ~d effort they have contributed to this project. The
typing was dQne by Maxine Loeber whose accuracy is greatly appre
ciated. Finally, support for this project by C. M. Funk &. Co. and
Anderson College is gratefully acknowledged.

APPENDIX A

INITIAL MAPPING OF THE'
COMPREHENSIVE DATA DICTIONARY

INTO ITSELF USING
RELATE/3000

FILE: DATATYP

ITEMS: DATATYP BITS MIN MAX CHECK FIX INEX EXIN

INTEGER
REAL
LONG
BYTE
LOGICAL
DOUBLE

2-71-14

16
32
64

8
16
32

-32768
-1.15792*10 76

-1.15792*10 76

o
o

-2147483648

32767
1.,15792*10 76

1.15792*10 76

255
65535

2147483648

ASCII BINARY
'INEXT ' EXTIN
, INEXT 'EXTIN

ASCII BINARY
DASCII DBINARY

FILE: ITEM

ITEMS: ITEM OA1AlYP UCCLJR OCCU~ OCC1J~ Utf~lJLl UNIT

f OA"TArYtJ 81f"t ij 1 1
bITS l:\I'TEGEW 1 t 1
MIl\, LUI~G 1 1 1 0
MAx La OJ\JG 1 1 1 U
CHtcK ~YlE 8 1 1
FIX oYlE. ij 1 1
INEx HYTE. 8 1 1
t:X!N tjYlE 8 1 1
Ilt.M dV"ft: 1~ 1 1
KE·Y ijYlE lb 1 1
~US! TIllt\t IN Tf.l;t.W 1 1 ·1 1
FILE livrE 2& 1 1
fYf't aVlt 6 1 1
UNlWUt; bYlf. 1 1 1 T
oWN!_ F' J, L £ 6YTl: ~b 1 1
t-'J8R_F" ll~ 8YTt 2b :1: 1
PWOGk AIV~ tiVTt: ~b 1, I
ACCIYPt 1 f'lTEGlR 1 1 1
APPl-ICi' tjYTE 8 1 1
lVPt:.f-Ut~ byTE. 8 1 1
OCCU~l jhlTt.blk 1 ; , 1 1 1
UCCUk2 !h.Tt:.GtR 1 1 1 J.
UC(;Uk3 INr~bt.W 1 1 1 1
ot. F AlJL '1 dY 'I E ti 1 1
lJl\~ 1 'l ay J"E ~ 1 1
~ECUkU BY'E 1n 1 1
FILE:lYP fjYTI:. ti 1 1
fUNC1IOht i;y'ff 8 1 1
f O~""A l 8YTt 20 1 1
bt(UUP ijYlE 1& 1 1
UtV_CLAt'S livrE 8 1 1
lJ 5 t.'k ~YlE 8 1 1
CUN rR()l. 61 "E ~ 1 1
PRt:uICAlt B'(Tl:. 28 1 1
f' "T t-1 ~ b W~.: ~Yll: 10 1 1
::)O"Jbkt-' tiYlE 1& 1 1
PASShOt(D tiYTt:: ij 1 1

FILE: RECORD

ITEMS: f<lCUkU

~C·UA' #4 'I ~'~

kC·1Y~t~·Uf\4

~C"llE~.

RC"WECli~()

RC-Hf:.CFe·I~'. 'f
RC·F lLt~

~C-Gf<UUP

we "l;t<Pf t'·/~1

t(C·~t.LwUL(

RC-f.lL·l '\1SHP
RC·"EY

HC-KE.YiltM
HC·PGMACC
kC-ACCf u'"
RC·flLt.1YIJ
~c• .l Tt.1~1 Ate
RC-~~UbkAIW\

I<C-APPLJCA
RC-ACCIYPt
We-FILl-ACt;
f-lC-U5f.kAPP
RC-uSEt<ClS

2-71-15

FILE: RECFMT

ITEMS: ~E.COkU ITE.M POS FOkMA'T

~C"UA'l ~ Tyf-l OA l~A l' ~ p 1 ~
k(;-OA 1 A 'I' Yf) I:JllS e.
RC-VATAIYP MIN 3
~C·OAT~~·l yp MAX 4
RC ... UA" A t YP CHECK 5
RC-DA1AfYP FIX b
RC .. OA TA'l YP INE)(7
HC·UA', AT YP EXIN 8
RC",,'I YPLfUN TYPEFUN 1
k C... '(' YPl f U i'4 UAlAl'YP 2
~C·1TE.~~ ITEM 1
t< C-1 1t,l;, OAl'A1YP a
HC-lllf~1 UCCUf'll 3
RC -I TEj'~ OCCUH2 4
HC- '1 Tl: I~; UCCUt<3 ~

RC-ll ttl,; Of::fAULl b
RC"llE-,.f'.l tJNll 1
we· t< t. LlJ t, 0 t<~CO~O 1
RC-kt.C~'Ml f~t~CUHO 1
kC·RE·,Cf'l·~IT 1 TEf\:. i
He· ~ t, Cf 104 'J POSIlION :3
~C• k t:. Cf '~t l' FOkMAT 4
t(C·f- 1Lt.. FILt: 1
f<C·F1L.t. F1LE'fYt> 2
RC-f'lLt HfCUHu 3
we ·Gt~Ul)P l,ROLJP 1 ~
ij C• b ~ ULJ t,) F lLt, 2
kC -GkPf.~ T .kt:COHU 1
~C"GRPt t\·rl Gr<OUP 2-
kC"GkPf ;V\'T' CUN'r~OL :5
f.< C• (; RP f~ I·'! l' PUSI1IUN q

,Wf; • 5 l L k ~J Lt. PRfOlCATE 1
RC-~tl.,.~uL~ F UI~C "lON 2
kC·SI:.t."l)L~ F'l HWGkP :5
RC-~tL."LfLE. SON&WP 4
Ht;"~L ThiStiP OWN_f

w ILE, 1
~C• ~ L. ll'~ ~ 11 ~ t-1 dR..f- 1LE 2
~C-ri~ r i\4t)tiP 1 r t::t~ 3
RC-K[Y KE: Y 1
kC-Kf,Y Flt,..t 2
t<C~Kt:.Y lYPt. 3
~(;·KE.Y UI'~lQlJE 4
RC-K,t.. Y! I t..t\f1 Il'ltvt 1
WC"Kt~j.I'f..~ KEY C
kC·KE.YITE.M POSITION :s
kC·PGfviA~C F1LI:. 1
t<C·PbMAl,C Pt<UGk A~1 2
W(;-PGMACC Ace TYfit: 3
~C-ACCt l.JN FILE.TYP 1
t~ C- Ace t" li t'i ACCTYPE 2

~
-

2-71-16

FILE: RECFMT

ITEMS: ~t:.CUf.lU Ill:.~1 PO~ F()~MAT

HC~ACC"ljt~ FUNCTION 3
HC·FILl'lYP FIlETVP 1
RC .. flLt.1YP OE.V_Cl,.ASS 2
we ~ 1 I t:. lltj Ace WI:.COkD 1
~c-rTtMACC ITl:.M c
,~c "llt.I~IA cc· us£~ 3
~C'" 1 rf ~I Ace ACC1YP£ 4
kC-PHUbkAtV: Pt<OG~AM 1
wC·PRO(ikAM APPLICA 2
R(;"A~Pl.l(;A A~fJLICA. 1
kC-ACLIYPt ACClYPt 1
Re-f'lL(:ACC FILE 1
RC-F-ILLACC USlt< 2
t(C- F' ,I L t, Ace ACC1YPt· ~

RC .. lJStkAPP USE.k 1
~CwUSEkAPP APPLICA ... 2
~C"'U~t.kl:LS uS~~ 1

·t<(;-USt.R,-CS PASS~OJo<U 2.

FILE: FILE

ITEMS: t 1. L t: FILETYP kECOhU

uAlAlVt,",
., y p E. f-' LJ f\l

11 t:.M '
REeF JJJ 1
Rt.CukO
FILl::
(it-<UUfl

liwPFIVll
:;t Lri UL t'~

RL 1f\lShf-l
K£Y
t< E YI l E~"

PlifttlACC
I\CCfUN
F 1Lt I' YP
Ilt.MACL:
PkOGkAr(1
AtJPLICA
ACCTYPt.
FIL.E-ACe
USt:.fl APf'
U5L:.HCLti

RELATE..
RfLA'Tt:.
Rt:LATE
Rt:.LATt:.
RllAll:.
RELATl.
RI:.LA1E
kt.lATE.
~tLAll

~t:LATl:.

ReLATE
kEl.ATt.
kE.L..ATf...
I<ELAll:
RE.LATE:
RELA1E'~

RI:.LAJ't:.
J.lELA'l1:
HlLATt:
RELAlE
RE.LAlt:~

J\:lLATt:

RC .. OAlATVP
f-iC·lYPE:fUl\i
J.<C-lltM
t-<C-Rt.(;f'Ml
J<C.ktCOk(J.
~C-FIL[

RC.GkUUP
WC"GK~)ff\'11

~C ..~lLHLJLE
RC·WL 1NStiP
~C·~I:.Y

kC-I\t:YIlEM
~C·PbMACC

kC .ACCf ut~

~C-FJ.Lf.1YP

J<C.l TE.f\iIACC
~c ·P·k UGk Af'!'l
f.<C-Af-olPLICA
RC.ACCTYPE.
RC-f-!L.t.ACC
RC .. USt.kAPP
RC-lJ~t:kCLS

2-71-17

FILE: RLTNSHP

ITEMS: UWl't_F 1L. t .,~ BR_,., 1LE ITEM

OAI'A1YP 'TYPEfUN DA1ATYP ~
OAlATY~~ Ilt:M UAT'ATYP
ITt.M Ht:.CFMJ ITEM
lltM KEYIlt:M ITEM
Rl:.CF '~11 ITt:.MACC ITt:.M
k£CUt<D R£Cf'MT Rl.Cl)RO
Rc.CUttU GRPfMT HECORD
ktC(JkD fILE klCORD
fJ.LE. GROUP flL£
F'lLE PG~IACC fILE
FIL.t: Hl.lNSHP UWN_f-

1 ILf.
FILt. HllN~HP MtlR..F l,l.f
FiLl:. KE.Y F I L't:
Kt,Y klY1TE.~ KE.Y
GROUP GkPF'MT GkOUP
G~UUP SlLRULE F rt,iRGWP
flLE FILEACC FiLE
A~PllCA PkU(;RAM Af'PLICA
fI t< UGk A1\", fJ :;~'AC C PROGRAM
APPLICA USERAPP APPLICA
U~t:.kCLS USEHAPP USER
USt:.kCL~ FILEACC USlR
USE.WCl~ ITlMACC USE.~

Ace l VPl, F'llEACC ACCTYPE
ACt; r YPt. 1'1 EMAce A,CC'TYPE
ACClYPI; ACCFUN A'C CT YfJ t. ~Acc"r VPt, P:iMACC ACCTYPE
FILE.TYt' ACCFUN f'lLEl'YP
F' lLt.l Vt-- FILE F"lLETYP

2-71-18

FILE: ACCFUN FILE: ACCFUN

ITEMS: F' lLE TYF-' ACCTY FU,\tC TiON ITEMS: FILElYP Ace J' y FUNCTION

r SEt:tIUtN 1~8 KSA~l ~O8
5EUUEN b4 IMAGE.-'ltA 128
S£~UEf\4 1&0 IMAG ~ -1"iA bQ
SE.GlUEN t!2t.& IJ\IIAGt:.-MA lbO
StbiUtN al4U It"'AGEr-l~tA i!24
StQUt.f\a 129 IMAGl·~\A 240
SE~utN b~ 1MAG E..,vJA 1~9
SE. QlJ,thl 101 l~lAGt:.·~lA &5
SEbiut:.N 225 1MA(;E. .. tv:A 1~1
~t GJ U.,t. N ~41. IMAGt-MA 225
:~E tJ "il:.N 3b4

. ,

, I !MAG~"'f'.l.A ~41
~t. ~ u;£ ~ 320

t . .1MAG~",wiA j8'l
SE.wU'l:N ql&

~ i
1MAG E. .- IVi A 3iO

5t:.,~U.t:.j'J 480 IC·\AGE-Mirl 41&
S~'~Ut.N 4qb

i If..., AGt: - ,~; A 460
st:. ~ U,t.I~ 504 , 1·'''\ At.; t. - r--~ A 49b,
St:l~Ut..l·~ SOb

I \ 1MAG t.. .t~·~A ~o~.
Olk-ACC 1~8 lr4AGf-"':iA ~t)8
Olt< .. ACC 1>4 . ; ! MAGE.-l/t, 1~8
Ul~-ACt 1b () IMAGt-Ul: &4olk-AC,C ~c4.& i'~At;E-L,E lbO . :
OlH·ACl; 240 j.MAl.:'E-L;t. ceq
Ol~-ACL' 1~9 .IMAGE-lit: ~40
Olf<-ACt; 'b~ lMAb~"I..,it lee)

r ulw-ACL: Ibl 1MAGt.-l/t~ ' :b5
o1R·:~CL ~~!J !IVt AGt: -l) t. 161
'01 tot .. AC L ~41 1tvl A b t:. -ll L ~~~
Ul~~At.C 384 l~'~G£-t;t:. ~41:

Ul~-ACC 3r20 1t'ltAGl "'uf~ 3(;4
Olt-<·ACC 41b 1 f~\ AGt:. - 0 t j~O

Olk-ACC 400 11\11 Ab t till \J l: 416
Dlt<-ACC 4C1b It~AGE·ut 4t>O
OlW·ACC ~U4 IMAGt.-Ul 49b
Ol~-ACC ~O6 I f';l A(~ i.:. ·l) t. So~

KSAM 1~8 ~o~

KSAM b4 "t.l,.A·lt 128
KSAM 1bO kELAlt:. 64
KSA~' ~2'1 , . ,~t:.L.Alt. le,o
KSAM t!,40 ~tLAlt 224
KSAl'tt lc9 RtLAlf 240
K S Ar" b~ kELA "1 t. 12q
KSAt-'t 1&1 ~E.LA1E. b~
KSAM ~c5 kELAlE. 1&1
t\~AM 241 wi:. L·A Tt. 2~5
KSAI~t 3tiq HE..LAlt=. ~41.
KSAl'tl 320 RELATE. 384
K S AfV\ 41b ~l.LAlE. 3~o
t\ SA~t 480 t(ELAlE. 41b
KSAM 49b. ~t.LAlt. 480
KSAM 4jij4 k~LA1E:. 1.19b.r

·2 -71 ~ 19

2-71-20

FILE: ACCFUN

ITEMS: F'lLE'TYP AC(;lY FUNCTION
~

H~LArf
....._-

~O4

.<EL.,Alf. 508
PI-< UG wAiw~ 1~8

PkUGt-iAM b4
PkUG~AiYl lbO
P~UGkAivl 22q
PRUG~AFi cqO
Pt< OGR Ar+'; 1~9

P 10((J GI~ Apit b5
PRUGkAiVi lbl
Pw()GkAIV} 2a~

PR OG K Ar:~ 241
Pk U(, f(A Ji~i 384
PkUG~Ai~i 3~O

P~UbkAlJi 41b
P~OGt(AI·.r, ~liO

Pt' UGI< A(:i 496
PI-< Ob t(Af~'. ~O4

Pt(OG~Atl) SOd
JCl 1~8

JCL b4
Jet.. lbO
JCL 2C?4
JCL ~~o

~JCL 1~9

JCL b~

JCL lbl
JCL 225
JCL 2ql
JCL 3~4

JC~ j~O

JCL 41b
JCL 'ldU
JCL 496
JCL 5u4
JCL 508

FILE: ITEMACC

ITEMS: ITtM WECORO ACClY USERr
lJA l' Al YP RC.OATA1YP 508 MAf~AGt:.f~

~.l 15 wC"'OATATYP 508 \4ANAGt:.H
MIN RC .. UATAlYP 506 MANAbtk
tV1A X WC-OATAlYP 508 MANAbER
CHE.CK RC-OAlATYP 508 MAt"AGlR
f' 1)(WC"OAlP.TYP 508 MAJ~AGtk

INEX RC~VATATYP 508 MANAGEI<
EX!N RC-OATATYP SU8 MANAblR
lYPE:.FUt~ ~C·" YPtf-UN ~O8 MANAGtf<
OATA1'tfJ RC- TYPt: FUt~ 508 MANAG~1'l

ITlM ~C-ITlM ~O8 tt'IAI'JAGlk
OAfA1YP kC·ITf;,M 508 \1ANAGfR
OC.CUR 1 k t: - I 1E.t-1 508 MANAGt:k
OCCUf<~ He-ITEM 508 '4ANAGEt(
OCCUR) ~c.;-.1TeM 508 MAI~AGtH

Ot:FAULl kC-ITtJ~ 508 \1ANAGtR
UNIT HC~! Tt: 1"1 508 MANAbt:.k
kEC()Wl) RC-wt.C~)RU 506 MANAGt.R
Rt(;OkU kC-HECF'MT 508 MANAGt.R
IT t'" RC-Rt.CFM'T 508 MANAGER
PUS! 11 Ot~ RC .. RE.CfMT 508 MA(\JAGt~
fOkMA ,. ~C~~tCFMl ~Oij MAt~Abf~~

fILE wC-FILt. ~O8 MA~AGER

flLE"'YF RC-FILE S08 MANAGt.R

~
Ri;CORO KC-FILE. 508 'M'ANAGEt-i
bHUUP kC-GROlJP 506 MANAGER
FILt RC-GkOlJP 506 MANAGt.t<
HECURU kC·G~fJFMl ~O6 \1ANA(Jfk
GRUUP RC.GkPFMl ~O8 MANAGER
l;Ui\4Tt<UL kC-Gt<Pf'oMT S06 MANAtiE.fo<
PUSl' Iln~ RC-bRiJFMT ~o~ MANAGE.k
fit<t.ulCArE wC-SfLwULE 506 MANAGER
FUNCllu;~ HC-Sf.LkULl 508 MANAbtR
flHt<(,kP r<C-SELkULE ~()8 MANAbt:k
~UJ"GkP ~C-St:.LRULt: 50~ MAI~AGl:w

OWN_fILl Rll'NSHP 508 MANAGt.R
MajR_FIll RLTN5HP ~o6 MAi~AGE.R

ITEM WL Ti~SHP 508 MANAGt.R
t<EY We-KEY 508 MANAGtR
fILE. RC-KtY 508 MANAGt:.t<
'J Yf-'t. I-<C-KlY 508 MANAGt.R
U.NIy.ut' kC-KtY S08 MANAGlW
ITEM RC-KEYITEM 506 MANAGt:~

K£.:Y HC-t\lYllEM ~O8 ~ANAGlR

pos I" lUt~ RC- K t: y 1 Tt. Ivi 5u8 tt'ANAbt: k
FILE. RC-PGMACC 50ij ~ANAbE~

PROGkAtA RC-PGMACC 508 MANAGE~

ACC·lYPl. RC·PGMACC 508 MANAGEW
f'.lLErVp kC-ACCFUN 508 MANAbl:.R
ACCTYPL ~C~ACCFU~ 508 MAI'iAGEt<.r'

2-71-21

FILE: ITEMACC

ITEMS: ITt:.M tlECO~O ACCl~ USE.R

F UI\JC II 0(\4 RC-ACCF l.JN 508 MANAGtk ~
FILE1YP i-CC-fIL.E1YP 508 MANAGtR

'Ot V_CLA~S t<C-F lLE" yp 508 MANAGER
IJEM RC-ITEMACC 508 MANAGI::.~

f-<E.COkU RC~lTEMACC 50a MANAGER
ACClYP[kC- I 1 t. tvl Ace 508 MANA(;Ek
USEf< f<C-ITE.MACC 508 MANAGtR
PRUbkA\1 f<C-PROGf<AM !i08 ;~ANAGEf-(

APPLICA RC-Pt<UGt<AM 508 MANAGt~

APPLICA. '~C-APPl-.ICA 508 VlANAGtJ<
ACC1YPt RC-ACCTVPE 508 MA r\fAGER
FILE RC-FILtACC 50l; \i1ANAbE:.R
USlR RC-flLf:.ACC 508 MANAGt.R·
ACCl"YPL RC-FILEACC ~O8 MANAGER
UbEk kC-US£WAPP 50~ MA"'AGL~
APPLICA RC-USfRAPP 50'8 MANAGt.W
USER RC-USERCL5 508 ~lANAGt:R

PASS,\JOhli RC-USE.WCLS ~O6 MANAGE~

FILE: FILEACC

ITEMS: FILt:

OAl'ATYf·4

TVPlf Ur~

l'l[M
t<tCfI Ml
I~ECOk()

flLt:
GkuUIJ
Gk fJf tii I
SE:.LRULl
~L 'N ~t';t'

KEY
'K E. YII t i\tl
PGMACC
ACCFUN
F lLf:. TYt·~

l'('t,IVlACC
Pt-<OGk Ai¥:
APPLICJ\
ACCrY~t.

FILEACC
UStRAPP
USEf~CLb

USER

MANAGE~

r~ANAC;ER

MANAGt~

iv1ANAGER
MANAGt.R
''''ANAGEk
t'rlANAGt::.R

. ~~ ANAG t f(

MANAGER
~'IANAG£R

rt1ANAGER
MANAGER
IvlANAG£R
tvl ANAG EF(

rv'fANAG~R

MANAGf:.W
MANAc.;f:.R
MANAGi::.R
~~.ANAGtR

MANAGt:R
MANAGE.R
tvlANAGER

ACCTY

506
506
508
SOc;
506
508
508
500
50~

SOl)
508
S() ij

~Oti

508
508
S08
508
508'
SOb
SOd
~,08

508

The following files have trivial contents at this time, being either
empty or having only one entry:

2-71-22

TYPEFUN
GROUP
GRPFMT

SELRULE
PROGRAM
APPLICA

USERCLS
KEY
KEYITEM

PGMACC
USERAPP

