An Experimental, Comprehensive
Data Dictionary

Thomas R. Harbron
Professor of Computer Science
Anderson College
Anderson, Indiana

ABSTRACT

This paper describes an experimental Comprehensive
Data Dictionary (CDD). The purpose of the CDD is to
describe all data objects precisely, from bits to
databases, so that programs may manipulate these ob-
jects without continually redefining them.

The most complex part of the description concerns
the ways in which data objects relate to each other. By
precisely describing these relationships, the CDD al-
lows relatively simple processors to perform the
functions of database management systems (IMAGE),
screen drivers (V/3000), report generators, query pro-
cessors (QUERY) and other subsystems.

Application programs may be developed with rela-
tively little effort since all descriptions, relationships,
and conversions are described by the CDD and need not
be included in the program.

The experimental CDD is described in detail and the
experience of mapping applications into it is shared.
Strengths and weaknesses are assessed and the direc-
tion of future developments indicated.

INTRODUCTION

Centrality of Data

A mature view of data processing is that programs are
functions operating on data. This idea may be expressed
in mathematical notation as:

Y : = FX)
where Y is the set of output data, X is the set of input
data and F is the function of the program.

Very often the function is fairly simple and, when the
program is examined, one finds that most of the pro-
gram is concerned with describing either the data in sets
X and Y, or elementary transformations between them.
The actual, functional parts of the program constitute a
relatively small portion of the total code. The problem is
compounded by the need to repeat the data descriptions
and elementary transformations in each and every pro-
gram.

It is the purpose of a Comprehensive Data Dictionary
to provide these descriptions in one central location.
This has three immediate benefits for programs. First it

Christopher M. Funk
President, C. M. Funk & Co.
Lafayette, Indiana

eliminates the need to repeat the descriptions in each
program, thereby considerably shortening the pro-
grams. Second, it provides a single, consistent descrip-
tion for all programs, thus eliminating conflicts. Third, it
makes it possible to build general-purpose programs
such as query processors, report generators, etc.,
thereby eliminating the need for most programming.

Traditional Weakness of Data Descriptions

The problem may not have begun with FORTRAN,
but as the first popular, high-level language, FORTRAN
did much to promote the idea that code was the main
problem of data processing and data was only incidental
to the code. Early FORTRAN compilers not only didn’t
require data declarations but, except for arrays, did not
even permit them. Variables were ‘‘declared” simply by
mentioning their names in the program. Data type was
determined by the first letter of the variable name.

Later languages such as COBOL, and most recently
PASCAL, have done much to restore data descriptions
to their proper position where data within the program
is concerned. Likewise systems developed in the last
decade have included descriptions of data external to
programs such as the schema of IMAGE and forms file
of V/3000.

Each of these data descriptions, however, has only
spanned a small and specific portion of the data used by
an application. Not only does this result in a fragmented
description, but numerous problems are created when
the various descriptions do not totally coincide at the
boundaries between them.

The Comprehensive Data Dictionary

The purpose of the Comprehensive Data Dictionary
(CDD) is to provide a single source for descriptions of
all data elements in an application. This includes simple
data items, aggregations such as arrays, records, inter-
nal files including databases, and external files including
reports and screens. Although not properly part of the
data descriptions, it is easy to add access and security
information to the CDD as well.

It is important to implement the CDD in such a way
that it can be easily read by an automatic processor

2—-71—1

¢T—IL—T

KEY-ITEM KEY

‘ e GMSACC PROGRAM oo b CALION
NAME, BITS, ITFM-NAME, NAME, OWNER-FILE- FILE-NAME,
MIN,MAX,CHEC KEY NAME, FILE-NAME, NAME | PGM-NAME, NAME, o
NAME
FIX, INEX,EXI ORDINAL-POS o TYPE, MBR-FILE-NAM ACC-TYPE-NAM APP-NAME
UNIQUE ITEM-NAME
TYPE-FUN ITEM RECORD FILE ACC-FUN) ACCESS-TYPE
AME, NAME, ' FILE-TYPF-
NA¥E,T ATA-TYPSZME NAME FILE-TYPE- NAME, NAME
- - b)
DATA YI}:IEZM] CCURENCES (3) | P NAME | ACC-TYPE-NAM
REp—FMT GRP FILE TYPE FILE-ACC USER-APP 7‘
RECORD-NAME, FILE-NAME,
ITEM-NAME, NAME, . NAME, USER-NAME, USER-NAME,
ORDINAL-POS, FILE-NAME DEV-CLASS ACC-NAME APP-NAME
FORMAT

_GRP-FMT i SEL-RULE ITEM-ACC USER-CJASS
REC-NAME, PREDICATE, REC-NAME,)
GRP-NAME, FUNCTION, ITFM-NAME, NAME,
CONTROL FATHER-GRE USER-NAME, PASSWORD

SON-GRP-NAME ACC-NAME
L

Figure 1

(report generator, query processor, program generator,
etc.) as well as by people. Typically, the processor
would read and store internally the descriptions rele-
vant to the particular function being performed at the
time.

! The Experiment

There comes a point where theoretical work must be
reconciled with the *“‘real world.”” That is the purpose of
this experiment. The CDD model has been derived on a
solid theoretical basis. The model conforms to that of a
normalized network database. It has been implemented
using a relation database system.

The CDD, thus implemented, has been used to, first,
describe itself, a non-trivial exercise. Next a variety of
applications, drawn from a production environment,
have been described in the CDD. Some weaknesses

have been uncovered by this process, as well as some
things that work very well.

THE COMPREHENSIVE
DATA DICTIONARY

A data structure diagram is used to describe the CDD
as shown in Figure 1. This model, with its 22 entities, 29
relationships, and 37 attributes, is too detailed to de-
scribe as a whole. Instead, it will be described in six
parts in the following sections. The reader may, how-
ever, wish to refer to Figure 1 from time-to-time to see
how the various parts are related.

Data-Item Part

This part of the CDD describes data items, their
aggregations, and their components. This part of the
CDD is shown in Figure 2.

DATA-TYPE , ITEM RECORD
NAME, BITS, J NAME,
MIN,MAX, CHEC DATA—TYPEZM NAME
FIX, INEX,EXIN E

’ ’ OCCURENCES (3)

NAME,
DATA-TYPE-
- NAME

ECORD-NAME,
ITEM-NAME,
RDINAL-POS,

Figure 2

Before data items can be defined, it is necessary to
define the basic data-types. Data-types may be defined
in terms of their descriptions and the operations that
may be performed on them. The descriptions and a
basic set of functions are contained in the DATA-TYPE
entity. Arithmetic, logical, and other functions are
named, but not described in the TYPE-FUN entity.

An item may be a single occurrence of a date-type, or
an array of up to three dimensions. A record is an
aggregation of items and may be either an internal file,
such as a disk file or database, or an external file such as
a screen or report.

Record-format describes how items are related to re-
cords including position and format.

The following contains a description of each entity,
its attributes, and relationships for this part.

ENTITY: DATA-TYPE

This entity describes a fundamental data-type such as
byte, integer, real, etc. Only rarely should it be neces-
sary to add a data-type once the basic set is in place.
However, provision is made to describe new data-types

in terms of their attributes. No semantic descriptions
are provided.
Attribute: NAME

An ASCII character string of eight bytes containing
the name of the data-type. This name will be referenced
from other entities.
Attribute: BITS

The number of bits required by this data-type. Data-
types will be assumed to start on word boundaries (high
order end) except where assembled into arrays where
they may be packed.
Attribute: MIN

This is the minimum value allowed for data of this
type. Sixty-four bits are allowed for its representation.
However, only the number of bits specified by the
“BITS” attribute are used. If the numeric value of MIN
cannot be represented in sixty-four bits or less, the
value will be left justified and all truncated bits will be
assumed to be zeroes.
Attribute: MAX

This is the maximum value allowed for data of this
type. Storage is the same as for “MIN.”’ If the numeric
value of MAX cannot be represented in sixty-four bits

2—71—-3

or less the value will be left justified and all truncated
bits will be assumed to be zeroes.
Attribute: CHECK

This is the name of a procedure which will check
representations of this data-type to see if they contain
legal values. It returns only a true/false indication.
Attribute: FIX

This is the name of a procedure which will check
representations of this data-type to see if they contain
legal values. In case of an illegal value, it will replace
the illegal value with a default value appropriate to the
illegal value. It may also return an indication of the
eITor.
Attribute: INEX

This is the name of a procedure which will convert an
internal representation of this data-type to an external
(ASCII) form. In addition to the value of the data-item,
it may also use a format description (see REC-FMT) to
specify options in the conversion.
Attribute: EXIN

This is the name of a procedure which will convert an
external representation of this data-type to an internal
form. Again, a format description may be used to
specify options in the conversion.
Relationship: TYPE-FUN

DATA-TYPE is related 1:N to TYPE-FUN. Each re-
lated TYPE-FUN is a legitimate function to use with
this DATA-TYPE. The linking data-item is DATA-
TYPE-NAME.
Relationship: ITEM

DATA-TYPE is related 1:N to ITEM. Each related
ITEM is of this DATA-TYPE. The linking data-item is
DATA-TYPE-NAME.

ENTITY: TYPE-FUN

This entity represents each function that is associated
with a data-type.
Attribute: NAME

An ASCII character string of eight bytes that gives
the name of the function.
Attribute: DATA-TYPE-NAME

The name of the data-type for which this is a function.
Relationship: DATA-TYPE

DATA-FUN is related N:1 to DATA-TYPE. The
linking data-item is DATA-TYPE-NAME.

ENTITY: ITEM

This entity describes each unique data-item. The item
may be a simple variable, or an array in 1, 2, or 3 dimen-
sions.

Attribute: NAME

An ASCII character string of 12 bytes containing the

name of the item.
Attribute: DATA-TYPE-NAME
The data-type of which this item is one occurrence.

2—71—4

Attribute: DEFAULT

A default value which is to be used for this item when
no other value is available. Sixty-four bits are allowed
for its representation, but only the bits required are
used. In the case of array items, only the value for one
element of the array is given.

Attribute: OCCURRENCES '

This is a triple valued attribute which gives the three
dimensions of the array if this item is an array. For a
simple data-item, this attribute will have the value 1,1,1.
For a one-dimensional array of order N, it will have the
values N,1,1. For a two-dimensional array, values
M,N,1; for three dimensions, values L, M,N.

Attribute: UNIT

This attribute is an ASCII string of eight characters
used to indicate the unit of measurement, such as feet,
yards, meters, etc. if no units of measurement are re-
quired, this field will be null.
Relationship: DATA-TYPE

ITEM is related N:1 to DATA-TYPE. Each item is of
exactly one DATA-TYPE. DATA-TYPE-NAME is the
linking data-item.
Relationship: REC-FMT

ITEM is related 1:N to REC-FMT. The linking data-
item is ITEM-NAME.
Relationship: KEY-ITEM

ITEM is related 1:N to KEY-ITEM, with ITEM-
NAME as the linking data-item. This relationship indi-
cates which items are used as keys.

ENTITY: RECORD

This entity names a logical record which can be a part
of one or more files. The record contains one or more
data-items and may be of internal or external value.
Attribute: NAME

An ASCII character string sixteen bytes long contain-
ing the name of the record. This name will be referenced
by other entities.

Relationship: REC-FMT

RECORD is related 1:N to REC-FMT, with
RECORD-NAME as the linking data-item. This rela-
tionship defines the items contained in the record, their
location, and their format.

Relationship: FILE

RECORD is related 1:N to FILE, and the linking
data-item is RECORD-NAME. This relationship exists
only for internal files and identifies the files in which
each record occurs.

Relationship: GRP-FMT

RECORD is related 1:N to GRP-FMT, with the link-
ing data-item being RECORD-NAME. This relationship
exists only for external files and identifies the groups
(and ultimately files) in which each record occurs.

ENTITY: REC-FMT

This entity (record format) represents the unique in-

tersection of one item and one record. The entity con-
tains information on how the item is related to the re-
cord.
Attribute: RECORD-NAME

The record name of which REC-FMT is a member.
Attribute: ITEM-NAME

The name of the item being described.

Attribute: ORDINAL-POS

An integer stating the ordinal position (1st, 2nd, 3rd,
etc.) of the item in the record.
Attribute: FORMAT

This is a description of the format of the item for this
particular record. This attribute will be used to deter-
mine dollar signs, commas, and other external features.
The internal representation is indicated by a default
format.

Relationship: ITEM-ACC

REC-FMT is related 1:N to ITEM-ACC, and the
ITEM-NAME provides the link. This relationship
exists as part of the security provisions and determines
the access allowed each user-class to each item within
each record.

Relationship: ITEM

REC-FMT is related N:1 to ITEM. The linking data-
item is ITEM-NAME.
Relationship: RECORD

REC-FMT is related N:1 to RECORD, with
RECORD-NAME providing the linkage.

* %

Internal File Part

This portion of the CDD describes internal files in-
cluding disk files, databases, etc. This part of the CDD
is shown in Figure 3.

RECORD FILE
NAME,
NAME FILE-TYPE-

NAME,
REC-NAME

-

RELATIONSHIP
ITEM-NAME, NAME, WNER-FILE-
KEY-NAME, FILE-NAME, NAME,
ORDINAL-POS | TYPE,UNIQUE MBR-FILE-NAMH,
ITEM-NAME
Figure 3

Each record type occurs in one or more files. Each
file, usually has one or more keys by which records may
be identified and retrieved. Each key, in turn, may con-
sist of one or more data-items. The relationship be-
tween keys and data items is described by the entity
KEY-ITEM.

The entity RELATIONSHIP is used to describe the
relationship between records in one file and records in
another file. For a given relationship, a file is either the
owner or a member of the relationship. If a file is the
owner of a relationship, the following conditions pre-
vail:

1. Each owner record is related to zero or more re-
cords in the member file.

2. Each owner record shares with its member records
a common value of the linking data-item.

3. An owner record may not be deleted if it is related
to one or more member records.

The reader may recognize IMAGE “master” records
as being owner types. In IMAGE the relationships are
indicated by “chains” of pointers. Likewise, from the

following constraints on member records, it may be
seen that IMAGE “detail” records are member records.

1. Each member record is related to exactly one
owner record in the relationship.

2. All member records share with their owner record
a common value of the linking data-item.

3. A member record may not be added if no owner
record exists with which it shares a common value of
the linking data-item.

These rules not only define how a relationship is es-
tablished between records in different files, but also
prevent the infamous insertion and deletion anamolies
from occurring in a normalized database. A file may
simultaneously be a member of zero or more relation-
ships and the owner of zero or more relationships. Note
that in data structure diagrams, such as Figure 1, the
arrow always points from the owner to the member in a
relationship.

This description of internal files with keys and rela-
tionships, is equivalent to a database schema. Thus the

2—-71-—5

CDD subsumes the part of the database management
system. :

The entities not previously described are as follows:

ENTITY: FILE

The entity FILE describes a unique file of a given
name. Files can be external in form, such as reports and
screens, or internal in the form of disk and other storage
medium files. External files may contain a variety of
records and these records are collected into groups. The
entities GRP and GRP-FMT are used to relate records
to external files. Internal files normally contain one type
of record. This relationship is shown by the 1:N rela-
tionship from record to file. An internal file may have
one or more keys and relationships between internal
files are given by the RELATIONSHIP entity.

Attribute: NAME

An ASCII character string with a maximum of
twenty-six bytes containing the file name, group name,
and account name necessary for accessing the file. This
name will be referenced by other entities.
Attribute: FILE-TYPE-NAME

The name of the file-type to which a given file be-
longs.
Attribute: RECORD-NAME

The name of the record which occurs repeatedly to
form the file. This attribute is valid only for internal files
and will default when the file is of external form.
Relationship: FILE-TYPE

FILE is related N:1 to FILE-TYPE. The linking
data-item is FILE-TYPE-NAME. This relationship in-
dicates the file-type and, by implication, the functions
for each file. '
Relationship: FILE-ACC

This is a 1:N relationship between FILE and FILE-
ACC with a linking data-item of FILE-NAME. The re-
lationship indicates the access modes allowed to spe-
cific user-class for this file.
Relationship: PGM-ACC

FILE is related 1:N to PGM-ACC. The linking data-
item is FILE-NAME. This relationship indicates the
access mode used by a given program for each file.
Relationship: RECORD

FILE is related N:1 to RECORD with the linking
data-item being RECORD-NAME. This relationship is
valid only for files of an internal form and shows the
normal pattern of one record type for an internal file.
Relationship: KEY

FILE is related 1:N to KEY and the linking data-item
is FILE-NAME. Entity KEY and this relationship are
valid only for internal files. Each key is a legitimate
search item for the related file.
Relationship: GROUP

FILE is related 1:N to GROUP with the linking data-
item being FILE-NAME. This relationship is valid only

2—-71—6

for external files and indicates the groups of records
that are included in this file.

Relationship: OWNER-RELATIONSHIP

FILE is related to the entity RELATIONSHIP on the
order of 1:N with OWNER-FILE-NAME being the
linking data-item. This links each owner file to its corre-
sponding relationships.
Relationship: MEMBER-RELATIONSHIP

FILE is related to the entity RELATIONSHIP on the
order of 1:N with MEMBER-FILE-NAME being the
linking data item. This links each member file to its
corresponding relationship.

ENTITY: RELATIONSHIP

Attribute: OWNER-FILE-NAME

An ASCII string of 26 bytes that names the file which
“owns” the relationship.
Attribute: MEMBER-FILE-NAME

An ASCII string of 12 bytes that names the file which
is a “member” of the relationship.
Attribute: ITEM-NAME

An ASCII string of 12 bytes that names the data-item
whose value is shared by the owner record and member
records in this relationship.
Relationship: OWNER-FILE

RELATIONSHIP is related N:1 to FILE with
OWNER-FILE-NAME being the linking data item.
This links each member file to its corresponding rela-
tionships.
Relationship: MEMBER-FILE

RELATIONSHIP is related N:1 to FILE with
MEMBER-FILE-NAME being the linking data-item.
This links each member file to its corresponding rela-
tionships.

ENTITY: KEY
This entity identifies any and all keys for each inter-

‘nal file. The entity contains information on the name of

the key, the file name to which it belongs, and the type
of key.
Attribute: NAME

An ASCII string of 16 bytes containing the name of
the key. This name will be referenced by KEY-ITEM.
Attribute: FILE-NAME

The name of the file to which a given key belongs.
Attribute: TYPE

This attribute is used to define the method of acces-
sing a record by using the key. The type will differ
according to whether the file is a sequential file,
database file, etc.
Attribute: UNIQUE

This attribute has a value which is either true or false.
If true, then each value of the key must be distinct from
all other values of the key.

Relationship: KEY-ITEM

KEY is related 1:N to KEY-ITEM, with KEY-
NAME providing the linkage. Any given key consists of
one or more occurrences of KEY-ITEM. This allows a
key to consist of composite data-items.
Relationship: FILE

KEY is related N:1 to FILE, with FILE-NAME pro-
viding the linkage.

ENTITY: KEY-ITEM

This entity represents the unique intersection of one
key and one item. The entity contains information on
how the item is related to the key.

Attribute: ITEM-NAME

The name of the item being described.
Attribute: KEY-NAME

The key name of which KEY-ITEM is a member.
Attribute: ORDINAL-POS

An integer stating the ordinal position (1st, 2nd, 3rd,
etc.) of the item in the key.

Relationship: KEY

KEY-ITEM is related N:1 to KEY, with KEY-
NAME being the linking data-item.
Relationship: ITEM

KEY-ITEM is related N:1 to ITEM, with ITEM-
NAME being the linking data-item.

LR - ¢

External File Part

External files are those which are displayed exter-
nally from the computer system and generally are in-
tended to be read and/or written by people as well as
machines. Included in this category are formatted sc-
reens, reports, and graphical presentations.

Unlike internal files, which normally contain only one
type of record, external files typically contain a variety
of records. Organizing and sequencing this variety of
records is the principal challenge in this part. The en-

tities concerned in this organization are shown in Figure
4,

NAME,
FILE-TYPE-
NAME,
REC-NAME
BES;QBIZ CRP
NAME NAME,
FILE-NAME
GRP-FMT SEL-RULE
REC-NAME, PREDICATE,
GRP-NAME, FUNCTION,
CONTROL FATHER-GRP-
NAME,
SON-GRP-NAME '
Figure 4

Each file consists of an aggregation of ‘‘groups”
(GRP). A group is a group of records. The placement of
each record within the group is controlled by the entity
“group-format” (GRP-FMT). Since, typically, the rules
for determining which group follows the previous one
are data dependent, provision is made for a “‘selection
rule’” (SEL-RULE) to determine the sequence of
groups within the file.

Descriptions of the entities from this part are as fol-
lows:

ENTITY: GROUP

This entity exists for external files only and names
each specific group of records which are part of a given

file. An external file consists of one or more groups,
each group containing one or more records.
Attribute: NAME

An ASCII character string of 16 bytes that names
each group.

Attribute: FILE-NAME

The name of the file to which the group belongs.

Relationship: GRP-FMT

GROUP is related 1:N to GRP-FMT, with GROUP-
NAME providing the link. Any given group consists of
one or more occurrences of GRP-FMT. This relation-
ship defines the records contained in the group.
Relationship: SEL-RULE

GROUP is related 1:N to SEL-RULE, with the link-

2—-71-7

ing data-item being GROUP-NAME. SEL-RULE
(selection rule) determines if the current group will be
repeated or a new group will be selected.
Relationship: FILE

GROUP is related N:1 to FILE, with the linking
data-item being FILE-NAME.

ENTITY: GRP-FMT

This entity (group format) represents the unique in-
tersection of one record and one group. It contains in-
formation on how the record is related to the group.
Attribute: RECORD-NAME

The name of the record being described.

Attribute: GROUP-NAME

The group name of which GRP-FMT is a member.
Attribute: CONTROL

An ASCII string of eight bytes used to indicate the
placement of the record within the group.
Relationship: RECORD

GRP-FMT is related N:1 to RECORD, with
RECORD-NAME being the linking data-item.
Relationship: GROUP

GRP-FMT is related N:1 to GROUP, with GROUP-
NAME being the linking data-item.

ENTITY: SEL-RULE

This entity (selection rule) is used to determine if the
current group will be repeated, a new group will be
selected, or the file terminated. The entity contains in-
formation on which group is to be selected and which
function to use (append, replace, add, etc.).

Attribute: PREDICATE

An ASCII string of 28 characters which is tested to
determine which rule will be selected. The following
conditions prevail:

1. Each predicate is a proposition which is either true
or false when tested.

2. The predicates are tested in the order given, and
the first predicate found true prevails. Subsequent pre-
dicates are not tested.

3. Each predicate consists of a data-item name, an
operator, and either a constant or another data-item
name.

4, Data-items must be described in the CCD. All con-
stants and variables must be of the same data-type.
Operators are >, =, <, >=, <=, <>,

Attribute: FUNCTION

An ASCII string of eight characters containing the
function to be used. The following functions are avail-
able:

REPEATA Repeat, appended; this option repeats
the current group and appends it to the
previous group.

REPEATO Repeat, overlayed; this option repeats

the current group and overlays the pre-

2—71—8

vious group (this option is designed for
use with screens).

NEXTA Next group, appended; this function
obtains the next group and appends it
to the previous group.

NEXTC Next group, cleared; this function ob-

tains the next group and will clear the
screen (or go to the top of the next
page) before displaying the group.
TERMINATE End of file; no new groups are ob-
tained.
Attribute: FATHER-GROUP-NAME
The GROUP-NAME of the father of the current
group. This attribute is used when the rule references
the previous group.
Attribute: SON-GROUP-NAME
The GROUP-NAME of the son of the current group.
This attribute is used when the rule references the next
group.
Relationship: GROUP
SEL-RULE is related N:1 to GROUP, with the
GROUP-NAME providing the linkage. The GROUP-
NAME can be either the father of the current group or

the son of the current group.
* A %

Access Part

Like data-items, a complete description of files must
include the functions that operate upon them. These are
the access functions which this section is concerned
with. The relevant entities are shown in Figure 5.

FILE-TYPE ACCESS-TYPE
NAME ,
DEV-CLASS NAME
ACC—l FUN

NAME, FILE-TYPE-
FILE-TYPE- NAME,

NAME, ACC-TYPE~-NAM
REC-NAME FUNCTION

Figure §

Each file must be of a type described by FILE-TYPE.
These types may include sequential, direct access
(hashing), indexed (KSAM, RELATE), IMAGE or
other files. Each file contains an attribute which links it
to a previously defined file type.

Likewise, there is a set of generic functions for files
including read only, append only, update, read/write,
etc. These are described in ACCESS-TYPE.

For each file-type and access-type, there is usually
one function which provides that mode of access for

that particular file type. Not all file-types support all
modes of access.

The descriptions of these entities are as follows:

ENTITY: FILE-TYPE

This entity specifies the type of each file, and by rela-
tionship, the access function for each file type.
Attribute: NAME

An ASCII character string of eight bytes used to
name the various file types.

Attribute: DEV-CLASS

An ASCII character string of eight bytes which con-
tains the device class name on which the file type resid-
es.

Relationship: FILE

FILE-TYPE is related 1:N to FILE, with FILE-
TYPE-NAME being the linking data-item. This rela-
tionship links all files of a given type. '
Relationship: ACC-FUN

FILE-TYPE is related 1:N to ACC-FUN, with
FILE-TYPE-NAME being the linking data-item. This
relationship indicates the functions for access of a given
file-type.

ENTITY: ACCESS-TYPE

This entity represents the various access modes that
are available for items, files, and programs. In the at-
tribute ACCESS-TYPE, each bit of the integer repre-
sents an access function. If the bit corresponding to a
given function is set to 1 then that function is allowed in
the access type. An access type can consist of one or
more functions. The functions — and their correspond-
ing bit positions — available as part of the dictionary
are:

Bit Function Explanation
7 Exclusive Access to data is given to this
user only
8 Read User is allowed to read data
9 Append User may append new data
10 Update User may modify existing data
11 Delete User may delete records
12 Create User may create files
13 Purge User may delete files
14 Execute User is allowed to execute or
stream files
15 Locking Files or items may be locked to

prevent concurrent access
Examples are shown below.
Decimal
Bit Pattern Value
0000000010000000 128

Access Type
Read only shared access
Read, update shared
access with locking
Read, append, update
exclusive access

0000000010100001 161

0000000111100000 480

Attribute: NAME

An integer containing the bit code representing the
corresponding access type. NAME is referenced from
other entities.
Relationship: ACC-FUN

This is a 1:N relationship between ACCESS-TYPE
and ACC-FUN which indicates the functions which are
used for data manipulation when a particular access
mode is prevalent. The linking data-item for this rela-
tionship is ACCESS-TYPE-NAME.
Relationship: PGM-ACC

ACCESS-TYPE is related 1:N to PGM-ACC with the
linking data-item being ACCESS-TYPE-NAME. This
relationship indicates the mode of access used by a
given program to a given file.
Relationship: FILE-ACC

The entity ACCESS-TYPE is related 1:N with
FILE-ACC and has a linking data-item of ACCESS-
TYPE-NAME. This relationship indicates the files
which are accessible by a given user.
Relationship: ITEM-ACC

The entity ACCESS-TYPE has a 1:N relationship to
ITEM-ACC which represents the items which are ac-
cessible by a particular user. The linking data-item is
ACCESS-TYPE-NAME.

ENTITY: ACC-FUN

This entity represents the function that is used with a
given access mode to reference a certain file type.
Functions are external to the Data Dictionary and will
be referenced when a file access is requested.
Attribute: FILE-TYPE-NAME

The name of a file type for which a function is used.
Attribute: ACC-TYPE-NAME

The name of an access type for which a function is
used. '

Attribute: FUNCTION

The ASCII character string of eight bytes which
names the function.
Relationship: ACCESS-TYPE

ACC-FUN is related N:1 to ACCESS-TYPE with a
linking data-item of ACCESS-TYPE-NAME. This rela-
tionship indicates the functions which are used by a
given access type.

Relationship: FILE-TYPE

This is an N:1 relationship between ACC-FUN and
FILE-TYPE which indicates the functions that are used
by a given file type. The linking data-item is FILE-
TYPE-NAME.

*® A %

Application Part

Although not properly a part of the data descriptions,
it is helpful to have information on programs and appli-
cations in the CDD. Particularly useful is knowledge of

2—71—-9

the relationships between programs and files; which
programs use which files and in which mode of access. .

This information is stored in the application part of the
CDD as shown in Figure 6.

APPLICATION PROGRAM FILE
NAME,
NAME NAME, FILE-TYPE-
—" APP-NAME NAME,
REC-NAME

FILE-NAME,
PGM-NAME,
ACC-TYPE-~
NAME

Figure 6

Each application area is given a name which is re-
corded in the entity APPLICATION. Each application
owns a set of programs which are named in the PRO-
GRAM entity. For each file accessed by each program,
there is an entry in PGM-ACC which shows the mode of
access for that particular program-file pair.

Since files commonly bridge application boundaries,
there is no attempt to assign files to applications. The
linkage exists implicitly through the programs.

The application part entities are described as follows:

ENTITY: APPLICATION

The entity APPLICATION represents the various
applications whose data is described by the Data Dic-
tionary. The users allowed to access an application are
shown by the relationship to USER-APP.

Attribute: NAME

An ASCII character string of eight bytes containing
the name of an application. This name will be refer-
enced from other entities.

Relationship: PROGRAM

APPLICATION is related 1:N to PROGRAM with a
linking data-item of APPLICATION-NAME. This rela-
tionship indicates the programs included in an applica-
tion area.

Relationship: USER-APP

This is a 1:N relationship between APPLICATION
and USER-APP which indicates the user’s given access
to an application. The linking data-item is APP-NAME.

ENTITY: PROGRAM

This entity gives the name of each program which is
currently part of the Comprehensive Data Dictionary.
The entity will also indicate the relationship any pro-
gram has to an application area. The relationship be-
tween PROGRAM and PGM-ACC shows the access the
program has to files.

2—-71—10

Attribute: NAME

The ASCII character string of a maximum 26 bytes
which contains the program name, group name, and ac-
count name necessary for accessing the file. This name
will be referenced by other entities.
Attribute: APP-NAME

The name of the application to which this program
belongs.
Relationship: APPLICATION

PROGRAM is related N:1 to APPLICATION. The
linking data-item is APPLICATION-NAME. This rela-
tionship indicates the application area to which a pro-
gram belongs.
Relationship: PGM-ACC

This is a 1:N relationship between PROGRAM and
PGM-ACC which indicates the various access allowed

between files and programs. The linking data-item is
PROGRAM-NAME.

ENTITY: PGM-ACC

This entity is the unique intersection between
ACCESS-TYPE, FILE, and PROGRAM. The entity
represents the allowed file accesses for a given pro-
gram. This entity is used to determine the mode of ac-
cess allowed by each program to each file.

Attribute: FILE-NAME
The name of the file being accessed.
Attribute: PROGRAM-NAME
The program name of the program accessing the file.

Attribute: ACCESS-TYPE-NAME

The access type name which indicates the access
mode for the access being defined.
Relationship: PROGRAM

PGM-ACC is related N:1 to PROGRAM with a link-
ing data-item of PROGRAM-NAME. This relationship

indicates which program is given access to the given
file.

Relationship: FILE

This is a N:1 relationship between PGM-ACC and
FILE which indicates the file which can be accessed by
the program. The linking data-item is FILE-NAME.
Relationship: ACCESS-TYPE

The entity PGM-ACC is related N:1 to ACCESS-

" TYPE with a linking data-item of ACCESS-TYPE-

NAME. This relationship indicates the type of access
the program may use when referencing the file for a

USER-CLASS.
P

given PGM-ACC.

% A %

Security Part

As with the application part, security is not properly a
part of the data description. However, it is a necessary
part of any application using the CDD and may conve-
niently be accommodated here. This information is con-
tained in the part of the CDD shown in Figure 7.

NAME,
PASSWORD
ITEM-ACC FILE-ACC USER-APP
REC-NAME, FILE-NAME,
ITEM-NAME, USER-NAME, USER-NAME,
USER-NAME, ACC-NAME APP-NAME
ACC-NAME
REC-FMT LPPLICATION
RECORD-NAME,
ITEM-NAME, ILE-TYPE- NAME
ORDINAL-POS, NAME,
FORMAT EC-NAME
Figure 7

Users of the CDD, or applications described therein,
are identified by their USER-CLASS-NAME. Each
such name has a password associated with it to verify
authenticity. The name and password are recorded in
the USER-CLASS entity.

The applications, and hence programs, to which a
given user-class has access are determined by entries in
the USER-APP entity. An entry must occur here for
each user-class/application pair that is allowed.

Data access is controlled at two levels. A user must
be allowed access at both levels to be successful. Where
a conflict exists between the levels, the most restrictive
case prevails.

Access to files is controlled by the FILE-ACC entity.
For each allowed user-class/file pair, an entry names
the user-class, file, and acces mode allowed.

Access to individual data-items is controlled within
the context of records. For example, a certain user-
class may be allowed to read the data-item
EMPLOYEE-NAME within the context of a produc-
tion record but not allowed to see the same item in the
context of a payroll record.

Data-item access is controlled by the ITEM-ACC en-
tity. The item, record, user, and access mode are iden-

tified to allow the user access to the specified item
within the specified record.

The security part entities are as follows:

ENTITY: USER-CLASS

This entity represents the different classes of users
that will be able to reference the data described by the
Data Dictionary. Each user class is allowed access to a
limited set of applications, files, and data-items. The
type of access is controlled in each case.

Attribute: NAME

An ASCII string of eight bytes containing the name of
a user classification. This name will be referenced from
other entities.

Attribute: PASSWORD

An ASCII string of eight bytes containing the
password which controls the availability of specific user
classification accesses.

Relationship: USER-APP

The entity USER-CLASS is related 1:N to USER-
APP with a linking data-item of USER-CLASS-NAME.
This relationship indicates which applications are ac-
cessible by a user classification, and the modes of ac-
cess allowed.

2—71—11

Relationship: FILE-ACC

USER-CLASS is related 1:N to FILE-ACC. The
linking data-item is USER-CLASS-NAME. The files
accessible by a user classification and the mode of ac-
cess are indicated through this relationship.
Relationship: ITEM-ACC

USER-CLASS is related 1:N to ITEM-ACC and the
linking data-item is USER-CLASS-NAME. The items
accessible by a user classification and the mode of ac-
cess are indicated through this relationship.

ENTITY: USER-APP

This entity represents the unique intersection be-
tween a user classification and an application. The in-
tersection shows a user classification that is allowed
access to a given application.

Attribute: USER-CLASS-NAME

The name of a user classification for which an appli-
cation access is being defined.
Attribute: APP-NAME

The name of an application for which an access is
being defined.

Relationship: USER-CLASS

This is a N:1 relationship between USER-APP and
USER-CLASS. The linking data-item is USER-
CLASS-NAME. The relationship indicates the user
classification which is given access to an application.

Relationship: APPLICATION

USER-APP is related N:1 to APPLICATION with
the linking data-item of APPLICATION-NAME. The
relationship indicates the application to which a user
classification is given access.

ENTITY: ITEM-ACC

This entity represents the unique intersection of three
entities REC-FMT, USER-CLASS, and ACCESS-
TYPE. The intersection defines an access by indicating
which user classification can reference an item in a par-
ticular record and what mode of access is permitted.
Attribute: ITEM-NAME

The name of the item for which an access is being
defined.

Attribute: RECORD-NAME

The name of the record for which an access is being
defined.

Attribute: USER-NAME

The name of the user classification for the access
being defined.

Attribute: ACCESS-TYPE-NAME

The name of the access type or mode for the item
access being defined.

Relationship: USER-CLASS
ITEM-ACC is related N:1 to USER-CLASS with the

2—71—12

linking data-item being USER-CLASS-NAME. This re-
lationship indicates the user classification that is given
access to an item.

Relationship: ACCESS-TYPE
This N:1 relationship between ITEM-ACCESS and
ACCESS-TYPE indicates the access mode allowed in
referencing the item. The linking data-item is
ACCESS-TYPE-NAME.
Relationship: REC-FMT <
ITEM-ACCESS is related N:1 to REC-FMT and the
relationship indicates which item of a particular record
will be referenced through the access defined. The link-
ing data-items for this relationship are RECORD-
NAME and ITEM-NAME.

ENTITY: FILE-ACC

This entity is the unique intersection of USER-
CLASS, ACCESS-TYPE and FILE. This entity repre-
sents the modes of access allowed in referencing a given
file by a user class. The access is defined by the differ-
ent relationships that are present in this entity.
Attribute: FILE-NAME

The name of the file for which the access is being
defined.

Attribute: USER-CLASS-NAME

The name of the user classification for which the ac-
cess is being defined.

Attribute: ACCESS-TYPE-NAME

The access type name which defines the file access.
Relationship: FILE

This is a N:1 relationship between FILE-ACC and
FILE. The linking data-item is FILE-NAME. This rela-
tionship indicates the file which will be referenced
through the access defined.

Relationship: USER-CLASS

FILE-ACC is related N:1 to USER-CLASS and the
relationship indicates the user classification that is
given access to a file. The linking data-item is USER-
CLASS-NAME.

Relationship: ACCESS-TYPE

FILE-ACCESS is related N:1 to ACCESS-TYPE
with a linking data-item of ACCESS-TYPE. The access
mode allowed by the defined access is indicated by this
relationship.

* %X %

IMPLEMENTATION

Implementation of the CDD, done to date, is in three
phases. First, a database is built to hold the data of the
CDD. Second, the CDD is used to describe itself — a
non-trivial exercise. Third, the CDD is used to describe
some real-world applications.

The strengths and weaknesses of this CDD are as-

sessed, based on the limited experience gained to date.
Finally, future developments are briefly discussed.

Mapping the Model to a Database

The model of the CDD, described in the previous
section, is in the form of a normalized, network,
database. Thus, it is only natural to seek a database
management system (DBMS) with which to implement
it. Although IMAGE is based on the network model, it
was rejected because of its rigidity and the limits of its
two-level structure. Instead, RELATE/3000,* a rela-
tional DBMS was selected.

In mapping the model into RELATE, each entity be-
comes a Relation, or file. These files may each be inde-
xed on any combination of keys. Attributes become
data-items. Relationships cannot be explicitly shown in
a relational DBMS, but are implicitly linked by shared
data-item values.

Mapping the CDD into Itself

As a first exercise in mapping applications into the
CDD, it was decided to map it into itself; i.e., use the
CDD to describe itself. Since the CDD contains 22 en-
tities, 37 data-items, and 29 relationships, the exercise is
not trivial.

The initial mapping of the CDD into itself, using RE-
LATE, is shown in Appendix A. Notice that some files
are empty because the corresponding entities are not
needed in this application. For example, at this time,
there are no external files associated with the CDD, so
the corresponding entities are empty.

Several small problems were encountered in this
exercise. Several of the data-item and entity names had
to be modified to conform to the naming conventions of
RELATE. Since a full set of functions was not immedi-
ately defined for the standard data types, the TYPE-
FUN entity was left empty. Likewise no programs were
intially associated with the CDD.

Some problems of greater significance also appeared.
One, that will doubtless reoccur in other applications, is
that of composite data-items used as links in entity rela-
tionships. For example, both record-name and item-
name are used as the linking item between REC-FMT
and ITEM-ACC. Neither alone is sufficient. Yet provi-
sion is made for only one linking item in the RELA-
TIONSHIP entity.

Another is the magnitude of records that can occur in
some entities. For example, ITEM-ACC is limited only
by the product of the number of records in ITEM, RE-
CORD, ACCESS-TYPE, and USER-CLASS. At one
time the number of records in these entities were 37, 22,
13, and 2 respectively giving a potential of 21,164 re-
cords in ITEM-ACC. While the actual number was only
284 it is still too large. Some kind of “wild-card” nota-
tion is being considered to reduce the number of re-
cords.

Another troublesome area is the representation of the

*RELATE is a trademark of Computer Resources Incorporated, 2570
El Camino Real, Mountain View, CA 94040.

values of MIN and MAX in DATA-TYPE, and DE-
FAULT in ITEM. The intention is that the binary or
internal representations of these values be stored.
However, this would require that these items be of dif-
ferent data-types in different records — a complexity
beyond the ability of most DBMSs to handle. Two al-
ternatives are apparent; either store them in external
form, in which case all are stored as ASCII character
strings; or declare them type long and left justify the
actual value within the 64 bits.

Mapping Applications to the CDD

The press deadline for submission of this paper oc-
curred too soon to allow much experimentation with
real applications. The authors will be able to share these
experiences when the paper is presented.

However, on the basis of early work done, some
things have become obvious, and several changes or
redefinitions are clearly indicated.

First, there is a substantial weakness in the area of
composite data types. An additional entity needs to be
created to link a composite data-type with its compo-
nents. This will have several advantages over the pre-
sent mechanism. .

1. Arrays of any number of dimensions can be de-
clared.

2. Composite types may have components of several
different types.

3. Composite types may become components of
more complex types.

Second, the whole access area is proving trouble-
some. Several issues need to be better defined includ-
ing:

1. Better definitions of access modes and allowed

combinations of modes.

2. A notation for item access that does not require a
separate entry for each user-record-item intersec-
tion.

Third, some minor changes are needed in GROUP
and GRP-FMT to accommodate the structure clash be-
tween external files and physical pages and screens. An
attribute (LINE-NBR) can be added to GROUP to indi-
cate the last line on which that group is allowed to be-
gin. A current line number greater than this will trigger a
new page.

Likewise a standard group must be added to each
external file which will be inserted whenever a new
page is triggered. This same group will also, automati-
cally, begin each external file, thus eliminating initializ-
ing problems.

On the whole, real applications appear to be mapping
in with very few other problems. In particular, the
group structure for external file descriptions seems to
work well. A final judgment must, however, await trials
with “strange” external files as well as more standard
ones.

2—71—13

. Future Developments

The next step is to complete the current development
phase, i.e., testing the model against a variety of appli-
cations and refining it as indicated.

The next phase is to develop a “front-end” program
to interface between the CDD and its manager. This
program would perform the functions of adding, delet-
ing, and modifying the contents of the CDD while
checking for consistency. It would also provide format-
ted reports on the contents of the CDD.

To this point, the CDD will not have been used by
processors to do production data processing. While it
may prove very useful for documentation purposes, the
principal value of the CDD is in its use in production..

The development of the processors required to apply

the CDD to production can proceed in three phases.
While there is some overlap and interaction, they may
proceed somewhat independently. :

The first processor is a query/report/screen proces- -

sor. It will move data between internal and external
files. Thus, to produce a new report;it is only necessary
to describe the report in the CDD.: The processor can
then produce the report from internal files. Likewise
data could be transmitted between screens and internal
files. '

The second processor integrates the DBMS with the

CDD. As mentioned earlier, presently available DBMSs -
9ach have a separate “‘schema’” which describes only v

the data in the database. This processor combines the
DBMS with the CDD so that internal files are described
in only one place.

The third processor is a program generator which re-
lies on the CDD for all data descriptions. This may
either be a compiler or interpreter. In either case very
high-level statements would allow most programs to be
expressed in a fraction of the number of statements re-
quired by typical languages. By removing the data de-
scriptions and conversions from the program, only the
functional parts need be expressed.

CONCLUSION

The CDD has, initially, shown the capacity to contain
the total data descriptions needed for applications.
Thus, it is'a suitable base on which to build sophisti-
cated processors which will greatly reduce the need for
applications’ programming.

Research will continue in this direction. Meanwhile,
it is hoped that others will benefit by this study and, in
turn, contribute their experiences with data dictionaries
to the common body of knowledge.

- ACKNOWLEDGEMENT
The authors wish to thank Steve Beasley and Ken Knepp for the
considerable time and effort they have contributed to this project. The
typing was done by Maxine Loeber whose accuracy is greatly appre-
ciated. Finally, support for this project by C. M. Funk & Co. and
Anderson College is gratefully acknowledged.

APPENDIX A

INITIAL MAPPING OF THE

COMPREHENSIVE DATA DICTIONARY
INTO ITSELF USING
RELATE/3000

FILE: DATATYP

ITEMS: DATATYP BITS MIN MAX CHECK FIX INEX EXIN
INTEGER 16 -32768 32767 ASCIT BINARY
REAL 32 -1.15792%107¢ 1.15792*1076 'INEXT 'EXTIN
LONG 64 -1.15792%1076 1.15792%1078 '"INEXT 'EXTIN
BYTE 8 0 255
LOGICAL 16 0 65535 ASCII BINARY
DOUBLE 32 2147483648 2147483648 DASCII DBINARY

2—-71—14

FILE:

ITEMS:

FILE:

ITEMS :

ITEM
ITEM

DATATYy
sITS
ML

MA X
CHECK
Flx
INEX
EXIN
I1TEM

KEY

PUSLITIUN
FILE
TYPE
UnNIwbe
UwN_FlLe
MBR_FILE
PROGKAM
ACCIYPE
APPL1Ca
TYPEF UK
UCCUR)
UCCUKe
UCCUK3
DEFAULL]Y
UNET
RECUKD
FILETYF
FUNCTTUN
FURMAT
GRUUP
DEV_CLASS
USEK
CONTRUL
PREVDICATE
FTHRGRYF
SUnbkk
PASSWUKD

RECORD

KeECUKD

RC=LATATYP
RC=TYFEr UN

RC=1TEMm

RC=RECUKD
RC=RECFT

RC=F ILt
RC=GRULV

RC=GRPF |
RC=SELruLE
RC=RL TSNP

RC=KEY

NATATYP

8YIE
INTEGENR
LUNG
LONG
BYTE
BYITE
BYTE
BYTE
8YTE
BYTE
INTEGER
BYIE
BYTE
BYTE
BYTE
BYTE
BYTE
INTEGER
BYTE
BYTE
INTEGEK
InTeEGER
INTEGER
8YlE
IvIie
BYIlt
BYTE
BYTE
BYTE
BYTE
BYTE
HYTE
BYIE
BYTE
BYIE
BYTE
8YTt

UCCUR 9CCUR OCCUR

[T
_— =g Ve XX e =

- N -
XL TIPS TFT X e 8O =

a8

RC=KEYLTEM
RC=PGMACC

KC=ACCF UN

RC=F ILETYP
RC=1TewaCC
RC=PRULKAM
KC=APPLICA
RC=ACC) YPE
RC=FILLACC
RC=USEKRAPP
RC=USEK(CLS

Bk feed et pud Gumh s b et Pt Gt Pt et Suh e Db Sud Pt B funt fmh Gk fud Pt Put Jub b b Pt Pub fed b s fub Pt Jub (et e

VEFAULT

-

UNIT

2—-71—1§

FILE:

ITEMS:

2—71—16

RECFMT

KECORD

RC=DATATYF
KC=DATATYP
RC=DATATYP
RC=DATATYP
RC=DATAIYP
RC=DATAJYP
RC=DATATYP
RC~DATATYP
RC=1YPLEFUN
RC=TYPEF Uiv
RC=1TEM
KC=1 1Lk~
RC=1TEwM
RC=1TEw
RC=1TE®
RC=1TEm
RC=1TEM

" RC=RELCUKD
" RE=KECEMT

RC=RECHMT
RC=RECHMT
RCwRECF M T

KRC=F 1Lt

RC=F ILE
RC=F 1Lt
RC=GROLP
RC=GROUUY
KC=GKPF4T
RC=GRPf M1
KC=GRFEMT
RC=GRPF T
RC=StLKULE
RC=SELRuULE
kKC=StlLrULE
RC=StLnULLE
RC=RL TivaHP
RC=RLTiwdhP
RC=RLTisOMP
RC=KLY
RC=KEY
RC=KLY
RC=KEY
RC=KEYLIEM
RC-KEYITEM
KRC=KEYITEM
KRC=PGNMALC
KC=PGMALC
RC=FGMACC
KC=ACCF UN
RC=ACCHUN

ITEM

DATATYP
BITS
MIN

MA X
CHECK
FIX
INEX
EXLN
TYPEFUN
DAYATYP
1TEM
DATATYP
UCCUR]
UCCuUke
UCCUR3
DEFAULT
UNLT
RECORD
RECORD
ITEM
POSIT10ON
FORMAT
FILE
FILETYP
RECURD
GROUP
FILE

RECORYD

GROUP
CUNTROL,
PUSTITIOUN
PREDICATE
FUNCTL1ON
FTHROGRP

SONGRP

OWN_FILE
MBR_F1LE
1TEM

KEY

FILE
TYPE
UWIGUE
ITEM

KEY
POSITION
FlLE
PROGKRAM
ACCTYPE
FILETYP
ACCTYPE

POS FORMAT

FILE:

ITEMS :

FILE:

ITEMS:

RECFMT
RECURD

RC=ACCFUN
RC=F ILETYP
RC=FILETYP
RC=1TEHACC
RC=ITEMACC

RC=1TEmaCC

RC=LTEMACC
KC=PRUGKANM
RC=PRUGKAM
RC=APPLICA
RC=ACL | YPE
RC=F ILEACC
RC=F 1LEACC
RC=FILEACC
RC=USERAPP
RC=USERAPP
RCAUSERLLS
RC=USERLCS

FILE
Flle

DATATY
TYPEF U
1Tem .
RECFM]
RECUKD
FILE
GRYUP
GRPFMT
StELRULL
RL INSHFP
KEY
KEYITEM
PGMACC
ACCFUN
FILETYP
1TEMACL
PRUGKAN
APFPLICA
ACCTYPL
FILEACC
USERAPE
USERCLS

ITEM

FUNCTION
FILETYP
DEV_CLASS
KECORD
ITEM
USER
ACCTYPE
PRUGRAM
APPLILICA
APPLICA
ACCIYPE
FILE
USER :
ACCTYPE:
USEK
AFPLICA
uUSER
PASSWURD

PUS FORMAT

N U W= e U B WU W

FILETYP

RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
KRELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE

KECONU

KC=DATATYP
RC=TYFEFUN
KCwllkM
KC=KECFMT
RCekECOKD
RC=F LLE
KC=GRUYP
RC=GRPFMI
RC=SELRULE
RC=RLINSHP
RC=KEY
KC=KEYITEM
RC=PLMACC
RC=ACCFUN
RC=FLLETYP
RC=1TEMACC
RC=PRUGKAM
RC=APPLICA
RC=ACCTYPE
RC=FlLEACC
RC=USEKAPF
RC=USEKCLS

2—71—-17

FILE:

ITEMS:

RLTNSHP
OwnN_Flce

DATATYP
UATATYF
ITem
1Tem
RECF ™)
RECUKRD
RECUKD
KeCOKD
FlLE
F1LE
FILE
FIlLE
FilLt
KEY
GROUP
GRUUP
FlLE
AFPLICA
PRUGRAR
APFLICA
USEKCLS
usekCLo
USERCL Y
ACCTYPL
ACCTYPL
ACCTYPL
ACCTYPL
FILETYF
FILETYF

FILE: FILETYP

ITEMS:

2—71—18

FILETYp

SEWUEN
DIR=ACC
KSAM
IMAGE=NrA
IMAGE=UE
RELATE
PRUOGRA®
JCL

VEV_CLAS

Disc
pIsc
DiSL
DISC
01sc
DIsC
visc
Di1scC

MBR_FILE

TYPEFuUN
1TEM
RECFMI
KEYITEM
ITEMACC
RECFMT
GRPFMT
FILE
GROUP
PGMACC
KRLTNSHP
RLTINSHF
KEY
KEYLTEM
GRPFMY
SELRULE
FILEACC
PKUOGRAM
PSMACC
USERAPP
USERAPP
FILEACC
ITEMACC
FILEACC
ITEMACC
ACCFUN
P3MACC
ACCFUN
FILE

FILE:

ITEMS:

ACCTYPE

ACCTY

128

o4
160
a4
240
129

65
161
2esn
241l

1TEM

DATATYP
DATATYP
1TEM
ITEM
I1TEM
RECORD
RECORD
KECORD
FILE
FILE
UWN_FILE
MBR_F ILE
FILE

KEY
GROUP

F THRGRP
F1LE
APPLICA
PROGRAM
APPLICA
USER
USER
USER
ACCTYPE
ACCTYPE
ACCTYPE
ACCTYPE
FILETYP
FILETYP

384
320
416
480
496
204
508

258

™

-

FILE:

ITEMS:

ACCFUN
FILETYF

SEWUEN
SEUUEN
SEWUEN
SESUEN
SEWUEN
SEWQUEN
SEGUEN
SEQUEN
SEWUEN
SEWUEN
SEWUEN
SEWUEN
SEGUEN
SEQUEN
SEWULEN
SEWUEN
StEWuEwn
DIk=ACC
DIK=ACC
DIR=ACC
Dir=ACC(C
DIR=AC(
DIR=ACC

- DIR=ACC

D1k=ACL
DIR=ACL
DIr=ACL
DIR=ACC
VDIR=ACC
WIK=AC(
DIR=ACC
DIR=ACC
DIR=ACC
DIR=ACC
KSAM

KSAM

KSAM

KSAM

" KSAM

KSAM
KSAM
KSAM
KSAM
NSAM
KSAM
KSAM
KSAM
KSAM
KSAM
KSAM

ACCTY FUNCTION

128
64
160
2ed
240
129
65
o1l
2es
241
384
320
416
480
496
HYud
508
128
by
loV
ec4d
24u
129
K-}
161
2esh
24l
364
320
416
480
496
04
508
128
64
160

224

240
129

65
lol
ees
cul
584
320
416
480

496

S04

FILE:

ITEMS:

ACCFUN
FILETYP

KSAM
IMAGE=via
IMAGE =1vA
IMAGE=MA
IMAGE=iA
IMAGE=MA
IMAGE=ivA
IMAGE=MA
IMAGE=MA
IMAGE=MA
IMAGE =i~ A
IMAGE=MA
IMAGE=mMA
IMAGE=MA
IMAGE=MA
IMAGE=MA
IMAGE =i A
IMAGE =i=A
IMAGE=LE
IMAGE=DE
IMAGE=LE
IMAGE={E
IMAGE=LE
IMAGE=;L
IMAGE=E
IMALE=DLE
IMacE=(:t.
IMAGE=LE
IMAGE=UE
1MAGE=DE
lMAGE =Lt
IMAGE=Lit
IMAGE=LE
IMAGE=LE

RELATE
KELATE
RELATE
RELATE
RELATE
KELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
RELATE
KELATE

ACCTY FUNCTION

508
128
o4
160
eed
c40
129
695
o0l
ees
e4l
584
520 .
416
480
496
904
508
128
6d
160
2e4
240
129
89
161
ees
241
384
320
416
480
4496
504
508
128
64
160
224
240
129
65
161
ced
cul
384
320
4106
480
496

2—71—=19

2—-71—20

FILE:

ITEMS:

ACCFUN
FILETY#

RELATE

RELATE

PROGRAI
PRUGKAM
PKUGKAWM
PRUGKAWM
PRUGRAT
PROGRA
PRUGIK AW
PRUGRAM
PRUGKARM
PKOGRA
PRUGRAIM
PROGKA
PRUGKAM
PRUOGRAM
PRUGKA
PRULKAR
PROGRAM
JCL

JCL

JCL

JCL

JCL

JeL

JCL

JCL

JCL

JCOL

JCL

JCL

JCL

JCL

JCL

JCL

JCL

ACCTY FUNCTION

Y04
506
128
(. Y)
1oV
224
240
129
65
lol
2ed
c4al
384
320
416
489
496
Y04
908
128
o4
160
2ed
240
129
05
lol
2en
241
Su4
520
416
480
496
Hy4
508

FILE:

ITEMS:

ITEMACC
ITem

DATATYP
BITS
M1
MAX
CHECK
F1X
INEX
EXIN
TYPEFUN
DATATYP
1TEM
DATATYP
OCCuUR1
ODCCUKe
WCCUKR3
DEFAULT
UNIT
KRECOURD
RECORD
~ITEM
POSITLION
FUORMAT
FILE
FILETYH
RECORD
GRUUP
FILE
RECURD
GRUUP
CUNTRUL
POSITIGK
PREVICATE
FUNCTIUN
FTHRGRKRP
SUNGKP
UWN_FILE
MBR_FILE
1TeM
KEY
FlLE
TYPE
UNITWUE
1TEM
KEY
POSITI1Viv
FILE
PROGKAM
ACCTYPL
FILETYP
ACCTYPL

RECORD

RC=OATATYP
RC=DATATYP
RC=DATATYP
RC=DATATYP
RC=DATATYP
RC=DATATYP
RC=DATATYP
RC=DATATYP
RC=TYPEFUN
RC=TYPEFUWN
RC=1TtmM
KC=1TEM
RC=ITEM
RC=1TEM
RC=ITEmM
KC=ITEM
RC=ITEM
RC=RECURD
KRC=RECFMT
RC=RECFMT
RC=RECFMT
KC=RECF M1
RC=FILE
RC=FILE
RC=FILE
RC=GRUULP
RC=GROUP
RC=GRPFM]
RC=GRPFMT
KC=GKPFMT
RC=GRPFMT
KC=SELKULE
RC=SELRULE
KC=SELRULE
RC=SELRULE
KL TINSHP
RLTNSHP
KLTNSHP
RC=KEY
RC=KEY
RC=KEY
KRC=KEY
RC=KEYITEM
KC=KLYITEM
RC=KEYITEM
KC=PGMACC
RC=PGMACC
RC-PGMACC
RC=ACCFUN

RC=ACCFUN

508
508
508
S08
508
508
508
508
508
508
5086
908
508
508
508
508
508
508
508
508
508
508
508
508
508
508
508
508
508
508
508

USER

MANAGER
MANAGER
MANAGEK
MANAGER
MANAGER
MANAGEK
MANAGER
MANAGER
MANAGER
MANAGER
MANAGEK
MANAGER
MANAGEK
MANAGER
MANAGER
MANAGER
MANAGEK
MANAGER
MANAGER
MANAGER
MANAGER
MANAGE K
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGEK
MANAGER
MANAGEK
MANAGEK
MANAGER
MANAGER
MANAGEK
MANAGER
MANAGLER
MAINVAGER
MANAGER
MANAGER
MANAGEK
MANAGER
MANAGER
MANAGER
MANAGER
MANAGEK
MANAGER
MANAGER
MANAGER
MANAGLER
MANAGEK

2—71-—-21

FILE:

ITEMS:

ITEMACC
[Tewm

FUNCT LG
FILETYF
DEV_CLASS
ITEM
RECUKRD
ACCTYPRE
USEK -
PRUGKAM
APPLICA
APPLICA
ACCTYPLE
FILE
USLK
ACCTYPL
USEK
AFPLICA
USER
PASSWOKD

RECOKD

RC=ACCFUN

KC=FILETYP
RC=FILETYP
RC=1TEMACC
RC=1TEMACC
KC=1TEMACC
RC=ITEMACC
RC=PROGKAM
KC=PRUGKAM
RC=APPLICA
RC=ACCTYPE
RC=FILEACC
RC=F1LEACC
RC=F1LEACC
RC=USERAPP
RC=USERAPP
RC=USERCLS
RC=USEKCLS

ACCTY

508
508
508
508
508
508
508
508
508
508
508
508
508
508
508
508
508
508

USER

MANAGEK
MANAGER
MANAGER
MANAGEK
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
VMANAGEK
MANAGLEK
VANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER

FILE: FILEACC

ITEMS:

FILE

DATATYH
TYPEF U
1TEM
RECFMT
RECUKD
FilLt
LRUUF
GRPF T
SELRULL
RLINSHP
KEY
KEYLTEM
PGmacCC
ACCFUN
FILETYW
ITEMACC
PROGKANM
APPLICA
ACCIYFPE
FI1LEACC
USERAPY
USERCLS

USER

MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGEK
MANAGER

- MANAGER

MANAGER
MANAGER
MANAGER
MANAGEK
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER

ACCTY

508
508
508
508
508
508
5048
508
508
508
508
508
508
508
508
508
508
508
508
508
508
508

The following files have trivial contents at this time, being either
empty or having only one entry:

TYPEFUN SELRULE USERCLS PGMACC
GROUP PROGRAM KEY USERAPP
GRPFMT APPLICA KEYITEM

2—-71—22

