System Performance and Optimization
Techniques for the HP3000

John E. Hulme
President of Applied Cybernetics, Inc.

INTRODUCTION

The purpose of this paperis to introduce the reader to
certain techniques which can improve system perfor-
mance, throughput, and run-time efficiency on HP3000
computers. These improvements will typically reduce
response time substantially and generally increase data
processing productivity.

This paper will not simply tell you what to do and
what not to do. In many cases there are trade-offs in-
volved and it is more important to understand the prin-
ciples behind the techniques than the techniques them-
selves. And because analogies often help us to learn by
giving us a new perspective, we will make use of a non-
data-processing illustration.

SOME BASIC PRINCIPLES

The first thing to understand is that any given com-
puter can execute a finite number of instructions in a
fixed amount of time. When that theoretical limit is
reached, no amount of tuning can “squeeze’ extra in-
structions into the computer. For the most part, how-
ever, computers do not bog down because we ask them
to do too much, but rather because we cause them to
trip over themselves in the process of doing it.

This leads to the second important principle: At any
moment the computer is either (1) doing productive
work; (2) getting ready to do productive work; or (3)
waiting on some external action before it can proceed
with productive work. As a program is initiated, thereby
causing a certain sequence of instructions to be exe-
cuted, we will call the execution of those instructions
“productive work.” Whether the ““productive work” is
really necessary or not, and whether it is efficiently or
inefficiently organized, are issues to be addressed later.
But a more significant fact of computer life is that usu-
ally only a small percentage of the computer’s time is
spent executing application program instructions.

A CRUDE MODEL

To illustrate these principles, imagine a “library for
the blind.” The librarian sits behind the desk waiting for
a blind person to walk into the library. This is the “wait-
ing period.” When the blind person arrives, the ‘‘getting
ready” period begins. The blind person tells the libra-
rian which book to retrieve and by one method or

another the book is retrieved. The librarian now begins
the “productive work” phase, reading to the blind per-
son from the selected book. When the reading is com-
pleted, the librarian may return the book to the shelf or
leave it on the desk. Then a new waiting period begins.

If the library is a busy one, we can imagine that one or
more assistants might be hired to transport the books
between the librarian’s desk and the book shelves. Let’s
imagine that there is one assistant for each wing of the
library. The librarian can do more productive work
(reading to the patrons), spending less time getting
ready (still look things up in the card catalog, but now
dealing with the assistants instead of transporting book-
s). A new type of waiting is introduced, however: wait-
ing for assistants to bring books back.

In this analogy, the librarian represents the com-
puter’s central processing unit (CPU), by which all the
productive work is accomplished. Like our imaginary
library, the HP3000 has only one CPU. To improve
throughput we must maximize the CPU’s productive
time.

Each patron represents a log-on session or job. The
librarian’s desk represents the computer’s main mem-
ory. It is of a limited size, merely a workspace, in com-
parison to the stacks of book shelves which correspond
to the mass storage devices. Finally, each assistant rep-
resents an I/O channel transferring data to and from
disc, for example.

While illustrating some important concepts, this anal-
ogy does not accurately model the run-time environ-
ment of the HP3000, or any other computer. How could
we refine the model to make it more realistic?

THE MODEL REFINED

At the risk of distorting the human situation, let me
suggest four refinements which make our model more
nearly resemble the actual computer processes:

1. The “library” should be regarded as a collection of
(a) read-only instruction manuals and reference tables
(programs and constants) and (b) numerous loose leaf
volumes (files) containing sheets of current figures and
data (records) which may be periodically replaced, re-
vised, removed, or added to.

2. The ‘librarian’s” job should be generalized to in-
clude any type of service that can be performed on the

1—70—1



basis of preprinted instructions and supplied data.

3. The computer always deals with a copy of
whatever is stored on the disc, and usually just a few
records at a time. So let’s imagine that instead of asking
a library assistant to fetch a particular book, the libra-
rian will specify a limited number of paragraphs or data
sheets and will ask the assistant to bring a photocopy of
the desired paragraphs (colored paper for instructions;
white paper for data).

4. Because the processing speeds of a computer are
so great, our model operates in slow-motion by com-
parison. Allowing that the librarian can do in one hour
what an HP3000 can do in one second (i.e., using the
scale of one hour for each second), the assistant could
handle 20 to 60 requests per hour, and the equivalent of
a 60-word-per-minute typist could enter one character
every 12 minutes. A 2400-baud rate would be equivalent
to a maximum of 5 characters transmitted per minute,
and a 600-line-per-minute printer would correspond to
one line every 6 minutes.

SLOW MOTION PERFORMANCE
SIMULATION

Visualize this scenario from the patron’s point of

view (refer to Figure 1): You walk into the library, find
an empty cubicle (terminal), and make yourself com-
fortable. You begin to formulate and transmit your li-
brary card number and password (log-on) at the rate of
no more than 5 characters per hour. (If it will relieve the
agony, you may imagine that you spend the time draw-
ing very large, very elaborate block letters). Depending
on the facilities available in the cubicle, you will either
transmit each letter as it is formulated or accumulate
several characters (maybe even hundreds) and transmit
them in a burst. In either case, you transmit each letter
separately by ringing a bell, and, when you have the
librarian’s attention, holding up the card with the letter
on it. The librarian records each character of your mes-
sage on a notepad corresponding to your cubicle, then
continues with his other business. Finally you send a
character which means “that’s the end of what I’m send-
ing you.”

The librarian eventually verifies that you are a qual-
ified user of the library and sends you back a standard
message which allows you to proceed. This process
may require the librarian to send his assistant to the
book shelves several times, e.g., to get a procedures
manual, index of users, table of passwords, welcome

. message, etc.

Book. SV\Es

Figure 1. The Library

1—70—2



Next, you painstakingly tell the librarian the name of
an instruction manual (program) you want him to follow
in performing some service for you. He has the assistant
get him a copy of the first paragraph (segment) of the
instruction manual (unless a copy happens to be sitting
somewhere on the desk already). He also gets a copy,
your own personal copy, of a worksheet (your data
stack) associated with the specific instruction manual
you have specified.

In case there is not enough empty space on the desk
for these papers, the librarian first clears some space by
either (a) throwing away one of the instruction sheets,
(b) having his assistant put the worksheet for some
other patron in a special holding file (virtual memory),
or (c) having his assistant take one of the data sheets
back to the loose-leaf it was copied from and replace the
original with the new version.

The librarian now goes to work following the instruc-
tions you have requested. This will continue until (a) he
comes to a point in the instructions which specifies he is
to send certain information to you and/or ask you for
additional input; (b) he comes to the end of the page or
is otherwise instructed to refer to another page, one
which is not currently on the desk; (c) the instructions
require that information be fetched from the book
shelves, taken there to be filed, or sent to some output
device; (d) a predefined length of time elapses (a 500
microsecond quantum corresponds to one-half hour in
our model); or (e) the librarian completes his assign-
ment and disposes of your worksheet.

In any of these cases, the librarian will go back to
work for one of the other patrons, provided he has all
the resources necessary to do so. If not, he will wait
(until the necessary information is fetched by the assis-
tant or transmitted by one of the patrons). Depending
on what you’ve asked the librarian to do, and how busy
he is doing things for the other patrons, it may take
hours or even days before he gets back to you. But then
again, it may take days for you to formulate the equiva-
lent of one screen of input, too (at the rate of 5 charac-
ters per hour).

THROUGH THE EYES OF THE CPU

Now let’s reverse roles and look at the situation from
the librarian’s perspective. Try to imagine yourself as a
calm, unemotional, purely methodical being who is
never responsible for mistakes because he does pre-
cisely as he is told. You couldn’t care less if someone

gets poor response time; you aren’t to blame, because

you only rest when there’s nothing for you to do. In
fact, you purposely set things aside during peak demand
- periods to do in your spare time. But you can’t take
credit for that either — you’re only following directions
from the MPE handbook.

. 2:08:17 Ring! There’s the bell in cubicle five. He’s hold-
ing up the letter “R.” Write it down on memo
pad #5 (line buffer).

2:08:20 Here’s the library assistant with the record ses-
sion #12 requested. Oops! The worksheet for
session #12 has been set aside (swapped out to
the system disc). Send the assistant for it and
wait a minute.

2:08:24 A ring from cubicle #8. That’s a carriage re-
turn. Time to reinitiate session #8. Make a note
to send the assistant for the worksheet when he
gets back.

2:08:29 Wait some.

2:09:00 Wait some more.

2:09:16 Oh good, something to do (the observer’s
feelings, not yours). A ring from cubicle #3. A
“7”. Write it down.

2:09:20 Here’s the assistant. Put worksheet #12 on the
desk. Send him back for worksheet #8 — no,
there’s not room for it. Give him the worksheet
for session #5 and send him to file it (we're
waiting for input from cubicle #5). We’ll send
him for worksheet #8 next time.

2:09:24 Okay, now to get to work on task #12. First set
the timer for 30 minutes. Now add I to J and put
the result in K.

2:09:28 Move W6 to W2. Move . .. hold it, there’s
another ring from #3. Say, that’s only a few
seconds . . . must be a block-mode terminal.
Write down the “9” and go back to work. Move
X to Y. Call the procedure “XFORM.” Oh, it’s
on the desk already — it hardly ever gets
thrown out, that’s because nearly every pro-
gram uses it. :

2:09:40 Another ring from cubicle #3. This time it’s a
minus sign. Continue with “XFORM.” Convert
the first letter of Y to upper-case. Now the sec-
ond letter. Now the third. Now the fourth.
That’s all. Return to the main program. It’s still
in memory. Move the new Y to F3.

2:09:52 Another ring from cubicle #3. A field
separator. Resume task #12. Perform
FLAG-SET subroutine. It’s in another seg-
ment, one that’s not in memory. Make a note
to send for it. Suspend task #12 for a minute.

2:10:04 Cubicle #3 again. Just a blank, but write it
down anyway. That’s ‘‘7-9-minus-field
separator-space’ so far.

2:10:14 The assistant has finished filing worksheet #5.
Send him now for worksheet #8.

2:10:16 Cubicle #3. Another space.

2:10:19 Interrupt from the printer saying the last line
has printed successfully. Now reactivate the
spooler job — it’s instructions are still on the
desk and so is the buffer containing the print-
line. Initiate I/O transfer.

2:10:26 2-second wait.

2:10:28 Cubicle #3. A third space.
12-second wait.

2:10:40 Cubicle #3. A fourth space. 12-second wait.

2:10:52 Cubicle #3. A fifth space. 12-second wait.

1—70—-3



2:11:04 Cubicle #3. A field-separator. 5-second wait.

2:11:09 Worksheet #8 is here. Send assistant to get a
copy of FLAG-SET routine. Now to process
this input from cubicle #6.
Edit first field. OK. Edit second field. OK.
Move first field to R1.

2:11:16 Cubicle #3. The letter “H”.
Move second field to K2. Edit third field. Isn’t
numeric but should be. Transfer to error
handler in same segment.

2:11:28 Cubicle #3. The letter “O”.
Prepare output to tell cubicle #8 about error.
Comment: It’s a shame, but since he’s in
block-mode, he’ll have to retransmit the whole
screen again, after correcting the error in field
3. And who is to say other errors might not be
detected after that? And you, the librarian, can
receive those 873 characters, one every 12 sec-
onds for nearly three hours, But you don’t
mind. It’s only a job. o

2:11: 40 Cubicle #3. The letter “V”.
" Finish putting error message in the output, buf-
fer. Initiate transfer to cubicle #8. Mark task
#8 eligible to be swapped out.

2:11:47 Cubicle #11. The letter “P”.

2:11:52 Cubicle #3. The letter “E”,
FLAG-SET routine is here. Continue with task
#12. Move 1 to FLAG. Add 1 to COUNT. Exit
back to mainline. What! The assistant had to
fetch a separate segment just so we could do
that?

2:11:59 Cubicle #11. Oh, oh. Two block-mode devices
transmitting at once! Record the letter “I”.

2:12:04 Cubicle #3. The letter ‘“‘R”.

Comment Stop, I've had enough of dinging bells! This

place sounds like a hotel lobby, not a library!

OBSERVATIONS

As this analogy indicates, there are three factors
which reduce overall system performance:
1. Unnecessary disc I/O (most serious);
2. Unnecessary terminal I/O (too common); and
3. Unnecessary CPU usage (rarely the problem in
an on-line environment.

Excessive Disc I/O

The primary cause of excessive disc I/O is in-
adequate main memory to hold the required work space
(stack and data segments) for each concurrent process,
plus all frequently referenced program segments, plus a
reasonable mix of infrequently referenced program
segments.

The HP3000 is very good at handling multiple concur-
rent users, even when they won't all fit in memory to-
gether. In fact, the use of virtual memory, combined
with a well-designed algorithm for selecting which seg-
ment to overlay, allows the system to operate efficiently

1—70—4

even in cases where a single program exceeds the limits
of main memory.

The thing to remember, however, is that code seg-
ments put a relatively small load on the system while
data segments put a potentially disastrous load on the
system. In the first place, code segments can be split up
and made as small as the programmer wants them to be.
Secondly, they do not have to be rewritten to virtual
memory when the main memory space is to be re-used;
they are simply overlaid. Data segments, on the other
hand, tend to expand, and can be split only with difficul-
ty. Since their contents may change, they must be re-
written each time the process is swapped out, and re-
read each time it is swapped back in. Finally, whatever
data space is required must be repeated for each pro-
cess that is active. Therefore, if you are supporting 20
terminals, any reduction in data requirements would
produce 40 times the benefit that an equivalent reduc-
tion in code requirements would produce.

Aside from upgrading to a larger machine, a shortage
of main memory can be averted by: .

1. Reducing the number of concurrent processes (not
an attractive optlon), )

2. Reducing the average stack or data segment s1ze,

3. Reducing the s1ze of the average program seg-

_ment;

4. Organizing program segments better so that out-
of-segment transfers occur less often to non-
resident segments and so that often-used code is
collected m compact segments that are likely to
stay in memory, or

5. Some' combination of the above. -

When adequate main memory is available, swapping
is unnecessary, and disc accesses (which are very-ex-
pensive in terms of time) will be expended strictly for
data retrieval and storage. Once swapping begins, the
computer’s “‘productive” activities are at the mercy of
“waiting.” In the worst case, ‘‘threshing’’ occurs, which
means that every time a session gets a turn at execution,
either the program segment has been overlaid or the

session’s work space has been swapped out.

It is worth noting that the use of IMAGE (or of
KSAM) causes the allocation of extra data segments.
Specifically, each IMAGE database that is. open re-
quires a data segment large enough to hold one copy of
the root file plus four complete database buffers. If a
program accesses multiple databases, or if the root file
or buffers are large, the memory requirements will be
substantial, and with many terminals running database
applications, the memory requirements can add up very
quickly. Granted, the advantages of using a powerful
access method may outweigh the costs of additional
memory demands, but such tools should be. used care-
fully and not indiscriminantly.

It should also be noted that the use of block-mode
requires extensive buffers in the stack (at least as large
as the largest screen to be transmitted). The use of



VIEW/3000 may add another 6000 bytes of buffer in
each user’s stack, not to mention the extra data seg-
ments created by its use of KSAM. If you have 20 us-
ers, this amounts to 120K extra bytes of memory or
more.

Excessive Terminal I/0

Major causes of excessive terminal I/O include the
following:

1. Transmitting unnecessary characters (trailing
spaces, leading zeroes, insignificant digits, etc.) to
the computer, a necessary consequence of fixed-
format or block-mode input.

2. Transmitting the same data to the computer more
than once, as occurs in block-mode when a whole
screen is retransmitted to correct an error in a
single field.

3. Retransmitting to the computer data which has not
been changed since it was received from the com-
puter. This too is the result of block-mode
transmission.

4. Repeatedly displaying prompts at the terminal in-
stead of using protected background forms.

Since each character of input consumes critical re-
sources, every effort should be made to ensure that only
significant data is transmitted (no extraneous zeroes or
spaces and only those fields that are new or have been
modified).

It is not only wasteful of computer power, but also
destructive of operator morale, to wait until a whole
screen of data has been entered and transmitted to the
computer before discovering that the screen is invalid
due to a duplicate key or an unrecognized search-item
value, etc.

It is equally inefficient (for the computer, that is) to
display a screen of data, have the operator update a
single value and transmit the whole screen back to the
computer. In an extreme case, this could amount to
over a thousand characters transmitted just to change
one or two characters.

Excessive CPU Usage

Besides the costly I/0 overhead, it is altogether pos-
sible that a retransmitted screen will be completely re-
edited, values packed and unpacked, and fields refor-
matted even though only a single field was updated, and
maybe even if nothing was updated. This is one cause of
unnecessary CPU usage.

Most editing and reformatting done in COBOL sub-
routines requires excess usage to begin with, and it is far
better to allow such work to be done in SPL sub-
routines, where it can be done efficiently. Including
such subroutines in the COBOL programs also causes

_bulkier segments, which is likely to increase the need
for swapping. The best solution is to incorporate all
editing within the terminal-handling module itself, since
it is already being shared by all on-line programs and is
therefore likely to remain constantly in main memory.

There are a multitude of factors which can unnecessar-
ily increase the so-called ““productive work’’ which the
CPU has to do. Because computers are seldom CPU-
bound in an on-line environment, few people exert the
effort to truly optimize CPU performance anymore.
Whenever it is a problem, more careful analysis of the
program(s) in question will usually yield a more efficient
method of solving the application problem.

Often, more careful analysis will also yield a better
solution from the point of view of disc I/O as well, both
in terms of swapping, code-segment switching, and data
retrieval and storage. One word of warning, however:
more efficient solutions (CPU-wise) are very often more
complex, and to the extent that they increase stack
space, or code-segment size, or they require more
transfers from one code-segment to another, they may
prove counter-productive.

One situation in which heavy CPU usage can be very
detrimental is when on-line processes are competing
with batch applications for CPU resources. This can be
vividly illustrated by running a COBOL compile, an
Editor GATHER ALL, a sort, or the BASIC interpreter
at the same time on-line programs are running. Block-
mode applications exhibit many of these same tenden-
cies and can severely impede response time for
character-mode applications when both types are run-
ning concurrently.

SPECIFIC OPTIMIZATION TECHNIQUES

1. Resegment programs so that no segment exceeds
%5000 words.

2. Set the blockmax parameter on IMAGE schemas as
low as possible.

3. Use extra data segments where possible and free

them up when finished, rather than increasing stack

space for large temporary buffers.

Don’t keep files open unnecessarily.

. Don’t abuse IMAGE:

a.eliminate sorted chains where possible.

b.carefully evaluate tradeoffs of increasing or
eliinating secondary paths in detail data sets.

c.use “@;” or at least ‘“‘*;” for item lists
wherever possible.

d.only use binary keys (in master file) when
overlapping keys can be avoided.

e.don’t let synonym chains get very long.

f. when loading master data sets, store only
primaries on the first pass, makng a second
pass for secondaries.

g.keep master data sets less than 85% filled.

h.periodically reorganize detail data sets that
have long chains associated with a
frequently-accessed path (puts consecutive
records in the same physical block).

i. keep the number of data sets in a database as
small as practical without requiring many
programs to open multiple databases.

Jj- keep IMAGE record lengths to a minimum.

@ e

1—70—-5



N o

Have operators exit programs when not in use.

. Use a field-oriented terminal handler which per-

forms standard edits for you.

. Use formatted screens with protected background

whenever the application is appropriate to such
use.

. Keep terminal I/O buffers small; if possible, elimi-

nate block-mode I/0O altogether. (Don’t use block-
mode and character-mode 1/0 at the same time.)

1—70—6

10.
11.
12.

13.

Don’t use VIEW without a lot of memory.

Don’t use DEL at all.

Run CPU-intensive jobs (including compiles, preps,
and Editor GATHER ALL) when on-line applica-
tions are not running, or at least run them in a
lower-priority subqueue.

Set the system quantum for a shorter priod than
recommended in the MPE manual (but don’t overdo
it — some experimentation may be necessary).



	Section 1—System Management
	System Performance and Optimization Techniques for the HP3000


