
Programming for Device Independence
John Hulme

Applied Cybernetics, Inc.
Los Gatos, California

INTRODUCTION
The purpose of this presentation is to discuss tech

niques and facilities which:
1. Isolate the programmer from specific hardware

considerations
2. Provide for data and device independence
3. Allow the programmer to deal with a logical rather

than a physical view of data and devices
4. Allow computer resources to be reconfigured, re

placed, rearranged, reorganized, restructured or
otherwise optimized either automatically by sys
tem utilities or explicitly by a system manager or
databse administrator, without the need to rewrite
programs.

The evolutionary development of these techniques
will be reviewed from a historical perspective, and the
specific principles identified will be applied to the prob
lem of producing formatted screen applications which
will run on any type of CRT.

WHAT IS A COMPUTER?
As you already know, a computer consists of one or

more electronic and/or.electromechnical devices, each
capable of executing a limited set of explicit commands.
For each type of device some means is provided to
allow the device to receive electrical impulses indicat
ing the sequence of commands it is to execute. In addi
tion to commands, most of these devices can receive
electrical impulses representing bits of information
(commonly called data) which the device is to process
in some way. Nearly all of th~se devices also produce
electr~cal impulses as output, which may in turn be re
ceived as commands and/or data by other devices in the
system.

Nowadays, most devices also have some form of
"memory" or storage media where commands or other
data can be recorded, either temporarily or semi
permanently, and a means by which that data can later
be received in the form of electrical impulses.

The tangible, visible, material components which
these devices are physically made up of is generally
called computer hardware. Any systematic set of in
structions describing a useful sequence of commands
for the computer to execute can be called computer
software. As we will see later, software can be further
subdivided into system software, which is essentially an

extension of the capabilities of the hardware, and appli
cation programs, which instruct the computer how to
solve specific problems, handle day-to-day applica
tions, and produce specific results.

Originally it was necessary for a computer operator to
directly input the precise sequence of electrical signals
by setting a series of switches and turning on the cur
rent. This process was repeated over and over until the
desired sequence of instructions had been executed.

By comparison with today's methods of operating
computers, those earlier methods can truly be called
archaic. Yet the progressive advancement of computer
systems from that day to this, however spectacular, is
nothing more than a step-by-step development of
hardware and software building blocks, an evolutionary
process occurring almost entirely during the past 25
years.

ENGINEERING AND AUTOMATION
I think we mostly take for granted the tremendous

computing power that is at our fmgertips today. How
many of us, before running a program on the computer,
sit down and think about the details of hardware and
software that make it all possible? For that matter, who
stops to figure out where the electrical power is coming
from before turning on a light or using a household
appliance? Before driving a car or riding in an airplane,
who stops to analyze how it is put together?

Probably none of us do, and that is exactly what the
design engineers intended. You see, it is the function of
product engineering to build products which people will
buy and use, which usually means building products
which are easy to use. The fact that we don't have to
think about how something works is a measure of how
simple it is to use.

Wherever a process can be automated and incorpo
rated into the product, there is that much less that the
consumer has to do himself. Instead of cranking the
engine of a car, we just tum a key. Instead of walking up
30 flights of stairs, we just push a button in the elevator.

It's not that we are interested in being lazy. We are
interested in labor-saving devices because we can no
longer afford to waste the time; we have to meet dead
lines; we want to be more efficient; we want to cut
costs; we want to increase productivity. We also want
to reduce the chance for human error. By automating a

6-69-1



complicated process, we produce consistent results,
and when those results are thoroughly debugged, error
is virtually eliminated. We can rely on those consistent
results, which sometimes have to be executed with split
second timing and absolute accuracy. Without reliable
results there might be significant economic loss or
danger to life and limb. Imagine trying to fly modem
aircraft without automated procedures.

Automation also facilitates standardization, which al
lows interchangeability of individual components. This
leads to functional specialization of components, which
in tum leads to specialization of personnel, with the
attendant savings in training and maintenance costs.
And because the engineering problem only has to be
solved once, with the benefits to be realized every time
the device is used, more time can profitably be spent
coming up with the optimum design.

BUILDING BLOCKS
In my opinion, the overwhelming advantage of au

tomating a complicated process is that the process can
thereafter be treated as a single unit, a "black box," if
you will, in constructing solutions to even more compli
cated processes.

Later, someone could devise a better version of the
black box, and as long as the functional parameters re
main the same, the component could be integrated into
the total system at any time in place of the original
without destroying the integrity of any other compo
nents.

It is this "building-block" approach which has permit
ted such remarkable progress in the development of
computer hardware and software. As we review the
evolution of these hardware/software building blocks,
keep in mind that the chronological sequence of these
developments undoubtedly varied from vendor to ven
dor as a function of how each perceived the market
demand and how their respective engineering efforts
progressed. .

ONE STEP AT A TIME
·Even before the advent of electronic computers, var

ious mechanical and electro-mechanical devices had
been produced, some utilizing punched card input. Be
sides providing an effective means of input, punched
cards and paper tape represent a rudimentary storage
medium. Incorporating paper tape and card readers
into early computer systems not only allowed the user
to input programs and data more quickly, more easily,
and more accurately (compared with flipping switches
manually), but on top of that it allowed him to enter the
same programs and data time after time with hardly
more effort than entering it once.

The next useful development was the "stored pro
gram" concept. Instead of re-entering the program with
each new set of data, the program could be read in once,
stored in memory, and used over and over.

6-69-2

This concept is an essential feature of all real com
puters, but it would have been practically worthless ex
cept for one other essential feature of computers known
as internal logic. We take these two features so much
for granted that it's hard to imagine a computer without
them. In fact, without internal logic, computers really
wouldn't be much good for anything, since they would
only be able to execute a program in sequential order
beginning with the first instruction and ending with the
nth. Internal logic is based on special hardware com
mands which provide the ability frrst of all to test for
various conditions and secondly to specify which com
mand will be executed next, depending on the results of
the test. In modem computer languages, internal logic is
manifest in such constructs as IF statements, GO TO
statements, FOR loops, and subroutine calls.

But at the stage we are discussing there were no mod
em programming languages, just the language of elec
trical signals. These came to be represented as numbers
(even letters and other symbols were given a numeric
equivalent) and programs consisted of a long list of
numbers.

Suppose, for example, that the numbers 17, 11, and 14
represented hardware commands for reading a number,
adding another number to it, and storing the result, re
spectively, and suppose further tbat variables A through
Z were stored in memory locations 1 through 26. Then
the program steps to accomplish the statement "give Z a
value equal to the sum of X and Y" might be expressed
as the following series of numbers, which we will call
machine instructions:

-17,24,11,25, 14,26
In essence, the programmer was expected to learn the

language of the computer.
A slight improvement was realized when someone

thought to devise a meaningful mnemonic for each
hardware command and to have the programmer write
programs using the easier-to-remember mnemonics, as
follows:

READ, 24, ADD, 25, STORE, 26
or perhaps even
READ, X, ADD, Y, STORE, Z.

After the programmer had described the logic in this
way, any program could be readily converted to the
numeric form by a competent secretary. But since the
conversion was relatively straightforward, it would be
automated, saving the secretary some very boring
work. A special computer program was written, known
as a translator. The mnemonic form, or source program
as it was known, was submitted as input data to the
translator, which substituted for each mnemonic the
equivalent hardware command or memory location,
thus producing machine instructions, also known as ob-
ject code. Translators required two phases of execu
tion, or two passes, one to process the source program
and a second to execute the resulting object code. Once
the program functioned properly, of course, it could be



executed repeatedly without the translation phase.
It would have been possible for the hardware en

gineers to keep designing more and more complicated
hardware commands, and to some extent this has been
done, either by combining existing circuitry or by de
signing new circuits to implement some new elemental
command. Each new machine produced in this way
would thus be more powerful than the last, but it would
have been economically prohibitive to continue this
type of development for very long and the resulting ma
chines would have been too large to 1:?e practical any
way.

E.ngineers quickly recognized that instead of creating
a more powerful command by combining the circuitry
of existing commands, the equivalent result could be
achieved by combining the appropriate collection of
commands in a miniature program. This mini-program
could then be repeated as needed within an application
program in place of the more complex command. Or
better yet, it could be kept at a fIXed location in memory
and be accessed as a subroutine just the same as if it
were actually a part of each program.

Another approach was to use an interpreter, a special
purpose computer program similar to a translator. The
interpreter would accept a source program in much the
same way as the translator did, but instead of convert
ing the whole thing to an Qbject program, it would cause
each hardware command to be executed as soon as it
had been decoded.

Besides requiring only one pass, interpreters had the
added advantage of only having to decode the com
mands that were actually used, though this might also
be a disadvantage, since a command used more than
once would also have to be decoded more than once.

The chief benefit of an interpreter lay in its ability to
accept mnemonics for commands more complex than
those actually available in the hardware, and to simulate
the execution of those complex commands through the
use of subroutines. In this way, new commands could
be implemented without any hardware modifications
merely by including the appropriate subroutines in the
interpreter. This step marked the beginning of system
software.

In addition, source programs for nearly any computer
could be interpreted on nearly any other computer, as
long as someone had taken the time to write the neces
sary interpreter. Interpreters could even be written for
fictional computers or computers that had been de
signed but not yet manufactured. This technique,
though generally regarded as very inefficient, provided
the first means of making a program transportable from
one computer to another incompatible computer.

It is possible, of course, to apply this technique to
translators as well, allowing a given mnemonic to repre
sent a whole series of commands or a subroutine call
rather than a single hardware instruction. Such
mnemonics, sometimes called macros, gave users the

impression that the hardware contained a much broader
repertoire of commands than was actually the case.

Implementing a new feature in software is theoreti
cally equivalent to implementing the same function in
hardware. The choice is strictly an economic one and as
conditions change so might the choices. One factor is
the universality or frequency with which the feature is
likely to be used. Putting it in hardware generally pro
vides more efficient execution, but putting it in the
software is considerably easier and provides much
greater flexibility.

The practice of restricting hardware implementation
to the bare essentials also facilitated hardware stan
dardization and compatibility, which was crucial to the
commercial user who wanted to minimize the impact on
all his programs ifhe should fmd it necessary to convert
to a machine with greater capacity. Beginning with the
IBM 360 series in 1964 IIfamilies" of compatible
hardware emerged, including the RCA Spectra 70 seri
es, NCR Century series, and Honeywell 200 series,.
among others.

Each family of machines had its own operating sys- .
tem, software monitor, or executive system overseeing
the operation of every other program running on the
machine. In some systems, concurrent users were al
lowed, utilizing such techniques as memory partition
ing, time-sharing, multi-threading, and memory
swapping. Some form of job control language was de
vised for each operating system to allow the person
submitting the jobs to communicate with the monitor
about the jobs to be executed.

Introducing families of hardware did not solve the
problem of compatibility between one vendor and the
next, however, a problem which could only be solved
by developing programming languages which were truly
independent of any particular piece of hardware.

Since the inventors of these so-called higher-level
languages were not bound by any hardware con
straints, an effort was made to make the languages as
natural as possible. FORTRAN imitate the language of
mathematical formulas, while ALGOL claimed to be
the ideal language for describing algorithmic logic;
COBOL provided an English-like syntax, and so on.

Instead of having to learn the computer's language, a
programmer could now deal with computers that under
stood his language. Actually, it was not the hardware
which could understand his language, but a more
sophisticated type of translator-interpreter known as a
compiler.

To the degree that a particular language enjoyed
enough popular support to convince multiple vendors to
implement it, programs written in that language could
be transported among those machines· for which the
corresponding compiler was available.

The term compiler may have been coined to indicate
that program units were collected from variou's sources
besides the source program itself, and were compiled

6-69-3



into a single functioning module. Subroutines to per
form a complex calculation such as a square root, for
example, might be inserted by the compiler whenever
one or more square root operations had been specified
in the body of the source program.

Embedding subroutines in the object code was not
the only solution, however. It became more and more
common to have the generated object programs merely
"CALL" on subroutines which were external to the
object progr~, having been pre-compiled and stored in
vendor-supplied Itsubroutine libraries." This concept
was later extended to allow users a means of placing ,
their own separately-compiled modules in the library
and accessing them wherever needed in ~ program.

I should mention that an important objective of any
higher level language should be to enable a user to de
scribe the problem he is solving as clearly and concisely
as possible. Although the emphais is ostensibly on mak
ing the program easy to write, being able to understand
the program once it has been written may be an even
greater benefit, particularly when program maintenance
is likely to be performed by someone other tha,:l the
original author.

It is well-known that program maintenance occupies
a great deal of the available time in the typical data
processing shop. Some studies estimate the figure at
over 50% and increasing. In order to be responsive to
changing us~r requirements, it is essential to develop
m~thods which facilitate rapid and even frequent pro
gram changes without jeopardizing the integrity of the
system,and without tying up the whole DP staff.

To avoid having to re-debug the logic every time a
change is made, it is often possible to use data-driven or
table-driven programming techniques. The portion of
the program which is likely to change, and which does
not really affect the overall procedural logic of the pro
gram, is built into tables or special data files. These are
accessed by the procedural code to determine the effec
tive instructions to execute.

The most common example in the United States, and
perhaps in other countries as well, is probably the table
of income tax rates, which changes by law now at least
once a year. The algorithm to compute the taxes
changes very rarely, if at all, so it does not have to be
debugged eac~ time the tables change. In simple cases
like this, non-programmer clerks might safely be permit
ted to revise the table entries.

In more sophisticated applications, tables of data
called logic tables may more directly determine the
logic flow within a program. The program becomes a
kind of interpreter, and elements in the logic table may
be regarded as instructions in some esoteric machine
language. Such programs are generally more difficult to
thoroughly debug, but once debugged provide solutions
to a broad class of problems without ever having to
revise the procedural portion of the program.

Sometimes, logic-controlling information is neither

6-69-4

compiled into the program nor stored in tables, but is
provided to the program when it is first initiated or even
during the course of execution, in the form of run-time
parameters or user responses. The program has to be
pre-programmed to handle every valid parameter, of
course, and to gracefully reject the iDvalid ones, but this
method is useful for cutting down the number of sepa
rate programs that have to be written, debugged, and
maintained. For example, why write eight slightly dif
ferent inventory print programs, if a single program
could handle eight separate formats through the use of
run-time options?

Incidentally, program recompilations need not always
cause alarm. Through the proper use of COpy code,
programs can be modified, recompiled, and produce the
new results without the original source program ever
having to be revised. This is made possible by a facility
which allows the source program to contain references
to named program elements stored in a COpy library
instead of having those elements actually duplicated
within the program. A COpy statement is in effect a
kind of macro which the compiler expands at the time it
reads in the source program.

For example, if a record description or a table of val
ues appears in one program, it is likely to appear in
other programs as well. It is faster, easier, safer, and
more concise to say "COpy RECORD-A." or "COpy
TABLEXYZ." than to re-enter the same information
again and again. And if for some reason the record lay
out or table of values should have to be changed, merely
change it in the COpy library, not in every program.

By changing the contents of a COpy member in this
way and subsequently recompiling selected programs in
which the member is referenced, those programs can be
updated without any need to modify the source. If pro
cedure code is involved, the new COpy code only need
be debugged and retested once rather than revalidating
all the individual programs.

Where blocks of procedural code appearing in many
progr~ms can be isolated and separately compiled,
however, this would probably be better than using
COpy code. For one thing, the separate modules would
not have to be recompiled every time the procedural
code was revised.

BITE-SIZE PIECES
Breaking a complex problem into manageable inde

pendent pieces and dealing with them as separate prob
lems is a valuable strategy in any problem-solving situa
tion. Such a strategy has added benefits in ,a program
ming environment:

1. Smaller modules are typically easier to under
stand, debug, ~d optimize.

2. Smaller modules are usually easier to rewrite or
replace if necessary.

3. Independent functions which are useful to one ap
plication are often useful to another application;



using an existing module for additional applica
tions cuts down on programming, debugging, and
compilation time.

4. Allowing applications to share a module reduces
memory requirements.

5. Having only one copy of a module ensures that the
module can be replaced with a new version from
time to time without having to worry that an un
discovered copy of an older version might still be
lurking around somewhere in the system.

The fact that a routine only has to be coded once
usually more than compensates for the extra effort that
may have to go into generalizing the routine. The more
often it's used, the more time you can afford to spend
improving it.

SYSTEM SOFfWARE
Functions which are so general as to be of value to

every user of the computer, such as 1/0 routines, sort
utilities, rue systems, and a whole host of other utilities,
are usually included in the system software supplied by
the hardware vendor. Just what facilities are provided,
how sophisticated those facilities are, and whether the
vendor Charges anything extra for them, is a matter of
perceived user need and marketing strategy. Sometimes
vendors choose to provide text editors and other devel
opment tools, and sometimes they don't. So'metimes
they provide a very powerful database management
system, sometime only rudimentary rue access com-
mands. And so on. .

When hardware vendors fail to provide some needed
piece of software, it may be worthwhile for the user to
write it himself. If the need is general enough, software
vendors may rush in to ftll the void; or perhaps user
pressure will eventually convince hardware vendors to
implement it themselves.

In this way, many alternative products may become
available, and the user will have to evaluae which ap
proach he wishes to take advantage of, based on such
factors as cost, efficiency, other performance criteria,
flexibility of operation, compatibility with existing
software, and the comparative benefits of using each
product.

PRINCIPLES OF GOOD SYSTEM DESIGN

In case you may need to design your own supporting
software, or evaluate some that is commercially avail
able, let's summarize the techniques which will permit
you to achieve the greatest degree of data, program, and
device independence. I have already given illustrations
of most of the following principles:

1. Modularity - Conceptually break everything up
into the smallest modules you feel comfortable dealing
with.

2. Factoring - Whenever a functional unit appears
in more than one location, investigate whether it is feas
ible to "factor it out" as a separate module (this is

analogous to rewriting A*B+A*C+A*D as
A*(B+C+D) in math).

3. Critical Sections - Refrain from separating mod
ules which are intricately interconnected or subdividing
existing modules which are logically intact.

4. Independence - Strive to make every module
self-contained and independent of every external factor
except as represented by predefmed parameters.

5. Interfacing ~ Keep to a minimum the amount of
communication required between modules; provide a
consistent method of passing parameters; make the
interface sufficiently general to allow for later exten
sions.

6. Isolation - Isolate all but the lowest-level mod
ules from all hardware considerations and physical data
characteristics.

7. Testing - Test each individual module by itself as
soon as it is completed and as it is integrated with other
modules.

8. Generalization - Produce modules which solve
the problem in a general way instead of dealing with
specific cases. Be careful, however, not to over
generalize. Trying to make a new technology fit the
mold of an existing one may seem like the best modular
approach, and the easiest to implement, but the very
features for which the new technology has been intro
duced must not become lost in the process.

EXAMPLE - When CRTs were fIrst attached to
computers they were treated as teletypes, a class of110
devices incompatible with two of the CRT's most useful
features: cursor-addressing and the ability to type over
existing characters. Putting the CRT in block-mode and
treating it as a fixed-length file represents the opposite
extreme: the interactive capalities are suppressed and
the CRT becomes little more than a batch input device,
a super-card-reader in effect.

9. Standardization - Develop a set of sound prog
ramming standards including structured programming
methods, and insist that each module be coded in strict
compliance with those standards.

10. Evaluation - Once the functional characteristics
have been achieved, use available performance meas
urement methods to determine the areas which most
need to be further optimized.

11. Piecewise Refinement - Continue to make im
provements, one module at a time, concentrating on
those with the largest potential for improving system
performance, user acceptance, andlor functional
capabilities.

12. Binding - For greater flexibility and indepen
dence, postpone binding of variables; for greater effi
ciency ofexecution, do the opposite; pre-bind constants
at the earliest possible stage.

BINDING
As the name suggests, "binding" is the process of

tying together all the various elements which make up

6-69-5



an executing program. Binding occurs in several differ
ent stages ultimately making procedures and data ac
cessible to one another.

For example, the various statements in an application
program are bound together in an object module when
the source program is compiled. Similarly, the various
data items comprising an IMAGE database become
bound into a fixed structure when the root file is
created. A third case of binding involves the passing of
parameters between separately compiled modules.

Remember that at the hardware level, where every
thing is actually accomplished, individual instructions
refer to data elements and to other instructions by their
location in meory. The "address" of these elements
must either be built into the object code at the time a
program is compiled, be placed there sometime prior to
execution, or be provided during execution. Likewise,
information governing the flow of logic can be built into
the program originally, placed in a flle which the pro
gram accesses, passed as a parameter when the program
is initiated, or provided through user interaction during
execution.

Binding sets in concrete a particular choice ofoptions
to the exclusion of all other alternatives. Delayed bind
ing therefore provides more flexibility, while early bind
ing provides greater efficiency. Binding during execu
tion time can be especially powerful but at the same
time potentially critical to system performance. In gen
eral, variables should be bound as early as possible un
less you specifically plan to take advantage of leaving
them unbound, in which case you should delay binding
as long as it proves beneficial and can still be afforded.
Incidentally, on the HP3000, address resolution be
tween separately-compiled modules will occur during
program preparation (PREP) except for routines in the
segmented library, which will be resolved in connection
with program initiation. If your program pauses initially
each time you run it, this run-time binding is the proba
ble cause.

A SPECIFIC APPLICATION

About five years ago, we were faced with the problem
of developing a system of about 300 on-line application
programs for a client with no previous computer experi
ence. Their objective was to completely automate all
record-keeping, paper-flow, analysis, and decision mak
ing, from sal~s and engineering to inventory and man
ufacturing to payroll and accounting. The client had' or
dered an HP3000 with 256K bytes of memory and had
already purchased about 20 Lear-Sigler ADM-l CRTs.
About 12 terminals were to be in use during normal
business hours for continuous interactive data entry;
the remaining eight terminals were primarily intended
for inquiry and remote reporting. Up-to-date informa
tion had to be on-line at all times using formatted sc
reens at every work station. Operator satisfaction was
also a high priority, with two- to five-second response
time considered intolerable.

6-69-6

DISCUSSION QUESTIONS
Based on the "principles of good system design"

summarized earlier, what recommendations would you
have made to the development team?

At the time, HP's Data Entry Language (DEL)
seemed to be the only formatted screen handler avail
able on the HP3000. Consultation with DEL users con
vinced us it was rather awkward to use and exhibited
very poor response time. Also it did not support
non-HP character-mode terminals.

We elected to write a simple character-mode terminal
interface, which was soon expanded to provide internal
editing of data fields, and later enhanced to handle
background forms. We presently market this product
under the name TERMINAL/3000. You've probably
heard of it.

The comP8:Ct SPL routines reside in the system SL
and are shared by all programs. The subroutine which
interfaces directly with the terminals is table-driven to
ensure device-independence. By implementing
additional tables of escape sequences, we have added
support for more than a dozen different types of termi
nals besides the original ADM-I's. .

Ifwe were faced with a similar task today, would your
recommendations be any different?

After completing most of the project, we did what
. should have been done much earlier: we implemented a

CRT forms editor and COBOL program generator
which together automate the process of writing
formatted-screen data entry programs utilizing
TERMINAL/3060. We call this approach "results
oriented systems development"; the package is called
ADEPr/3000. Programs which previously took a week
to develop can now be produced in only half a day.

Since we were using computers to eliminate
monotonous tasks and improve productivity for oUf
clients, it was only natural that we should consider
using computers to reduce monotony and increase
productivity in our own business, the business of writ
ing application programs. If you write application pro
grams or manage people who do, you also may wish to
take advantage of this approach.

What features ofVIEW/3000 would have made it un-
suitable for this particular situation?

• not available five years ago
• HP2640 series of terminals only
• block-mode only (not interactive field-by-field)
• requires huge buffers (not enough memory avail

able)
• response time and overall system performance in

adequate

From what you know of TERMINAL/3000 and
ADEPT/3000, how do these products enable a pro
grammer to conform to the principles of good system
design?



TERMINAL/3000 itself: modular, well-factored,
single critical section, device-independent, independent
of external formats, simple I-parameter interface,
table-driven hardware isolation, well-tested,
generalized, optimized for efficiency, run-time binding
of cursor-positioning and edit characteristics.

ADEPr/3000: produces COBOL source programs
that are modular, well-segmented, device-independent,
and contain pre-debugged logic conforming to user
tailored programming standards; built-in interfaces to
TERMINAL/3000 and IMAGE/3000 (or KSAM/3000)
isolate the programs from hardware considerations and

provide device and data independence.

BmLIOGRAPHY
Boyes, Rodney L., Introduction to Electronic Computing: A Man

agement Approach (New York: John Wiley and Sons, Inc., 1971).
Hellerman, Herbert,Digital Computer System Principles (New York:

McGraw-Hill Book Co., Inc., 1967).
Knuth, Donald E., The Art of Computer Programming (Reading,

Mass.: Addison-Wesley Publishing Company, 1968).
Swallow, Kenneth P., Elements of Computer Programming (New

York: Holt, Rinhart and Winston, Inc., 1965).
Weiss, Eric A. (ed.), Computer Usage Fundamentals "(New York:

McGraw-Hill Book Co., Inc., 1969).

6-69-7




	Section 6—Peripheral Software
	Programming for Device Independence


