
Successfully Developing
On-Line RPG/3000 Applications

Duane Schulz
Hewlett-Packard Company

Wilsonville, Oregon

INTRODUCTION
Why do people laugh when I talk about interactive

RPG/3000 applications? This paper will focus on the
unique nature of RPG as an on-line language on the
HP3000 computer system, identify the difficulties to be
anticipated in learning how to best use the HP3000 with
RPG as the primary language, and attempt to outline a
clear path to success in this area, with attendant sup
pression of the abovementioned laughter ~ Hopefully,
RPG users who review this paper will be able to identify
and alleviate any current problems they are experienc
ing as interactiveRPO users, and new users will be able
to make the transition to the HP3000 smoothly.

To accomplish this, it will fJIst be necessary to profJ.1e
the probable assumptions of a new RPO/3000 user, out
line the nature of the HP3000 computer, and identify
any dissimilarities between the two. Once this is done, a
series of steps designed to reconcile differences be
tween RPO users' understanding of computers and the
nature of the HP3000 will be presented. The reconcilia
tion of these differences is the only true obstacle to
success as an RPG/3000 user, though this basic fact is
usually ianored while technical symptoms of the prob
lem are addressed instead. the goal of the presentation
is to help RPO users to finally come to grips with the
struggle which is the inevitable result of conversion to
the HP3000 while still relying on ideas and concepts
which do not apply to the HP3000.

A USER PROFILE
In order to avoid stereotyping, I will describe my per

sonal background at the time I first selected the HP3000
as a replacement to an IBM GSD computer. This back
ground is very common, given the vast number of IBM
System/3 and /34 systems currently installed. Also note
that I'll assume that RPG/3000 users received their in
itial programming experience on IBM equipment; they
set the de facto industry standard. The following state
ments summarize the computing concepts I employed
at the time of my fIrst conversion (please don't assume
that these matched my philosophy about computing or
my experience in actual implementation...):

• Transactions enter the computer (from the data
, processing department) in batches which must be

100% correct before the resulting data (usually a

report) was returned to the user, again via data
processing personnel.

• Each system was controlled by one user, and was
90% unrelated to other systems on the computer.
Sharing common data was rare.

• Most technical solutions and learning was vendor
provided. User groups served other (social, system
back-up) purposes.

• Interactive updates were best performed on
dummy fues, with the real updates performed dur
ing off-hours in a batch fashion.

• The system was best used for serial I/O.
• Multiple tasks were accomplished through fIXed

memory partitioning or special control programs
(ie. CCP, etc.).

• Databases involve high overhead and long learning
processes.

• Knowledge of operating system internals is not re
lated to successful application development.

• Efficient programs were related to avoidance of
high-overhead calculations and program logic.

• Data structures, screen handlers, and internals
were best learned through RPO interfaces to such
facilities. Knowledge of the specific facility on its
own was not necessary (or, in some cases, possi
ble).

HP3000: BASIC ASSUMPTIONS
Thought we all understand or have learned at least

some of the following assumptions, it is important to
note the nature of the HP3000 as compared with the
mind set described above. Again, this is a ,list of state
ments or descriptions highlighting the important con
cepts behind the HP3000. These things must be learned
before we can develop applications for the 3000 and
expect them to be stable or efficient.

• The HP3000 is designed to be an interactive, user
driven computer, with transactions occurring ran
domly, usually with little involvement on the part
of the data processing department.

• Most application systems will be (logically if not
physically) relatec;l to one another.

• Learning and technical solutions are provided by

2 -64-1

the vendor, a number of user groups, appropriate
third-party assistance, and especially through self
teaching and exploration on the user's part.

• The system is designed for for interactive use. Ser
ial I/O is one of the least efficient 1/0 techniques.

• The operating system includes a memory manager
and dispatcher which allow dynamic memory shar
ing between users.

• IMAGE provides provides the most efficient data
and I/O structure for the environments described
above; VPLUS provides the most efficient method
of communication with users (terminals). Both
should be learned on their own, not through learn
ing RPG interfaces.

• Knowledge of the file and operating system intrin
sics is related to the success of applications.

• Efficient programs are related to efficient calcula
tions and logic. RPG/3000 is externally driven, and
there is no specific correlation between a given cal
culation and a specific set of machine instructions.

BRIDGING THE GAP
Understanding how to use RPG is the key to under

standing how to use IBM GSD computers, because it
was desgined to allow opti~um use of those operating
systems and instruction sets. This is clearly not the case
with the HP3000. MPE was written as a language
independent (except.on: SPL) operating system with
independent constructs, as were IMAGE, VPLUS,
KSAM and other subsystems. Obviously, our success
in developing successful RPG/3000 applications lies, not
as it did with IBM, in understanding MPE and its sub
systems fIrst, then learning how RPG interfaces with
these things. The mistake made by the bulk of the RPG
user community (at first) is to continue to rely on RPG
as the window through which to peer into the computer;
this is precisely what has earned us our reputation. The
remainder of this paper will outline the steps involved in
adopting MPE and its subsystems as language
independent constructs. Though this outline is not abso
lute, all of these steps must be taken in some fashion.
There are no shortcuts that lead to anything other than
unstable, costly to maintain systems.

1: Identify Your Resources

As early as possible, learn about any resources which
are available to help you in completing the tasks out
lined below. If you don't do this, being an HP RPG user
will feel very lonely (let's face it, RPG is used by a
minority of HP3000 customers). There are 4 sources of
assistance:

HP: Read your support contract and understand what
it buys you, and what is your own responsibility. If
there are misunqerstandings, clear them up before you
proceed. Be sure your SE can help you with RPG learn
ing and problems. He/she need not be an RPG expert to
get you help. Find out who the closest RPG SE is, and

2-64-2

arrange a path to that specialist through your SEe Learn
about HP Consulting products and try to anticipate
when you'll need these as you learn more about the
3000. This can be indispensable, and is also a good way
to gain access to RPG specialists at HP. Finally, learn
how to properly use PICS for RPG questions - an RPG
specialist need not be on PIeS for you to receive satis
factory response and resolution.

THIRD PARTY ASSISTANCE: When you need pro
longed hand-holding and long-term help, there are
sometimes third-party software suppliers who can pro
vide help in RPG/3000 expertise. These are scarce, but
nonetheless, have your sales representative check with
your local third-party sales representative.

USER COMMUNITY - Locate all user groups who
can provide a forum for discussing RPG-related topics,
and provide a network you can call upon when neces
sary. HPGSUG, local RUGs, and a. special interest
group can all help, especially in providing you with an
RPG toolbox. No special interest group currently
exists. If you think it should, then help form one.

SELF TRAINING - This is probably the most im
portant single difference between being an IBM GSD
user and an HP3000 user. MPE is easily accessed by
RPG users, and you can frequently solve your own
problems by reading reference manuals, HPGSUG pa
pers, etc. I have been very successful with this, and it
allows you to share your solutions with others as you
develop them. Again, talk to your SE to learn about all
of the information that's already in your own installa
tion.

2: Adopt MPE as a Design Determinant

Anything you do will at some point invoke MPE
code. If you learn as much as possible about MPE and
subsystems early, you will not be fighting with them
later in debugging your RPG applications. As was stated
before, this is the single most important key point in
being successful with RPG/3000 - RPG calls all of the
same intrinsics that COBOL, BASIC, etc. call. Here are
the things you should master, along with suggested re
sources necessary to master them:

MPE INTRINSICS: Learn about the MPE Intrinsics
- these are the basis for just about every function per
formed by the system. The MPE Intrinsics reference
manual will provide enough information; there are sec
tions related to Using the Intrinsics which contain good
explanations of what they're useful for. Without a
CALL verb, RPG can't do much with these directly, but
this will still be very valuable knowledge in design and
debugging. HPGSUG proceedings and HP consulting
can help to solidify this knowledge.

FILE SYSTEM: Though it is actually part of the in
formation in the Intrinsics manual, learn how the ftIe
system works. Your RPG code calls file system intrin
sics for you, so you should know what you're asking
MPE to do, as well as what it can do in general. Sepcifi
cally, focus on FOPEN as it applies to RPG. This will

help you learn about the three biggest problems in RPG
conversions: Buffering, Sharing, and Locking. If you
understand how MPE does these things, it is much
easier to ask RPG to do what you want. Again, HP
consulting can be helpful here, as are issues 24 and 25 of
the HP3000 Communicator.

SPECIAL CAPABILITIES: Again a subset of MPE
intrinsics, two special capabilities can provide you with
help in designing and converting on-line RPG systems.
These are Multiple Rin (MR), which allows multiple
concurrent .

FLOCKS (and should be unnecessary in new sys
tems), and Process Handling (PH), which allows your
program to run another (son) program and suspend until
it has completed execution.

STACK ARCHITECTURE: Learn what happens
when you run a program, in terms of Code Segments,
Data Stacks, Extra Data Stacks, what these terms mean
in the first place (it's really very simple), and how they
will affect you in the future. General reading and SE
assistance will explain these things.

IMAGE: Though your converted systems will not
employ IMAGE, the earlier you begin to use it, the
more stable your environment will become. IMAGE is
the most reliable and efficient data structure available
on the 3000. Needless to say, the IMAGE course should
be the first step you take, followed by RPG/IMAGE
consulting, reading, and a small-scale project to let you
become comfortable before you embark upon any sig
nificant new development project whcih will employ
IMAGE. Converting old applications to IMAGE usu
ally doesn't make sense, though it can be done easily
and will improve your application stability.

3: Understand the Elements
of Interactive Systems

Again, the choice of an HP3000 implies a change in
the general approach you will be taking, and one of the
most important differences is the interactive nature of
the new systems you will be developing. When you
offer a user an interactive system, you will need more
protection against error, better recovery capability, and
improved up-time. Technically, this re-alignment will
require you to understand how to best use and control
all peripheral equipment you will place in the hands of
the user. This will involve your mastering two basic
areas:

DEVICE CONTROL: Terminals and printers can be
controlled directly through the use of a subset of MPE
intrinsics, especially FCONTROL. Again, learn how
you can control devices within the constraints of RPG.
Many large systems isolate the user from MPE by using
terminal monitoring and control programs which make
it impossible for the user to get to a colon prompt.
Though this is not possible with RPG, a terminal
monitoring facility could launch RPG applications when
a terminal response is requested. RPG allows you to

read/write to $STDIN/$STDLIST; try all of the possi
ble File specifications you could use to do this, and
settle on one you're most comfortable with (I prefer to
define an input demand and an output fIle). Finally,
learn about escape sequences for terminal control, and
all of the techniques you could use to send these to the
terminal. This is easily done from RPG programs,
though many RPG users are not aware of this capabil
ity.

VPLUS: Like IMAGE, a thorough understanding of
VPLUS is essential to development of terminal-based
RPG/3000 applications. This is probably the most con
troversial RPG interface, but you can be relatively suc
cessful in writing VPLUS/RPG code by following the
same steps suggested earlier for IMAGE. If you try to
learn RPG/VPLUS on your own and without the
VPLUS class and SE consulting, chances are that you
will be very frustrated, with unhappy users and unstable
programs.

4: Re-Think Your RPG Design
and Programming Techniques

Finally, once you've absorbed all of the material pre
sented in the above pages, it is also beneficial to review
the kind of programming guidelines you've used in the
past. What you've learned about the possibilities of the
HP3000 will allow you to be much more creative with
your programs than you might have been in the past.
Again, the following basic areas should be explored:

STRUCTURED DESIGN/PROTOTYPING: Pro
grammers iJ). other environments have been benefiting
from two major design techniques, Structured Design
and Prototyping. Do some general reading to familiarize
yourself with these concepts, and determine whether
either might not be of some benefit. Though interest in
this technique seems to be waning, structured design
does allow you to begin to start thinking in terms of
small modular programs, an idea which MPE will allow
you to employ easily. Modular applications allow you to
develop your system as a tree of processes which you
can develop, test and debug in a "top-down" fashion,
which is far easier than traditional RPG development
techniques. Secondly, prototyping is an idea which is
becoming increasingly more prevalent because of the
attendant low development costs associated with it.
HP's RAPID products employ these techniques, and
RPG shops who develop general programs and routines
could also employ the same technique, though with not
nearly the speed of development. Since RPG is a cryp
tic, table-driven language, it fits well with the idea of
procedural brevity which is required in prototyping.
Again, general reading and contact with user groups can
help you learn more about these ideas.

CYCLE CONTROL: Because RPG/3000 is internally
very different from IBM's RPGII, it is possible to use
RPG similarly to other languages by eliminating au
tomatic I/O (cycle driven files), and doing reading, writ-

2-64-3

mg, and calculations all within your calc. specifications.
This is a heated argument elimination of automatic I/O
does not mean you are in total control, but some users
prefer this technique. Overhead in this case is not
higher, as it is in IBM environments.

PROGRAM STRUCTURE: IBM indexes program
efficiency to avoidance of high- overhead calculations.
On the HP3000, the lowest overhead program is the
program with the fewest statements and most logical
calculation structure. If you use straightforward
mainline code with nested subroutines, this will usu~ly
result in less object code. It will be important for you to
learn about the RPG compiler internals and segmenta
tion if this is important to you. Communicator #24 con
tains an interesting article related to RPG segmentation.
Your SEGMENTER is the best tool you can employ to
see what happens when you write a certain type of
code. Be careful not to expect this to be as important as
it was on IBM GSD equipment - all RPG/3000 code is
not compiled, and MPE lets sloppy code execute
quickly...

EXITING RPG: RPG doesn't take total advantage of
MPE (neither does any other language); sometimes it
makes sense to use the EXIT calculation to invoke a
procedure written in another language. For instance, if
you need to execute an MPE command from an RPG
program, you could simply EXIT to a simple SPL,
routine which calls the COMMAND intrinsic (this could
also be written in other languages), passing the com
mand from your RPO program. This technique is almost
indispensable in successful RPO/3000 systems. To learn
more about this, look in the RPO reference manual, and
get a copy of the REALRPO facility from the HPOSUG

2-64-4

library, release 08. Very few HP3000 shops are
monolingual.

CONCLUSION
Programming languages are simply vehicles to make

computers Because of this, it is important to focus on
the architecture and constructs used in the computer
you're using to be successful in using a language make
your computer "go fast." In the case of RPG users, we
learned how to program without understanding what the
programs were asking the computer to do, except in
general terms. Hopefully, this paper will re-emphasize
the importance of understanding the relationship of
success to an understanding the HP3000 on its own
terms. If the methodology outlined above is employed
in an RPG/3000 installation, regardless of the age of the
installation, I am quite certain that the user will be to
tally successful in developing high-quality interactive
systems on the HP3000. As in any endeavor, attitude
and organization will eventually determine how suc
cessful that endeavor is.

BIBLIOGRAPHY
1. Walmsley. David E.• "RPO/3000 Programming Efficiency."

HPGSUO Proceedings. September 1977. pp 42-48.
2.Todoroff. Gary. "RPO II: Report Writer of Programming Lan

guage," NOWRUO Presentation, May 1980.
3.KinS, David. "Current Methodolosies in Structured Design." Com

puterworld. September, 1981. pp 1025·44.
4.Schulz, Duane, "Living in an RPO/3000 Enviro~ent." HPOSUG

Proceedings, February, 1980, pp 2/75·83.
5.Schulz. Duane, Cumminss, Randy. and Stevens, Brian. "RPO/3000

Application Development Course," HP SEO, Wilsonville. ORlKinS
or Prussia, PA, December, 1981.

