Software Management Techniques

Janet Lind

There is currently much information available to

document the fact that the.cost of hardware is decreas-.

ing dramatically, but the cost of software continues to
climb. When questioning the source of this problem, it
is necessary to consider that many hardware functions
are now being implemented in software or firmware. It
is also true that computers are constantly being used in
new applications, and computer users have increasingly
sophisticated needs.

Today’s software systems suffer from a variety of
problems. Often they are delivered later than originally
scheduled. The systems may cost more than the original
projections. The software may not meet the user’s re-
quirements, or may be unreliable. When the need arises
to correct or upgrade the system, the cost involved may
be in excess of the cost of the original system.!®

One of the most pressing problems in software proj-
ect management is the lack of a well-developed struc-
ture for guiding the individual programmer. Instead of
directing the programmer’s activities, the manager can
often only manage an idea until all parts of the project
are completed. This problem arises from the fact that
the only clearly defined point in the programmer’s work
is completion. More definition of the process is
needed.?

There is no reason why software development should
be exempt from the formats found in other engineering
fields. Lab notebooks, design reviews, and failure and
reliability analysis have proved their value.

The lack of a disciplined approach to software devel-
opment may produce programs which are difficult to
understand or maintain, affecting overall cost.
Therefore it is important to develop a more rigorous
framework to delineate the several steps in the prog-
ramming process. Knowing the proper stéps to follow
will allow a programming team to develop more com-
mon objectives about the problem solution. This will
improve the product and the group motivation by allow-
ing the programmers to focus on more immediate goals.

Even though the approach being taken is to define a
series of programming steps, it is always important to
allow feedback to improve the product. A sequential
description of program development steps will be de-

fined here, but a problem found may cause a redefini-
tion in preceeding steps to provide a more correct solu-
tion.®

When first approaching.a software project, it is nec-
essary to perform a problem analysis. Here the inputs
and outputs must be specified and the relationships be-
tween them must be described. A programming
notebook should be kept to indicate how decisions were
reached.*

Part of the problem analysis includes decisions about
the resources available. This includes both people and
computer power. When considering the hardware used,
it is no longer strictly correct to consider implementing
everything possible in software. To increase prod-
uctivity and to simplify code requirements, it may be
worthwhile to purchase or develop hardware to meet
the problem.

Another choice would be the use of multiple proces-
sors, which gives greater flexibility than implementing a
function in hardware. This could also decrease the
complexity of a given program, for it will no longer be
responsible for as many portions of the function. Pro-
grams could also run concurrently, reducing timing con-
straints on a single system. This would make program-
ming in higher level languages more attractive because
the added processor capabilities offset the less efficient
code produced. After completion of problem analysis, a

‘walkthrough should be performed.

The solution design is driven by the I/O and their
relationships defined in the problem analysis. Several
different documentation techniques and evaluation
criteria can be used in the structured design. Data flow
diagrams can be used at the high level abstraction to

.model the flow of data through the system.®

Higher order software notation, or HOS, which was
developed as part of the Apollo Program at Draper labs,
defines a very useful flowcharting technique. Each con-
trol structure has a horizontal block showing the pro-
gram flow in that structure. This type of flowchart does
not show extra arrows, and allows easy identification of
each possible branch. This notation also uses the same
identation as should appear in the actual code.?

11 —63 —1

S1
DO-WHILE H
Sn
Sn+1
HOS Example

Some of the evaluation criteria used in structured de-
sign include decisions about the possible program de-
‘velopment tools available. Certain programiming lan-
guages may provide better support for the data struc-
tures to be used. They may also affect the amount of
‘coupling required between modules. It is important to
_consider the capabilities of the computer system on
which the program will be run, including memory man-
. agement techniques and I/O capabilities.

" When doing structured design, the design team is
‘often tempted to perform just the top level abstraction
as a team, des1gn1ng the lower levels individually. There
are some important reasons for doing a single integrated
design of the entire application. First, subdivision of the
design may result in excessive coupling of the major
systems. The resulting packaging into programs from a
subdivided design may be suboptimal. A complete
overall structural design could produce more efficient
and convenient packagmg Subdividing the des1g11 work
will very often result in duplicate programming. It is
particularly unfortunate when minor changes occur in a
few structures, yielding a new system which could have
shared entire subsystems and many levels of modules.?

Even though there are reasons for completing the en-
tire structural design as a single unit, this is not always
possible. In that case it would be best to produce a high
level abstraction of the program flow and: identify the
more independent subsections. Those with few, un-
complicated interconnections could be treated indepen-
dently. To avoid duplication of code, frequent mutual
design walkthroughs and cross-checks should be per-
formed.

Either while the structured design is being developed,
or after its completion, the testing must be planned. It is
necessary to design the test cases before the coding is
begun. This allows peer review to verify that the de-
signed code can be tested.

If the HOS flowchart notation is used, each program
branch can be easily identified, and therefore tests can
be designed to exercise each branch. If each program
branch is numbered, a test matrix can be developed to
indicate which tests execute which branches. The input
and output to each test must also be specified.*

11 —63 —2

THEN

S1

IF

S2

ELSE

S3

Both the structured code design and the test design
should be carefully reviewed via structured
walkthrough techniques. When considering
walkthroughs, it is necessary to determine if it is more
economical for an error to be found by the programmer,
or by a group-of 3 to 5 people. Part of the cost-benefit
calculation is the turnaround time for repairing errors.
Recent studies indicate that it is roughly ten times more
expensive to fix a design error after it has been coded
than to repair an error detected in design phase. It is
also quite possible that when looking for errors, the
programmer can repeat a logic error and never find the
bug. Walkthroughs can help avoid this.!®

Test Case | Input Branch Output
Vi|v2|1|2[3]|4|5 |Vi|[V3]|V4s
1 0]0]|X 0|01 O
2 0 1 X| X 0] 0| 2
1 0 X X 0| 2 1
3 1 1 |X X X111 1 1

Test Matrix Example

There are other walkthrough benefits which must be
weighed against the cost. The product quality is im-
proved. The walkthrough participants are better trained
in the product and are able to exchange important in-
formation.” This exchanged information increases the
probability that the product can be salvaged if a pro-
grammer leaves before completion. A walkthrough is
also a good environment for feedback into other areas.

After the designs have been accepted, coding and de-
bugging can begin. Here structured programming tech-
niques should be both understood and applied. Using
the HOS flowchart technique makes program flow and
structuring obvious at coding time.

It is too simple to believe that code without “GO-TO”
commands is always good. The language being used
should be well comprehended by the programmers to
ensure that the proper constructs are used. The code
within each module must be structured. Concurrent
documentation should also be kept.

With developing and testing code, it is also necessary

to choose between a top-down or bottom-up approach
to the overall structure. If hardware is being developed
concurrent with software development, the lower level
modules may be needed first to verify the hardware. In
most other cases, a top-down approach can provide a
more obvious visual presentation. This technique also
allows modules to be tested together sooner. The inter-
face between a node and its predecessor can be tested
as soon as the lower level node is developed, allowing
design or implementation errors to be detected and cor-
rected earlier.?

A
I1 R I3
B1 B2 B3
Example
TOP-DOWN BOTTOM-UP
1. Code and debug A Code and debug B1
2. Code and debug B1 Code and debug B2
3. Test I1 Code and debug B3
4. Code and debug B2 Code and debug A
5. Test I2 Test 11
6. Code and debug B3 Test 12
7. Test I3 Test I3

A librarian function is helpful during coding and test-
ing. The librarian can be an appropriately trained per-
son, or an automated system. The librarian should
maintain source programs and listings, as well as or-
ganizing all other technical information.

An automated system would avoid mixing media,
which could be helpful in keeping a very accurate re-
cord of what changes are made. A record kept during
edit phase could record what lines were modified and
which variables were affected. A time stamp on this
information could help other programmers know which
version of code they were using. The knowledge that
this system is being used will encourage a programmer
to carefully analyze each change.

When the code can be tested, the test case matrix
should be used to direct the tests applied. It may be
useful to have the test run by the librarian. The test

results should match those predicted, and a run log
should be kept to document the test results. The pur-
pose of the run should be stated, followed by an analysis
of the run in terms of that purpose. This allows feed-
back for code correction and avoids haphazard modifi-
cation. Any corrective actions which must be taken by
the programmer should also be recorded.®

It may also be valuable to keep a time log to sum-
marize the time needed for each step. This forces the
programmer to review the actual effort expended in a
task, and helps for making more realistic future esti-
mates.

Throughout all activities, an independent auditing
function can be performed. This will help detect errors
unnoticed by the development team, and provides feed-
back.

The system described here is relatively involved and
may be difficult to implement all at once. A pilot project
could be chosen to use structured coding, structured
design, and informal walkthroughs. As the process is

_implemented, it may be valuable to measure certain as-

pects such as the number of debugged lines of code
produced per day and the number of bugs found after
release. This can aid in future estimates. The amount of
time spent in each walkthrough and the number of bugs
found there should also be measured to help improve
the techniques used.®

BIBLIOGRAPHY

1F. T. Baker, “Chief Programmer Team Management of Productin
Programming,” IBM SYST. J., vol. 11, No. 1, 1972.

2F. T. Baker, “‘Structured Programming in a Production Environ-
ment,” IEEE Trans. Software Eng., pp. 241-252, June 1975.

SM. Hamilton and S. Zeldin, “Higher Order Software — A Meth-
odology for Defining Software,” IEEE Trans. Software Eng., vol.
se-2, pp. 9-32, Mar. 1976.

4P. Hsia and F. Petry, “A Framework for Discipline in Program-
ming,” IEEE Trans. Software Eng., vol. se-6, no. 2, pp. 226-232,
Mar. 1980. .

SP. Hsia and F. Petry, “A Systematic Approach to Interactive Prog-
ramming,” Computer, pp. 27-34, June 1980.)

SM. Page-Jones, The Practical Guide to Structured Systems Design,
Yourdon Press, New York, N.Y., pp. 267-284, 1980.

7C. H. Reynolds, “ What’s Wrong with Computer Programming Man-
agement?,” On the Management of Computer Programming, G. F.
Weinwurm, Ed., Auerbach, Philadelphia, Pa., pp. 35-36, 1971.

SM. Walker, Managing Software Reliability — the Paradigmatic Ap-
proach, A. Salisbury, Ed., North Holland, New York, N.Y., pp.
32-41, 1981.

%E. Yourdon, Managing the Structured Techniques, Prentice-Hall,
Inc., Englewood Cliffs, N.J., pp. 10-88, 1979.

YE. Yourdon, Structured Walkthroughs, Prentice-Hall, Inc., En-
glewood Cliffs, N.J., pp. 87-100, 1979.

11 —63 —3

b

	Section 11—Miscellaneous
	Software Management Techniques

