
The Technology of the
QUAD Editor, Part II

Jim Kramer
Hewlett-Packard

St. Louis, Missouri

INT"RODUCTION
The QUAD editor is a text editor that was contrib

uted to the Users Group library last year at the Orlando
Users Group meeting. It has several features which
make it notable and useful, the most important of which
are that it texts files instantaneously and that it can
undo any or all editing changes. A paper in the proceed
ings of that meeting, titled "The Technology of the
QUAD Editor," described the implementation of these
features.

In the past year QUAD has acquired many new
capabilities, including the ability to maintain multiple
versions of a file, to cancel the effects of the preceding
command, and to compile programs. The purpose of
this paper is to describe the implementation of these
new capabilities.

A BRIEF DESCRIPTION

QUAD is a line-oriented editor similar to EDIT/3000
and TDP/3000. Its most important capability is instan
taneous texting, and sometimes instantaneous keeping
of files. A file is texted just by opening it and changes
are kept in a separate work file. If the only changes to a
ftIe are modifications of existing lines, then keeping is
done by posting the changes back to the texted fIle.
Since changes are kept in a separate work file it is easy
to undo any or all changes just by removing them from
the work file: QUAD's UNDO command does this.

It is important that .QUAD be able to fmd lines in the
texted ftIe quickly. QUAD starts out with no knowledge
of the location of lines in the file, and must find re- "
quested lines using binary search. However, QUAD
keeps a record of all blocks read during the search pro-·
cess and uses this record to shorten subsequent
searches. The method is described in "a paper titled "A
New Tool for Keyed File Access (Sometimes)" in the
proceedings of the Users Group's 1980 North American
meeting in San Jose.

Features that are new to QUAD in the past year in
clude the following:

1. Operating directly on changes to the work ftIe, by
means of the MODS key word in a line range.
Changes can be listed, kept, and otherwise oper
ated on. For example, "List Mods" lists all
changes that have been made to the current file,

and "Keep Modfile(Mods)" saves the modifi
cations in a file named Modfile..

2. Cancelling the most recent command which mod
ified the file. The Cancel command does this.

3. Maintaining multiple versions of the ftIe being
edited. The Freeze command prohibits further
changes to the current version and starts a new
current version. Prior versions can be read at any
time, but not modified, by using the VERSION
keyword. For example, "List Version 1" lists the
first version, and "Keep Filename(Version 1)"
keepts it.

TICKET FILES

The important characteristics of QUAD work fdes
variable length keys and data and re-use of space - are
provided by a file access method which I call ticket
files.

With most ftIe access methods, the user who wants
data stored specifies where it is to be stored - a record
number. With ticket files the user does not specify; in
stead he just supplies the data to the access method and
receives back a "ticket" telling him where the data has
been stored. In order to retrieve the data at a later time,
he must supply the ticket.

It is important to recognize that this technique gives
enormous flexibility to the ftIe access manager. The
data can be put in the most convenient spot, for exam
ple a block that is already in a buffer in main memory.
Within the block the record can be placed wherever
there is space. With ticket files a record need not even
be placed contiguously within the block - it can be
broken into pieces.

Ticket files turn out to be peIfectly suited to those
applications in which data is found through pointers:
tickets are really just pointers.

In order to make ticket ftIes satisfactory as work fIles,
it was necessary to implement a keyed sequential ac
cess method based on ticket ftIes. The implementation
is significantly different from KSAM and actually more
poweIful: both keys and data Can be variable length,
space is re-used, and keyed sequential access can be
either forward or backward.

When a key is stored, a ticket is stored with it. The

5 -57-1

J

ticket points to data. Thus storing data by key is a two
step process:

1. Store the data and receive a ticket.
2. Store the key and the ticket.

.Retrieving data by key reverses the two stC5Ps:
1. Supply the key and receive the associated ticket.
2. Use the ticket to retrieve the associated data.

THE WORK FILE BEFORE
MULTIPLE VERSIONS

Before describing how the current QUAD maintains
multiple versions of a ftle, I will describe how earlier
versions maintain the work fde.

A ticket file is used as a work ftle, and contains two
types of keys within the key structure: keys describing

deleted ranges, and keys describing new or changed'
data.

To do a deletion, QUAD makes a single entry in its
work ftle which is just a 17 character key. The first
character is a "0" (for delete), the next 8 characters are
the lower line number in the range, and the last 8 are the
upper line number.
. Since deletion is achieved with a single work fue en

try, it is very fast, and the speed is independent of the
number of lines being deleted.

A change entry consists of both a key and data. The
key isjust the letter "C" followed by the 8 character line
number, and the data is the line of text corresponding to
that line number.

Schematically this structure is as follows, with an
arrow representing a ticket hel~ with the key and point
ing to the data.

Change key -----------------> Data
Delete key

. IMPLEMENTING MULTIPLE VERSIONS

Multiple versions were implemented by introducing a

version record for each key, as follows:

•

Change key ----~---> Version Record --------> Data
1 1 1 1---------> Data
1 • •.• 1 1-----------> Da ta
1 1-------------> Data
I
I •
t~--------------------) Data

Again the arrows represent tickets. In this case a tic
ket is stored with the key and points to a record called
the version record, which itself contains one or more
tickets pointing to data. With each such ticket there is a
number identifying the version to which the data be
longs.

Using this structure QUAD can, for each line number
. (represented by the change key in the figure), maintain

multiple versions of each line.
Version records are themselves variable length, each

being large enough to hold tickets for all versions of the
corresponding line. There are generally many fewer
versions of a particular line than there are ftIe versions,
because a given line will not· change with each version
of the ftle. A version record is restricted by QUAD
internal buffering to 31 versions, but in general this will
allow hundreds of file versions.

To operate on a version of the ftIe, QUAD must inte
grate all deletions and changes for that version and all
previous versions with the originally texted ftIe. The
algorithm to accomplish this is one of the most difficult I
have had to write, and is complicated by trying to op-

5 -57-2

timize performance. One performance problem that
arises is that modifications to early versions which have
since been deleted can slow down access to later ver
sions.

.: .

, IMPLEMENTING THE CANCEL COMMAND

The Cancel command cancels all changes made by
the most recent command to change the fue. Two con
secutive Cancels have no net effect: the second cancels
the effects of the first.

The Cancel command was almost trivial to implement
once multiple versions had been implemented. The
technique used was to reserve space in each version

. record to save a version number and ticket. Then when
a command changes a line, the previous version number
and ticket can be saved in this space. The Cancel com
mand· then just restores the saved version number and
ticket to its prior place.

The only other implementation requirement for the
Cancel command was to link together all the changed
version records. This was easily accomplished using the
tickets of the version records.

COMPILING FROM WITHIN QUAD·
QUAD allows compiling for five languages: COBOL,

FORTRAN, RPG, SPL and PASCAL. The syntax of
the commands for compiling is identical to the syntax
for the corresponding MPE command. However to
compile from the fde currently being edited, it is neces
sary to replace the text file part of the command with a
line range enclosed in quotes. For example:

/SPL (ALL),$NEWPASS
/FORTRAN (2B/4B),USL,*LP

The ability to compile from the fde being edited turns
out to' be especially useful for FORTRAN, because it
permits compilation of single subroutines.
. All compilations are done by invoking the requested
compiler as a son process. File equations are set up for
all specified fdes, and the compiler is passed a PARM to
tell it which fdeswere specified.

Whenever a line range is being compiled, QUAD
passes the line range to the compiler through a message
fde. Message fdes are a new fde type for MPE as of
MPEIV.

This was my first experience with message fdes, and I
encountered the following problems:

1. Unless the message rde is built to contain only a
single block, all blocks are posted to disc. QUAD
uses a single block message ftle to prevent this
posting.

2. If QUAD fdls the message rtle before the compiler
opens the ftle, QUAD's next write will fail with an
end-of-ftle error. In this case, QUAD must loop,
pausing and trying to write until the compiler gets
the ftle open. Once this occurs QUAD will au
tomatically be suspended by the fde system on
trying towrite to a full ftle, as long as the compiler
has the file open.

3. QUAD must be careful not to send a null ftle (no
records) to the compiler, because the fIle system
will suspend the compiler indefmitely on its frrst
attempt to read a record regardless of whether the
ftle has any writers.

CONCLUSION
QUAD was created to quickly list ftles and make

simple ·changes. I believe it or a similar tool belong in
every 3000 shop as a significant resource saver.

A few users now use QUAD rather than EDIT/3000.
This pleases me because I think QUAD deserves it,
although there are still things that EDIT can do which
QUAD cannot. However, I suspect that most users of
these tools would quickly abandon' them for ·general
editing were a good full-screen editor to appear. I know
I would.

If there is any permanent significance to QUAD, I
believe it is to be found in the ticket rde access method,
which I have found to be enormously flexible and easy
to use. QUAD does not take full advantage of its flexi
bility, and I am looking for an application that does.

5 -57-3

'--;.-

\

	Section 5—Data & Text Processors
	The Technology of the QUAD Editor, Part II

