
Online Database:
Design and Optimization'

Robert B. Garvey
Witan Inc.

Kansas City, Missouri

CONTENTS
A. The Foundations

1. GOALS; A System Language and Methodology
2. ~ystem Principles

a. Elements
1. Components
2. Relationships

b. Use in System Phases
(1) Analysis
(2) File Design

. (3) General Design
3. Information System Architecture

(a) General System Architecture
(1) Detailing
(2) Development
(3) Implementation

(b) Use of IMAGE and VIEW
4. Interactivity and Control

(a) Menu Programs
(b) C,ontrol Tables
(c) Data Area Control
(d) Quiet Callability

B. Dynamically Callable Programs
1. SLs & USLs
2. Effect of called programs on the stack

C. SPL Standards

FOUNDATION
A system language, GOALS, will be introduced to

render systems and components.
A general set of principles will be presented incor­

porating the components and structures inherent in a
structured system. The use of these components in the
system life cycle and as a documentation system will
evolve.

A general system architecture will be presented and
an approach to interactivity will be discussed.

The detailed use of callable programs in the 3000 en­
vironment will be discussed with emphasis on im­
provement of system performance.

I am going to assume that you are frrst time users of a
3000 that you want to write online database systems,
that you do not hav~ some of the more typical real

© Copyright Witan Inc. 64113

world problems like a conversion from another machine
and that you are going to use VPLUS and IMAGE. I
don't care what language you use unless it is RPG in
which case much of what I say will not be true.

GOALS: A System Language

GOALS was designed to meet the following criteria:

• Provide good documentation throughout the
lifecycle

• Ease maintainence
• Expedite development
• Provide users early understanding of System

functions and restraints
• Improve project management and reporting
• Reduce resources required
• Optimize System performance and quality
Many of the above criteria can be achieved through

reasonable structuring of the system. However many of
the structuring techniques that are now popular are
simply more trouble than they are worth. Yourdon,
Jackson and certainly IBM's HlPO involve more work
involve more work in their maintainence than rewards
merit. Warnier comes closest to being worthwhile but
cannot be reasonably maintained in machine sensible
form.

GOALS will be described as a methodology only be­
cause it does what the popular "Methodologies" tout,
and much more. We do not feel that any of the meth­
odologies should be considered ends in themselves and
more sacred than the system at hand. Once the princi­
ples are learned and applied the implications should be
obvious and the apparent need for a methodology for­
gotten.

Documentation
General Statement

The purpose of documentation is to assist in the
analysis, design, program design, maintenence and op­
eration of a system. To those ends software documenta­
tion must be flexible, easily modifiable, current and
easy to read. Witan has developed a system of
documentation called GOALS which uses simple text
ftles associated through control numbers to meet the
criteria listed above. The following sections describe

1-43 -1

GOALS Primitive Structures

1
1-------------1
! PROCESS 1 1
1-------------1

1

1 PROCESS 2

! PROCESS 3

>

>

END

BEGIN

SEQUENCE

<

<

1 PROCESS 1
2 PROC·ESS 2
3 PROCESS 3

FLOW

GOALS

the general features of the structural notation used in
GOALS and the General system structure used in sys­
tem projects.

GOALS is used throughout the life of a project. It is
used:

1. To state requirements
2. Render flow and components in the analysis phase
3 To develop, test and render a general design
4. As a pseudo code or structured English for detail

design
5. As a high level programming language
6. As a project network descriptor.

GOALS: Structural Notation
Formal structuring permits three primitive opera­

tions: Sequence, Repetition and Alternation. Structural
Notation was developed to meet the criteria of fonnal
systems in a generalized way and was guided by the
assumption that systems must be rendered in.a machine
sensible form. GOALS relies upon text sequences and
key words as its basis. Structural Notation is the basis
of the syntax of GOALS.

Following are the representations of the primitive
structures using flowcharts and GOALS. The word
PROCESS is used to represent a step, a process or an
item depending on the use of the notati~n at the time.

ALTERNATION

FLOW

< BEGIN >
----~,-.----

!
*

* *
* 'It

* IF X * ---
* *

* *
*

false
!

*
'It *

1-------------1. .
true----->! PROCESS 1 1---

1-------------1. .

'It * 1-------------!
* IF Y * ---true------>! PROCESS 2 !---

* * 1-------------1
* *

'It

false
!
'It

* *

* 'It 1-------------1 1. .
~

'It IF Z *---true------->! PROCESS 3 1---1
'It 'It 1-------------1

* *

*

1-43 -2

false
1
1<-------------------------------------<-
1

< end >

GOALS IF X IS TRUE
PROCESS 1

IF y IS TRUE
PROCESS 2

IF Z IS TRUE
PROCESS 3

REPETITION

FLOW

< BEGIN

1

*
* *

* *

>

<-false---<*
1
1
1

< END >

IF Y *----true----
* * 1

* * 1
* !1---------------!
1<----------1 PROCESS 1 !

1---------------!
GOALS WHILE Y« IS TRUE »

PROCESS 1
PROCESS lA
PROCESS 18
PROCESS IC

The exclamation point is used to signify control in the
WHILE loop. If the condition is met the control passes
to the statement following the (!) on the same level. If
the condition is met the control passes to the first
statement following the condition. Processes 1A
through 1C were added to show a simple subsequence.

Data Structuring

GOALS is also used to represent data structure. As
with control structure there are three general structures
which can be represented.
Data items listed line after line represent sequence:

I. item-I
2. item-2
3. item-3
Subsequences are represented as sequences on a

level below the item of which they are are a part.

1. item-1
IA: item-IA
lB. item-1B
IC. item-1C
2. item-2
3. item-3

Repetition in data structuring can be represented by
"(S)" at the end of the item name which is repeated, this
can take the form an expre.ssion [Le., (0)s<15)].

item-I(S)
item-1

Example: a fue of accounts
Account File

Account(s)
Account
Account number

1-43 -3

Name
Address(s)

Address type (h=home, w=work)
Street number
Direction
Street name
AtIIX

Amount due
Order(s)

Order number
Item(s)

Item

Alternation

Alternation is represented with the IF control word or
with the notation (1,0).

IF segment descriptive code = I
material

IF segment descriptive code = 2
supply

This convention is seldom used because the WHILE
handles most situations for the case ofdata structuring.

The other type of alternation is within a string of data
items where the item can either exist or not exist.
.Another way of representing a non-required item.

I. item-I
2. item-2
3. item-3(1,0)
This says that items I and 2 must exits or are required

and item 3 is optional.

Discussion

The highest level of repetition within a data structure
is assumed to be the key to the ftIe or at least the major
sort sequence. If additional keys are required they can
be represented with the word KEY [i.e., item-3 (KEY)]
or an additional data structure can be presented to rep­
resent the structure repres~ntedwhen the KEY is used.

GOALS can be used to represent logical structures as
well as the physical implementations. It is important
that the required logical views of data be derrived and
documented before any physical structures be planned.
A goal in system design is to have a one to on~ relation­
ship between the physical and the logical structures of
the system. The coding complexity is reduced appreci­
ably as wellas the maintainence activity. An additional
byproduct is the ability to use Query or other general
inquiry languages in a more straight forward fashion.

LEVELS: are represented graphically with the use of
indentation. The fIrst character in a line is considered to
begin.an "A" level subsequent levels are indented an
additional three spaces each.

Succe~sively lower levels (higher value characters
and more deeply indented) represent subordinate pro­
cesses. As will be seen in the general system structure
the highest most levels are controled by increments of

1-43 -4

time; years, quarters, months, days, etc. while lower
levels are controlled by events or conditions.

CONTROL NUMBERS: The control numbers used
in GOALS are developed by alternating the use of num­
bers and letters to represent sucessively lower levels
within the system. The system is similiar to English
outlining except that only capital letters and numeric
characters are used. For a given statement there is no­
thing to indicate its position in the hierarchy unless the
entire control number is dipicted or the starting control
number on the page is given. When GOALS statements
are machine stored the entire control number is either
stored or is assumed.

Principles

An Information system is distinguished from operat­
ing systems, command interperters, compilers and the
like. An Information System is that set of communica­
tions, operations, rdes and outputs associated with a
single conceptual "file."

I am not talking about a single program. Historically I
am talking more about an application area.
Elements
Components

First an analogy:' All purely mecanical devices are
made up of elemental components; the incline plane, the
wheel and axle, the lever and the chamber. The physics
of these basic components and the materials from which
they are constructed defme the limits of their applica­
tion. You may be saying, that list does not sound cor­
rect or "what about the screw." In listing elemental
components certain definitions are inherent. I define the
screw as a "rolled incline plane."

For information systems I assert that the list is:
Communications, ftIes, operations and outputs. The lim­
its for such systems are defined by the ordering of the
elements using the primitive structures (sequence, al­
ternation and repetition).

As a note; to date the list of elemental components
may have been input, process and output without regard
to structure. T~is is more elemental considering all
computer processes but is unbounded. This makes a
general system design technique very difficult. Adding
hierarchy to the above does not enhance these primi­
tives to any great extent.
Relationships

With these boundries and definitions in hand, lets
look at the relationships that develop.
. There is generally a one to one relationship between
ftIe structure and operations structure, between com­
munications structure and operations structure, be­
tween output structure and operations structure. In
other words the operations or control structure mimics
the other components of the system and each componet
is related to the other in structure. Structure begins with
the file structure.

Example; if you have a fde· of accounts and you want

"'\

to report them; the report program may need tq be
structured exactly the same as the rue or database to
report all the data in the file. Most often there is a one to
one relationship between files and outputs. In the report
example the report structure could be expected to look
exactly like the file. If the report is to look different than
the fue there would be in intervening operation usually a
sort or selection to convert an intermediate output to
the final output.

The same is true of communications which on the
data processing level are the transmissions to the uses,
the screens and the messages. The structure of a com­
munication is generally the same as the operation struc­
ture which is the same as the data structure and thus the
communication structure is the same as the data struc­
ture. This substantiates the theory that systems can be
completly described knowing only the data structure.
True but limited. Knowing the structure of any part
should in theory give you the whole.

If everything describable about a system can be de­
scribed in simple structures (and thus in GOALS) and
the components of a system include only communica­
tions, files, operations, and outputs and GOALS can be
used in all system phases then we have a framework for
a general system covering conception through
maintainence.

Lets look at any application. Traditionally you would
begin with a requirements statement and do an analysis
of the existing system. Forget flowcharts, classic narra­
tives, and other charting techniques. Think of prog­
ressively decomposing the system using simple english
outlining starting with the functions. Functions fit into
the operations structure discussed. You will note that as

, you get down a level or two you will encounter repetit­
ive tasks dependant on. conditions, add WHILE and IF
to your outlines and keep describing. Remember that
users can understand outlines and repetition and alter­
nation are not difficult to understand.

Operations will include existing machine processes,
manual proceedures, paper flows, sorting processes etc.
As you are going through the operations keep a list of
the files that are mentioned and note the file keys (and
sorts) and any advantages or r~questsfor multiple keys.

List any outputs or reports prepared by the organiza­
tion or required in the future.

Communications will be minimal at this stage but

note any memos that may go from one section to
another of a "file" of notes used as crossreference or
duplicate of any more perminent fuel

Your documentation is now shaping up; your
notebook and I assume that the whole world has change
to 8~"SII", should be divided into communications,
file, operations and outputs.

The starting point for design is the detailing of the
files in your file list. You will want to reduce the fnes as
much as possible to a single file. By way of naming
conventions the "file" should have the same name as
the system at hand.

You will notice that many of the manual fnes are
really communications in that they are "views" of the
file that are required in a particular subfunction.

The design of the conceptual fue must be validated
against the required operations. I am going to leave this
hanging for a moment to discuss a General Syst~m

Structure.

General System Structure

A General System Structure is presented on the fol­
lowing page in Goals.

This structure is not applicable in all systems but is
used as a pattern for system discription, design and
understanding.

The key elements of design of this structure are:
I. File unity; a system with this structure has only

one conceptual ftIe. It may have any number of
datasets of or physical files but they must be for­
malized into one.

2. Journalizing or logging; all changes made to data
items can be (and normally should be) logged.

3. Last action dating; incorporated as part of logging,
permits an omine log.

One detailed implication of this is need to have a date
stamp in each detail set and a master date stamp in the
master file.

Note: sleeper from the contributed library is a must.
A standard job stream to prepare the system for shut­
down and to bring it back up to production mode is also
recommended. Allocation of application programs a de­
sirable feature is the reason for this and also a good way
to get sleeper going again.

\.

General System Architecture

Begin system
WHILE NOT EOSystem

WHI LE NOT EOYear
WHILE NOT EOQuarter

WHILE NOT EOMonth
WHILE NOT EODay

WHI LE ONLINE
Begin online
identify operator and security

1-43 -s

Open system file
Open current files
WHILE Communication

IF control transfer
transfer control

IF batch request
initiate request

IF update , add or delete
Begin
Memo to LOG
LOCK
Update ,add or delete
UNLOCK
End

IF inquiry
perform communication operation

End Onl ine
Begin daily batch
Perform daily batch processing
Run LOG analysis
If end of week

Perform Monthly Processing

ROLL FILES

perform Monthly processing

Perform Quarterly processing

Perform end of year processing

Close system
End

.~
.)'

A GENERAL DESIGN
With this Architecture and database design complete

we have the basis for the development and implementa­
tion of any application.

Step 1 is inquiry into our fde; if there is only one
search criteria then we calculate into to fue and return
the master data or a summary. Once positioned in a
master we can chain through our detail sets or follow
appropriate programatic paths.

The master screen (a communication) should provide
inquiry, update, and addition ability.

Each detail set should have a screen providing the
same update add and inquiry ability. Our screens will be
one for one with the detail sets. Think of a detail set as
having a buffer that will correspond to communication
(VPLUS) buffer. Moving data within one program is
facilitated with this concept.

The list of detail sets becomes a list of programs
which must be written to handle the retrieval, update,
addition, deletion and editing of data for the detail set.

When this is complete you will have a functioning
system; it will not function well. I have intentionally

1-43 -6

oversimplified. The office proceedures which may be in
place or will evolve will dictate what combination of
sets will appear on a screen but no effort was be lost in
developing the barebones system according to this
method. Each set (detail set) should have its own pro­
gram to handle retrieval and update. When require­
ments demand inclusion the programs can usually be
used with few changes. You can take this one step fur­
ther to include a general scheme to handle multiple data
sets on one screen.

The question then becomes; "How do I tie this all
together?"

Interactivity and Control

Let's say that we have written a system composed of
a series of programs that correspond to our data sets.
The way in which we implement interactivity is through
a control program called MENU. 4A Menus

A master data set will exist at the top of the concep­
tual fIle and the primary search path will be the ftle key.
Other search paths will be provided through subsystems
such as "Name Family" or through automatic masters.
For all detail sets associated to the master there will be

a program to handle that data set. Your analysis will
dictate all the processes that the operator may wish to
perform.

As other requirements develop associating more than
one data set the code can be combined and new screens
developed.

The menu control program provides transfer of con­
trol. It can do this either "quietly" or "loud." Loud is
the obvious implementation; the operator choses a data
set from a menu screen, the control is transferred via a
"call" to a dynamic subprogram the data set is accessed
updated, etc. and control returns to the controlling
menu. But let us give the operator the ability to "tell"
the system where he wants to go next. If he does a
common area flag can be set to say don't display the
menu simply transfer control to some other subprog­
ram. We call are common area for data SYSBLK and
out flag(s) Ql, Q2, etc. (you are not limited to one level
of menu).

A menu structure may look like this:

MAIN MENU
WHILE NOT PARENT OR END OF SYSTEM

IF LOUD
GET MAIN MENU SCREEN
SEND (SHOW) SCREEN
WHILE EDITS'FAILED

EDIT FIELD
IF EDITS FAIL.

SEND SCREEN

SET MODE TO QUIET
IF QUIET

IF NEXTPROCEEDURE=A
CALL A

IF NEXTPROCEEDURE=B
CALL B

IF NEXTPROCEEDURE =N
CALL N

ELSE
CALL CONTROL 'NUMBER 'TABLE

Through this technique those programs which are not
being used are not using memory resources. The CON­
TROL NUMBER TABLE refers to implementations
which have levels of menus. If the control reference is

. not handled at that menu level control is appropriately
passed to the proper level where a control program can
handle it.

The quiet "CALL" technique can be used for any of
the data set programs discussed by putting the quiet call
structure "around" the program and requiring the pass­
ing of appropriate data into or from the communication
buffer. Ifyou need to pass data from one subprogram to
another and you want to release the calling program
stack space you can do so with extra data segments
(DMOVIN, DMOVOUT) or message fIles or scroll files

(logical device dependant files) that you set up in the
application program Le. BUILD SCROL033;rec=­
80,16,f,ascii.

Pitch for the use of intrinsics; we have found that
most 3000 users do not take advantage of some of the
very rich intrinsics in MPE. They are simple calls, well
documented and even those that require bit settings are
fairly easy to implement in any language.

The COMMAND intrinsic, for example lets you issue
MPE command line, commands programatically. We
use this to create stream jobs then kick off the job from
online programs. A report menu can be used this way.

Effect of called programs on the Stack

The effect of using properly implemented called pro­
grams is simple and dramatic. You reduce the amount
of stack (that normally translates into main memory)
that is required by each user of an application program.
Jim Kramer HP SE Saint Louis (Quad Editor Fame)
calls it timesharing the stack.

Usually the outerblock program carves out the re­
quired amount of data area to be shared by all subprog­
rams in the "system"; this would normally include a
database area, a VPLUS area and an area for the system
at hand. MPE then carves out some data area for Image
and VPLUS. Using a simple menu concept as dis­
cussed, as each program is called it will require its own
data area and thus addition stack on top of the common
(Q relative) data area, when the program returns to the
menu this stack space will be unused but as soon as the
next program is called this same space will be used by
that program for its space.

COBOL sections do not do the same thing. They
create data areas for all declared data in the data divi­
sion. Sectioning permits smaller code segmentation but
this is a shared resource on the 3000 anyway. Note that
with stack sharing per user that the reduction in mem­
ory requirements is greatly enhanced over code optimi­
zation.

You will also find that editing code is much easier
with smaller source files, that compilation is faster and
more concise code is written.

SL's and USL's

SL's

• Modules, entry points and called Programs require
1CST entries if they are not already referenced in a
running process.

• Code is sharable by all programs. The PUB.SYS
SL is avalable to all p~ograms. Account and group
SL's are available to programs being run out of that
Account or group.

• You may exclusive access to the SL to make an
entry in it.

• When SL entries are made you do not need to pre­
pare the SL. It is available after you have exited
the sefZmenter.

1-43 -7

USL's
• Programs compiled 'into. a USL must be' prepared

before they are runnable.
• Many programs may be compiled into the same

USL. When a program is run the system will look
to the USL for resolution of called programs~ it
then looks to the PUB.SYS SL unless a library' is
specified in the RUN. (RUN prog;LIB=G)

• All USL resolved entries create XCST'entries ex­
cept the outer block.

CST's and XCST's

• T~ere are 192 CST entries available to user proces­
ses

• There are 102.8 XCST entries available to user pro­
cesses.

COMPILE INTO A USL COBOL/3000 Example

**
**
**

only needed
for

COBOL/3000

**
**
**

IJOB JOBNAME,username/userpass.aeeountname/aeeountpass;OUTCLASS=
1COSOL p·rogname, $NEWPASS, $NULL
1SEGMENTER
USL $OLDPASS
NEWSEG progname,progname'
PURGERBM SEGMENT,progname'
USL yourusl
PURGERBM SEGMENT,progname
AUXUSL ~OLDPASS

COpy SEGMENT,progname
EXIT
ITELL user.aeet; yourprog ---) yourusl
lEOJ

PREPOFUSL

IJOB DyourUSL,user/userpass.aeeount/aecountpass;PRI=ES;OUTCLASS=
IPURGE yourrun
lCONTINUE
IBUILD yourrun;DISC=2500,1,1;CODE=PROG
!SEGMENTER
USL yourusl
PREPARE yourrun;MAXDATA=16000;CAP=MR,DS
EXIT
ITELL user.aeet; yourrun ---) yourrun
lEOJ

CALLABLES INTO SL's

1JOB D1SL , user/use rpa ss. aceoun t/accountpa ss ;OUTC LASS=, 1
1COBOL yourprog,$OLDPASS,$NULL
1SEGMENTER
AUXUSL ~OLDPASS

sL SI.
ADDSL yourprog
EXIT
1TELL user.aeet; yourrun ---) yourrun
1EOJ

MENU

REPEAT until parent or end of system
IF loud

get menu screen
show screen
REPEAT until edits pass

edit fields
IF ed it fa il

send screen
1 •
set mode to quiet

1-43 -8

IF quiet
IF nextprocedure =

CALL "0" USING
IF nextprocedure =

CALL I'll' USING

110"
., ., .
"I"
., ., .

IF nextprocedure = "n"
CALL lin" using ., ., •

ELSE
CALL "CONTROLNUMBERTABLE" using nextprocedure

Goals-SPL Standards

Section Title

1 General

2 Procedures and Decl'ara t,ions

3 Moves

4 IF Control

5 REPEAT Control

6 Witan include files

7 Coding rules

GOALS-SPL STANDARDS

General

Indentation of three spaces indicates the beginning of
a new level. If the next line is indented six spaces it
indicates a continuation of the previous line.

Assignment is done with the ":=."
Comparison is done with the "=".
The astrisk is used to indicate that the address re­

quired in a statement has aIfeady been loaded on the
stack. This has general applicability but we will limit its
use to moves where the previous move has used the
stack decrement option leaving the ending address on
TOS. In a MOVE WHILE there is a stack decrement

feature, a ",1" following the A, AN or N indicates that
the final destination address is left on TOS.

The asterisk in parenthesis (*) indicates a backrefer­
ence to another data item causing a redefmition of the
area in the data stack. This back reference does allocate
one word of the stack as a pointer.

Parameters should always be on word boundries thus
BYTE ARRAYS should not be used as parameters.

Procedures and Declarations

Procedures parameters should all be called by refer­
ence not by value.

The form for an outer block program is:

~CONTROL USLINIT [ERRORS=5, LIST,
BEGIN «SOURCE»

Lglobal data declarations]
Lprocedures/intrinsics]
Lglobal-subroutines]
Lma in-body]

END.« SOURCE »

The form for a subprogram is:

1-43 -9

~CONTROL SUBPROGRAM [ERRORS=5, LIST, •••]
BEGIN « SOURCE »

Lcompile time constructs]
Lprocedures/intrinsicsl

END. «SOURCE»

The form of a sample subprogram using the Witan INCLUDE files found in the appendix follows:

$CONTROL SUBPROGRAM, ERRORS=5, NOLIST, NOWARN, SEGMENT=S·EGNAM
BEGIN « SOURCE »
~INC['UDE INCIG.T

« BEGIN EXTERNAL PROCEDURE DECLARATIONS »
~INC LUDE STDINTR. T « STANDARD EXTERNAL PROC EDURE DEC LARATIONS >
PROCEDURE BLANK(WINDOW,VI);

VALUE VI;
I~ WINDOW;
IN VI;
OPTION EXTERNAL;

« END EXTERNAL PROCEDURE DECLARATIONS »

PROCEDURE SEGNAM(VBLK,SYSBLK,RTN'CDE);
IA VB LK, SYSB LK;
IN RTN 'CDE;

BEGIN « SEGNAM »

« BEGIN DATA »
SINCLUDE VBLK.T
SINC LUDE SYSB LK. T
I A I B LK (0 : 0) ;
SINCLUDE SUBGLOB.T « USING SUBGLOB.T REQUIRES THAT VBLK,IBLK

SYSBLK HAVE BEEN INCLUDED IN THIS PROCE
EITHER AS PASSED PARAMETERS OR AS NULL
ARRAYS. »

« OTHER DATA LOCAL TO PROCEDURE »
LG KEEP 'GOIN;
IN VI;
IN MIse;
IA (O:9)TEN'WORDS;
« END DATA »

« BEGIN SUBROUTINES »
SUBROUTINE PUT'WINDOW;

BEGIN « PUT'WINDOW »
V'PUT'PAUSE(VBLK,2);
BLANK(WINDOW,30);
WINDOW' LEN: =60;
VPUTWINDOW(VBLK,WINDOW'LINE,WINDOW'LEN);
VSHOWFORM (VB LK) ;

END; « PUT 'WINDOW »
« END SUBROUTINES »

«************************************»
BEGIN «CODE»

KEEP 'GOIN: =TRUE;
WHILE KEEP'GOIN DB

KEEP 'GOIN: =FALSE;
END'REP;

END; « CODE »
END; « SEGNAM »
END; « SOURCE »

1-43 -10

"'-----

Moves

General Forms:
MOVE destination: = source, (length)[,stack de­

crement];
Literals:
Length need not be specified in the move ~f a literal If

successive moves are anticipated to build a string or
concatenate into a buffer then the stack decrement op­
tion of 2 can be used. Example:

MOVE OUTBUF:= "Hello",2
MOVE *;=" Everyone";
Non-Literals:
SPL requires type compatibility in moves, therefore

general buffers should be defmed in words and in bytes.
The word buffer name should end with "'W." The byte
buffers will have the just name without an identifying
Soflx.

.The length parameter in the move should specify a
name equated to the length in bytes or words depending
on the type of move. The equate will generally be gen­
erated by DBUF. Byte lengths will begin with "BL' ",
word lengths with "WL'."

Example:
MOVE OUTBUF:=

ACCOUNTNO,(BL'ACCOUNTNO);
Some moves may embed procedure to insure type

compatibility and at the same time perform the appro­
priate conversion.

IF Control

The control structure for the IF will follow directly

the structure enforced in GOALS. All IF's will be fol­
lowed by a condition which may be compound and may
extend to subsequent lines (note; continuation line dis­
ciple in general standards).

Following an "IF" condition a TB will be inserted,
which is defined as a "THEN BEGIN." SPL does not
require a BEGIN if the following statements are not
compound, i.e., a lone statement. However, the "BE­
GIN" is required to bracket the sequence and to enforce
the use of an "END" on the same level as the beginning
"IF." If there are subsequent "IF's" on the same level
(mutually exclusive IF's - programmer enforced) the
IF should be converted to an IF'G which is defmed in
INCIG as an "END ELSE IF." This is not called a
"IF" in GOALS. It is refered to as an "IF string"
(mutually exclusive conditions).

Nested IF's:
If"IF's" are nested, the nested IF may begin any time

after the "TB" of the preceding IF and will be indented
to show its nesting. The rules for the nested IF are
exactly the same as the IF; TB required.

ELSE
When the trailing ELSE is required in an IF string,

the preceding end for the IF must not have a semicolon.
The ELSE requires a BEGIN-END pair to enforce the
terminating "END" at the end of the IF string.

Nested IF strings, where trailing elses come together
may cause some confusion, but do not require any spe­
cial rules.

Example:

IF --condition-- TB« THEN BEGIN »
IF --condition-- TB

--statrn't--;
--statm't--;

IF'G --condition-- TB
--statm't--;
--statrn't--;

ELSE 'G
--statm't-­

END'IF;
ELSE 'G

--statrn't--;
--statrn't--;

END'IF;

Repeat

General Form:

WHILE --condition--
--statm't--------)
--statm't---------

END'REP;

DB

The REPEAT in the GOALS-SPL is used as
documentation and is defmed as a null statment. RE­
PEAT must be followed by WHILE and a condition or
compound condition. Following a WHILE condition a
"DB" is required which is DEFINED in INCIG as a
"DO BEGIN." As in the IF construct a "BEGIN" is
required to enforce a terminating "END'REP."

1-43 -11

SUBGLOB.T

BYTE POINTER
BP «USED FOR TEMPORARY POINTER, NOT SAVED »

;
EQUATE

RTN = 13 «CARRIAGE RETURN IN ~SCCI »
,ESC = 27 «ESCAPE CHAR~CTER IN ASCII »
;

INTEGER I,J,K,LEN80,OLD'LANGUAGE;

DA IBLK'D (*) = IBLK;
SA IBLK 'B (*) = IBLK;

D~ SYSBLK'D (*) = SYSBLK;
BA SYSBLK'B (*) = SYSBLK;

DA VBLK'D (*) = VBLK;
SA VBLK '8 (*) = VBLK;

DEFINE
EL =i= END ELSE#

, END' IF = END#
,END'REP = ENDI

INCIG.T
This INCLUDE is used for abbreviation ofdata types

and some constructs for GOALS presentation SPL
compilations.

DEFINE «USED TO ABBREVIATE DATA TYPES»
IA = INTEGER ~RRAY#

, IN = INTEGER#
, DI = DOUBLE #
, LA = LOGICAL ARRAY#
,DA = DOUBLE ~RRAY#

, BA = BYTE ARRAY#
, RA = REAL ARRAY#
,XA = LONG ~RRAY#

,LP = LOGICAL PROCEDURE#
, DB = DO 8 EG IN #
,TB = THEN BEGIN#
, LG = LOGICAL#
, REPEAT = #
,G'IF = END ELSE IF#
,G'ELSE = END ELSE BEGIN#
,IF'G = END ELSE 1Ft
,ELSE'G = END ELSE BEGIN#

IBLK.T

« IA I B'LK (0 : 42) ; » MODE 4 = IS LK (29) i,
DEFINE MODE~ = IBLK (30) #, .

COND'WORD = 18 LK #, MODE6 = IBLK (31) i,
STAT2 = IB LK (1) i, MODE7 = IBLK (32) i,
STAT3' 4 = IB LK 'D (1) i, MODE8 = IBLK (33) i,
STAT5 '6 = IB LK '0 (2) i, ALL'ITEMS = IB LK (34) #,
STAT? '8 = IB LK 'D (3) i, PREV'LIST = IS LK (35) i,
STAT9'10 = IB LK '0 (4) i, NULL'LIST = IB LK (36) i·,

~BASE = IBLK (10) i, DUM'ARG IBLK(37) i,
MODEl = IB LK (26) i, NUM'BASE = IBLK (38) i,
MODE2 = IB LK (27) i, IBLK'LEN = 43 i
MODE 3 = IBLK (28) i,

1-43 -12

IBLKG.T MODE4 := 4;
The following is initilization code to be included in MODES := 5;

the outer block program to set IBLK fields : MODE6 := 6;
MODE7 := 7;
MOVE ALL'ITEMS := "@; ";

MODEl : = 1; MOVE PREV'LIST := "*. "., ,
MODE2 := 2; MOVE NULL'LIST := "0;";
MODE3 : = 3; DUM'ARG := 0;

VBLK.T

« THIS ASSUMES THAT VBLK IS DECLARED 11\ VBLK(O:51) >
« VBLK IS MADE UP OF COMAREA AND THE OLD VBLK >
« CALLS TO VIEW INTRINSICS WILL USE VBLK AS THE COMAREA. PARM >

«SPL DECLARATIONS FOR COMAREA»
DEFINE

COM'STATUS = VBLK (0) i,
COM'LANGUAGE = VBLK (1) i,
COM 'COMAREALEN = VBLK (2) i,
COM' USRBUF LEN = VBLK (3) i,
COM 'CMODE = VBLK (4) i ,
COM'LASTKEY = VBLK (5) i,
COM'NUMERRS = VBLK (6) i,
COM'WINDOWENH = VBLK (7) i,
COM' LABELSOK = VBLK (9) i,
COM'CFNAME = VBLK 'B (10 *2) i,
COM'NFNAME = VBLK 'B (18 *2) #,
COM'REPEATAPP = VBLK (26) i,
COM'REPEATOPr = VBLK (26) i,
COM'FREEZAPP = VBLK (27) i,
COM 'CFNUMLINES = VBLK (28) i,
COM' DB UF LEN = VBLK (29) i,
COM' DELETEF LAG = VBLK (32) i,
COM'SHOWCONTROL = VBLK (33) i,
COM'PRINTFILNUM = VBLK (35) i,
COM'FILERRNUM = VBLK (36) #,
COM·'ERRFILNUM = VBLK (37) i,
COM'FM'STORE'SIZE = VBLK (39) i,
COM'NUMRECS = VBLK'D (21) I,
COM'RECNUM = VBLK'D (22) i,
COM'TERMFILENUM = VBLK (48) i,
COM'TERMMODE = VBLK (49) i,
COM'TERMALLOC = VBLK (50) i,
COM'DATAOVERRUN = VBLK (51) i,
COM' READT IMEOUT = VBLK (52) # ,
COM'OTHERDATAERR = VBLK (53) i,
COM' MAXRETR I ES = VBLK (54) i,
COM'TERMCONTROLOPT= VBLK (55) # ,
COM'TERMOPTIONS = VBLK (55) # ,
COM' ENVINFO = VBLK (56) i,
COM 'T IMEOUT = VBLK (57) I

;
EQUATE

COMAREALEN = 60,
COBOL 'LANG = 0,
VBLKLEN = 100,
SPL'LANG = 3,
MAXWINDOWLEN = 150,r- MAXMODELEN = 8,
NAMELEN = 15,
NORM = 0,
NOREPEAT = 0,

1-43 -13

V'REPEAT
REPEATAPP
ENTERKEY
PARENTKEY
KEY2
KEY3
REFRESH
PREV
NEXTKEY
INQ'ENT
EXITKEY

;
«SPL DEFINITIONS
DEFINE

WINDOW' LEN °

MODE 'LEN
WINDOW'LINE
WINDOW 'MODE
WINDOW
WINDOW'LINE'B
WINDOW'MODE'B
WINDOW'S

= 1 ,
2,

= 0,
= 1 ,
= 2,

~= 3,
= 4,
= 5,
= 6,
= 7,
= 8

FOR VBLK»

= VBLK (COMAREALEN+O) i,
= VBLK (COMAREALEN+1) i,
= VBLK (COMAREALEN+2) i,
= VBLK (COMAREALEN+2) i,
= VBLK (COMAREALEN+MAXMODELEN) i,
= VBLK 'B «COMAREALEN+2)*2) i,
= VBLK 'B «COMAREALEN+2)*2) i,
= VBLK 'B «COMAREALEN+MAXMODELEN) *2) i

SYSBLK.T

= SYSBLK i,
= SYSBLK(2) # ,
= SYSBLK (4) i,
= SYSBLK(6) # ,
= SYSB LK (7) i ,
= SYSB LK (8) #,
= SYSB LK (9) i ,
= SYSBLK(ll) i,
= SYSBLK (13) i,
= SYSB LK (16) i,

SYSBLK (21) :It,
= SYSBLK(22) i,
= SYSBLK (23) # ,
= SYSB LK (28) i,
= SYSBLK(43) i,
= SYSBLK (58) # ,
= SYSBLK(63)i « STARTING ON DOUBLE BOUNDRY

= SYSBLK'B i,
= SYSBLK 'B (2 *2) #,

SYSBLK 'B (2*4) i,
SYSBLK'B(2*9) i,
SYSBLK 'B (2*11) i,

= SYSBLK 'B (2*13) i,
= SYSBLK'B(2*16) i,
= SYSBLK'B(2*23) #

«IA SYSBLK(O:114) SPACE ALLOCATED IN MAIN PROGRAM »
DEFINE

CNTRL 'NUM
LST 'PROC
NXT 'PROC
Q1
Q2
Q'NEXT
OPER'ID
SEeU'TY
SSC
CNUM
L'FLNUM
M' FLNUM
FLAGS
DQSTAoT'SB
GLSTAT'SB
TERMID
MSBLK'SB

DEFINE
CNTRL 'NUM' B
LST 'PRoe '8
NXT 'PROC 'B
OPER' ID 'B
SECU ITY IB
sse'B
CNUM'B
FLAGS 'B

4,
= 4,

4,
= 4,
= 4,
= 6,

.,
EQU~TE

CNTRL 'NUM 'BL
LST 'PROC 'BL
NXT 'PRoe 'BL
OPER' ID 'BL
SECU 'TY 'BL
sse 'BL

1-43 -14

CNUM'SL
FLAGS tSL

= 10,
= 10

Coding Rules

All agorithms should frrst be done in GOALS without
concern for the SPL structure. SPL constructs will be
used for individual statements and conditions but the
control structure should be in GOALS.

This complete:
1. Replace all ELSE's with G'ELSEs or ELSE'Gs.
2. Locate all "IF's that are on the same level as a

"·running" IF. Replace each running IF with an
IF'G or G'IF.

3. Replace all "."'s with an END'IF;
4. Insert a THEN BEGIN or "TB" following every

IF condition.
5. Replace all "!" with an END'REP;.
6. Insert a "DB" or DO BEGIN after every REPEAT

condition.

An Example using the rules on the preceeding page

WHILE ------------
IF -----------

IF -----------

,ELSE

IF -----------

IF -----------

IF -----------

ELSE

« SPL RULE »
WHILE ------------ DB « DO BEGIN 6 »

IF ----------- TB « TH~N BEGIN 4 »
----------~-_ ...

IF ----------- TB « THEN BEGIN 4 »

ELSE 'G « END ELSE BEGIN 1 »

END I IF; « END I IF 2 ».

***(20) ERROR ***
LINE
1490
TRUNCATED BY 4 CHARACTER(S)

IF'G ---------- TB « END ELSE 2 » « THEN B

END I IF; « END'IF 3 »
IF ----------- TB « THEN BEGIN 4 »

r --------------
***(20) ERROR ***

LINE
1495
TRUNCATED BY 4 CHARACTER (8)

1-43 -15

IF'G --------- TB « END ELSE 2 » « THEN B

--------~-----
ELSE'G « END ELSE BEGIN 1 »

END' IF; « END'IF 3 » ~END'REP; « END'REP 5 »

Note: work the top example yourself using the rules
and see if it matches the completed program. Note the
count of the begins and ends match for SPL. Do the

1-43 -16

algorithm correctly in GOALS and the SPL code will
follow.

	Section 1—System Management
	Online Database: Design and Optimization

