
Microcomputer-Based Distributed Processing
John J. Tibbetts

Vice President, Research & Development
The DATALEX Company

INTRODUCTION

If one were to attempt to list the major technological
changes of the last decade, surely at the top of that list
would be the so-called microcomputer revolution. Over
the last 10 years intelligent devices have jumped from
the research and development labs out into the hands of
scientists and engineers and then into business and then
into small business and the home. I believe that the
depth to which microcomputers have penetrated our
society would have surprised even the most adventur
ous of futurists of 10 years ago. Nor does it appear that
this wave of change is at all slowing down. Projections
show very rapid growth, both in the home and business,
over the next five years.

Also interesting to observe is the evolution of the
packaged microcomputer as it exists today. Ten years
ago the frrst microprocessor chips were just coming out.
A few years later, a few poorly capitalized companies
originated the packaged microcomputer with a mi
croprocessor, support chips, power supply, and a lim
ited amount of memory. Over the next couple of years
the microcomputer was really in the hands of the elec
tronics buff and the amateur radio operator with very
little emphasis being placed on software. The profes
sional computer person of five years ago approaching a
microcomputer was faced with theprospect of working
with a virtually bare machine in terms of professional
software tools. "But in the last five years there has been
a rapid growth of professional software, including
commercial-grade operating systems, languages, and
some applications software packages. Where a few
years before the microcomputers were the province of
the hardware junkies, now even the major mi
crocomputer manufacturers had very much awakened
to the role of software in selling computers.

A striking poster that is now being distributed by
Apple internally as well as to its sales outlets, says in
massive letters "SOFfWARE SELLS SYSTEMS."

However, despite the large number of software prod
ucts that are now avialable, there are actually a rela
tively small number of applications represented. Pick
up a BYTE magazine (that is, if you can. What started
out a a pamphlet now runs 500 pages, most of which are
ads) and perform the following exercise. Take a clean
sheet of paper and start writing down software prod
ucts, grouping them according to function. You will fmd
an interesting pattern. There will be a large number of

games. There will be a number of packages which are
small business accounting packages. There will be a
preponderance of word and text processors, some of
which are quite good. There will be some fmancial
modeling software in the Visicalc and Plan 80 sense,
used for limited, but very interactive, fmancial modeling
applications.

There will finally be a group of programs calling
themselves database management systems. I hesitate to
call true database management systems in the classical
sense of the word. Some of them are certainly capable
file management systems.

What seems to be almost totally missing are products
which are important to the kind of people who attend
these meetings, that is, people with larger computer
needs. What is missing is software that emphasizes the
nonpersonal use of personal computers. Let's examine
what a few of these software product categories might
be:

1. Communications software.
Communications software accurately moves
transactions or fIles of data back and forth from
your microcomputer to your corporate computer.
It is true that there are some communications
packages which do exist for microcomputers, but I
would assert that very few of them are oriented
toward commercial grade data handling chores
which should include such features as error detec
tion and retry, bidirectional control of the com
munications stream from either the mi
crocomputer or the host computer, and the ability
to accommodate full binary transfers of data.
These matters are discussed in much greater detail
in another talk which I am giving at this meeting.

1. Intelligent terminal software.
By intelligent terminal software, I mean software
which can format and edit transactions of data as
they are being entered and before they are submit
ted to your corporate data processing machine or
network. Nearly all online, realtime applications
which are performed onto an HP3000 are per
formed via dumb terminals. Consequently, all of
the editing and transaction formatting needs to be
done by the central computer. Not only can this be
slow from a processing point of view, it can also be
very slow from an apparent operator speed point
of view. The use of intelligent terminals software

11-41-1

running on industry standard microcomputers
would allow increased capability and a higher per
formance in interactive applications.

3. Data entry software.
By data entry software I mean software similar to
the intelligent terminal software just described but
which can act independently of the remote com
puter entirely. That is, the tra~s~tionsas they are
gathered are stored locally - usually on a diskette
on a microcomputer - and are maintained on the
microcomputer until such time that all of the data
has been entered. This type of software solves the
standard data entry needs of data-intensive com
mercial applications.

In this talk, I will address myself to microcomputer
software being used as intelligent terminal and data
entry sc;>ftware and relate to you some of my experi
ences in this regard.

BUILDING BLOCKS
Before we can discuss the particulars of intelligent

terminal and data entry software, it would be important
to first define some of our terminology in terms of
industry-standard microcomputers and industry
standard software for "microcomputers. In this section,
we will defme 'some of the assumptions we have used in
the building of our software systems.

Let Us first consider hardware. Microcomputers can
of course come in many sizes and shapes, all the way
from the little $200 Sinclair Microcomputer on the low
side to the very expensive microcomputers bordering
on" minicomputers on the high side. In general, I feel
that the standard minimum confIguration for a general
purpose data entry based microcomputer to be a 64K
system or greater, with floppy disk support. The reason
I recommend a full64K system for your microcomputer
is simply that the cost of main memory has dropped to
the point where the software costs associated with
working in smaller memory sizes outweigh the amount
you spend on memory unless you' are producing a
special-purpose, high volume data entry product. It is
interesting to note that many of ,the microcomputer
manufacturers have moved from a position of giving
you whatever memory size you would like, to recom
mending and then strongly recommending 64K systems,
and now some of them are selling only that configuratin.
Although Winchester disk technology is a very exciting
element in today's microcomputing, for data entry and
intelligent terminal based applications it usually isn't
necessary except in two specific cases: one in which
you have multiple systems, perhaps more than 3 or 4 in
the same location, which you would like to share the
common systems software from a single Winchester
drive; or two, in cases in which there are going to be
keyed lookups into larger data structures which would
required the "performance you can get from a Winches
ter drive rather than a floppy disk drive. Printers are

11-41-2

sometimes useful in certain distributed applications but
in most cases don't seem to be required.

You will notice that I make no specific recom
mendations on hardware manufacturers. This is be
cause I have come to the conclusion that the main real
ity about microcomputer hardware is that it is in a very
dynamic state. What you want in microcomputer
hardware for distributed processing applications is
hardware that is maintainable, reliable, and, probably,
from a large-name vendor. Beyond that no specific rec
ommendations on my part are advisable. The fact that I
am preparing this talk two mont~s in: advance of giving
it leaves plenty' of room for more significant an
nouncements to be made before the talk is even pre
sented.

Perhaps even more important than the selection of
hardware for a distributed processing application is the
selection of your software operating system. I say this
for two reasons:

1. If the operating system is portable enough, it will
" alow you to change your decision about hardware

during the development of your application or dur
big different stages of its implementation.

2. The operating system has a much greater influence
over the programming techniques and systems
capabilities than does the hardware in which it is
packaged.

Now, what kind of microcomputer operating systems
can we expect to fmd these days? Let's perform a men
tal exercise. I will entitle this exercise, "Name That
Operating System." OK, name this operating system:

• Runs in a Stack Environment
• "Segmented" Architecture
• Non-Von Neumann --+ Code Segments

Separate from
Data Segments

• Up to 256 Code Segments of 65K Bytes
Apiece

• Process-handling
• "Intrinsic" Procedures to Implement Super

visor Calls
• Inter-linkable Languages

Do you have the name of that operating system fixed
in your minds? Good. Now, let me add a few more
attributes to the list.

• Runs on 8080, 8085, 8086, 8088, Z80, Z8000,
6800, 68000, 6502, LSI-tt, TI-9900

• Has 70,000 licensed users
• Supports PASCAL, FORTRAN-77, BASIC

(interlinkable)
. Do you still have the same operating system in mind

now? The operating system I have been describing has
many attributes asociated with the HP3000 MPE ar
chitecture and the Burroughs architecture before it.
This operating system is the UCSD p-System, so-called
because it originally developed from the PASCAL lan-

"guage project from the University of California-San Di-

ego. It is now marketed worldwide by Soffech MI
crosystems. I consider this operating system to be the
most professional of the 9-bit/16-bit microcomputer
operating systems. It gives the deveoper a capability
approaching the power of MPE running in a portable
microcomputer environment.

The word "portability" can't be stressed 'enough
when dealing with microcomputing. I meantioned pre
viously that hardware is in an extremely dynamic state
in the microcomputer industry. Thus, the notion of pro
tecting your software investment which HP has always
preached to their customers is extremely important in
the microcomputer domain. After all, in the mi
crocomputer domain your software investment is often
many times the cost of the hardware for small hardware
configurations and the importance of protecting it
against the extremely volatile hardware changes we fmd
in the microcomputer area is very important. UCSD
p-System portability means that we can take compiled,
running systems and 'move them from microcomputer to
microcomputer, even running different processors, and
have them immediately execute. This is true portability.

Another building block we need for distributed pro
cessing type applications is good, commercial-grade
communications software. We need software that can
move transactions or files of data back and forth to the
HP3000 with full error detection. Our approach has
been to write compatible communicatiolIls programs,
both on the microcomputer and the HP3000, which pro
vide for sending checksummed packages of data and
messages back and forth between the two processors.
Thee is a great deal more versatility and reliability when
you have interlinked programs running on both sides.
These programs will run very effectively even over
noisy telephone lines or in environments in which
characters, such as the important DCl character, may
suddenly disappear. The programs have the ability to
time-out after priods of no communications so that the
error recovery can be graceful. The programs also have
the ability to allow either side - that is, either the local
microcomputer or the remote HP3000 - to control the
communications. Thus, for instance, we have built ap
plications in which the operator simply starts up an
HP3000 UDC, the UDC starts up perhaps a COBOL
transaction processor which polls the microcomputers
for the filenames which they need to send and then
requests that the files be sent.

The last building block needed for distributed proces
sing systems is a comprehensive forms language. To
date, such software has not been available on mi
crocomputers and consequently we have spent the last
couple of years building it ourselves. The forms lan
guage tends to have many of the attributes of the V/3000
approach of forms building; to wit, draw a pickture of
the form in a screen editor and then proceed to specify
attributes, such as range checks, table lookups, optional
fields and so forth about the form. The significant dif
ference between a forms language that can be written on

a dedicated microcomputer and one that can be written
on a larger shared processor is in the greater degree of
user interaction that can be accomplished on a mi
crocomputer. On a keystroke-by-keystroke basis, the
microcomputer can do instantaneous editing of the
data, rather than waiting to gather up a whole block of
data and then transmit it to some computer somewhere
else for editing. This means that the microcomputer
forms have a very high apparent speed, no matter what
the speed of the remote processor.

Other form attributes that have been implemented
are:

• A "dup" key. This key immediately copies the pre
viously typed entry to the curr~nt data value.

• Function keys which can cause immediate action in
the data, such as default values or clearing a field.

• Data verification in the IBM sense of retyping the
data exactly the same way (just the way your key
punchers have been trained to do it).

With these building blocks we have the tools needed
to build very innovative and effective data processing
nodes onto existing information network.

INTELLIGENT TERMINALS
Our approach to writing intelligent terminal soft~are

has been to use our forms language to build, compile,
and maintain the forms on a microcomputer. The com
piled forms can be stored on the host HP3000 for dis
tribution. These are periodically distributed to the vari
ous nodes through the communications software. The
applications program, say a COBOL program written
on the HP3000, controls the microcomputer by sendmg
down very simply formatted ASCII strings to the mi
crocomputer to give it its instructions. Since there are
no special control character sequences, the screen
commands can be dispatched by any language, not just
COBOL. They can even be dispatched by UDCs. For
instance, the ASCII string ".CS" tells the remote mi
crocomputer to clear the screen. The command ".LF
PRODUCT" tells the remote microcomputer to load the
form named "PRODUCT" from the floppy disk into
memory. Since the forms live locally on the' mi
crocomputer, a form change command represents only
10 characters transmitted from the HP3000 to the mi
crocomputer. Compare this' with the 1,000 to 2,000
characters that are usually required to change a form on
a non-intelligent computer. On a typical floppy disk sys- I

tem we usually can store from tens to hundreds of
forms, depending on the capacity of the floppy disk.
Once the application has displayed the form on the mi
crocomputer, it can give them a simple command such
as ".OF" to get the form. This command causes the
microcomputer to issue ~ read for that form and does all
of the local form editing and the microcomputer without
any involvement by the host computer. Tb.e result i$ a
very high apparent screen speed that is being controlled
by the remote computer.

11-41-3

There is a very close parallel between the intelligent
terminal command strings and the equivalent sub
routine calls that one would issue from a V13000 sys
tem~ Thus, one can either read or write whole forms or
individual fields or any· combination of them. In addi
tion, using intelligent terminal software, one can do
some fairly intelligent operations on the screen. For in
stance, we can request that only modified fields on a
form be sent back to the host computer with some iden
tifier on each field. Another intelligent operation is the
reformatting of the record on the fly, such that the fields
themselves can be shifted in position with various con
stant data inserted into the transmision stream.

There are a couple of easily definable benefits' from
using this kind of intelligent terminal software:

1. Performance.
Using an intelligent terminal improve's the perfor
mance of the program on the HP3000 in that' it
does not need to be burdened with a lot of editing

, operations that can be done immediately by the
local microcomputer. By the time the data is s'ent
to the HP3000, it is as clean as local editing can
provide. This system also performs very well for
the operator who gets the benefits of immediate
error checking on those fields that have had de-
'fmed local·microcomputer;editing. '

2. Portability .
This system is very portable both with respect to
the program running on the host computer~ that
is, the HP3000- and to the program running on
the microcomputer. For the host computer, since
all of the commands for the screen operations are
simple ASCII strings, the COBOL programs tend
to be far more portable than COBOL p'rograms
with embedded forms control procedures. If one
wished to take a COBOL prograrri and move it to
an IBM main frame, the only conversion required
would be the standard conversion of any COBOL
program from an HP3000 to an IBM system. On
the microcomputer side, the intelligent terminal
software - since it has already been defined to be
very portable on microcomputers - can be run
ning on an HP125 or on an AP~LE II or any of the
other microcomputers which support the
p-System operating system. This means that the
same application program can drive a variety of
microcomputer-based intelligent terminals, de
pending on the preference of the system imple
menter or perhaps what hardware might be exist
ing in the office that this system is running into.

One last note on the intelligent terminal software.
Even with the benefits I have just described, unless a
user has some particular need for portability or higher
performance, my best guess is that the advantages
would not be sufficient to cause someone to establish an
intelligent terminal network instead of using dumb ter
minals. The real usefulness of this intelligent terminal
software will come to light when we begin talking about

11-41-4'

~ '.

omine uses of the microcomputer and especially their
hybrid usages.

OFFLINE DATA ENTRY
Perhaps the single most significant application of the

new microcomputer technology for users of existing in
formation networks is doing omine data capture. This
means that we can have our microcomputers sitting
either in our data entry departments or in remote offices
omine from our HP3000, gathering data, putting it onto
floppy disks, doing local editing as previously de
scribed, perhaps performing batch balancing, perhaps
generating proof listings of the data' so that it can be
visually verified, or rekey verified by the data entry
operators, and then. have. the batches closed and
transmitted for processing to the remote computer.

We see two major users of microcomputer-based data
entry. The first is in collecting volume data' typically
entered by the data entry function of your information
system. Let's quickly compare a microcomputer solu
tion to the standard existing solutios for gathering data:

1. Compare to collecting data on cards or with a
key-to-diskette system such as the 3741, the mi
crocomputer can--do a much more comprehensive
job of editing the data. It not only can do checks
on the type of the data but also on particular val
ues of the data or by comparing values in several
fields of the data and so forth. Furthermore, the
microcomputer using a formatted CRT-type
technology can much more readily be operated by
users than just by the professional data' entry
operators. A recent survey by a professional data
entry association shows that approximately 70%
ofcorporate data processing departments are shift
ing to user data entry from centralized data entry.
In terms- of peIformance, the speed of key entry
into a microcomputer usually exceeds, and some
times by a considerable factor, the entry speed
through cards and key-to-diskette systems (due to
the fact that fairly smart duping operations can be
programmed which can minimize the key strokes
that need to be entered).

2. Compared to intelligent key-to-disk systems, the
microcomputer would roughly equal them in terms
of key entry performance since these machines
also are intelligent and programmable and can
provide for very smart data collection algorithms.
The principal disadvantages of the key-to-disk sys
tems, which are usually characterized by a
'minicomputer with a cluster of terminals, is that
the per-terminal cost of the microcomputer is con
siderably less than the per-terminal cost of the
clustered mini when you are dealing with fewer
than' 8·or 10 terminals in a specific location. For
large scale data entry chores, one would probably
still favor a clustered mini for doing the data entry
chores. For operations with only a few stations or
where the stations are distributed, the mi-

crocomputer again comes out as being a more
favorable solution.

3. Compared to online data entry using V/3000 or
some other online screen formatted technology,
the microcomputer scores much higher in keys
troke performance and operator performance as
well as not burdening the machine with keystroke
intensive work. I think it is the common experi-

, ence of the HP3000 community that having several
data entry operators entering data online dispro
portionately burdens that system's performance.

Again the issue of portability and versatility needs to
be made in a comparison of data entry approaches. Vir
tually all other data entry gear is single purpose equip
ment. If you buy a key punch machine, or a 3741, or a
key-to-disk system such as the Data 100 data entry sys
tem, you are buying specific hardware for a data entry
chore oriented towards the data entry profession. A mi
crocomputer data entry system carries with it all of the
same benefits of an intelligent data entry system, but
running on a general purpose piece of hardware that can
be used for word processing, or running Visicalc, or
other programs. Furthermore, the microcomputer
based data entry software, in general, tends to be more
user-oriented and more oriented towards spreading ap
plications out to the user rather than keeping the data
entry function local to the data processing department.

HYBRID SYSTEMS

The most exciting systems on the horizon are those
which are combining the online and omine capabilities
which we have been describing; that is, systems that
may operate sometimes online or omine depending on
the desired properties of the system. Imagine an office
of your company that has an APPLE or IBM Personal
Computer or an HP125 sitting in it, perhaps performing
word processing or financial modeling, but which can
also be used as a data gathering station. What are some
of the kinds of hybrid applications that we could make
use of with this configuration?

Perhaps the most trivial example of a hybrid applica
tion is in performing a function we call error turnround
handling. Imagine an order entry application that may
have a variety of forms associated with it, perhaps rep
resenting an order header, repeating line items, and re
peating partial shipments for each line item. Imagine
that these transactions are gathered using the standard
omine data entry software and are put into a batch, are
checked and perhaps listed, perhaps batch totaled and
are finally transmitted to the transaction processing
HP3000. Clearly, there are going to be some database
semantic errors which cannot be checked on the local
microcomputers: credit limits might overflow, certain
products need to be checked against the major
database, and so forth.

The conventional solution for correcting these kinds
of errors is to generate an error listing, send it back to
the data entry operator, and have it rekeyed in the next

batch. Our software provides an error turnaround
mechanism by which the data that is sent to the transac
tion processor can have a tag put on each data segment
that shows where it came from in the original source
batch. When it detects an error in a record, the transac
tion processor can strip off this header fragment and
write it to an errors fIle and gather up a file which repre
sents all of the errors that were found. For example, out
of 100 sales orders entered, three of them may have
database failures which require further information to
be entered. Using our communications software, this
errors file can be sent back down to the microcomputer
where a utility that we provide automatically runs that
errors file against its original batch and creates an errors
batch with only the three error records. Furthermore,
the errors are now marked with the database codes such
that the user can simply take them back into data entry
system where a "Correct" command will automatically
lead them to the field in error with an error message
reported from the remote computer. This means that
error turnaround information is not rekeyed but is sim
ply sent back down and automatically creates a new
errors-only batch. When this batch is corrected, it can
then be sent up again to the transaction processor for
reprocessing.

A more exotic second example which can accomplish
the same function is as follows. Imagine the same data
entry application except that at transmission the
transactions are going into the transaction processor as
they are being sent by the microcomputer. Thus, a re
cord segment of an order is transmitted and immedi
ately checked against the database in real time. As an
error is detected, the transaction processor immediately
brings the form back up on the remote computer and
instructs the operator to repair it immediately. Notice
very carefully that the very same form is being used in
the online as well as the omine case to gather, correct,
maintain, and modify the data. The operator learns only
one interaction protocol whether operating in an omine
or online environment. Using this mechanism errors
can be corrected as soon as they are found.

The most interesting concept for hybrid systems in
volves an interactive transaction processor. Imagine a
transaction processor which lives on the HP3000 and
which can recognize transactions coming into it. Those
transactions can either be in a batch or one at a time. In
this type of a system, the software could be designed in
such a way that depending on the preference or the
needs or the requirements of the application a user may
be omine or online. Again, consider our order entry
example. An operator types in orders omine for an hour
or two in the morning when suddenly a high priority
order comes into the office. Using our hybrid system
the operator can immediately put the microcomputer
into an online mode, invoke the transaction processor
and enter one order. The order is then entered immedi
ately. The operator then drops omine, and continues
entering more orders in the batch. Later, the operator

11-41-.5

again makes contact with the remote computer and now
invokes the very same transaction processor and dumps
in the morning batch.

You can .see from these exaples that there are an
inf'mite variety of hybrid applications. The important.
thing to recognize is the fact that the difference- between
online and omine is a distinction that has been made out
of historical necessity. Microcomputer-based systems
suggest that the microcomputer is the real interface to
the user's information network. How the mi
crocomputer chooses to handle the transactions - that
is, whether online or omine - merely becomes an
applicatin dependency or a priority dependency. As'
time goes-on, we will see that the importance of these·
hybrid systems will make for very user friendly systems
for which the user need not get involved in many of the
details· that we now consider essential.

CONCLUSION
I remember as a child getting up early in the morning

to watch physics programs on 19S0-style educ.ational
television. At that time the concept o~ educational TV

11-41-6

was that a television camera would be placed in a studio
that looked like a classroom. A teacher, with a desk in
front and a blackboard in back, with a pointer for the
blackboard, would make an of the motions of a teacher
teaching a class and the TV was merely an observer to
the classroom. Compare that technology with the
technology of a "Nova" or a "Cosmos" in which sud
denly television is recognized as being a medium with
its own powers of communication, with properties far
different than the classroom teacher.

We have witnessed this very same phenomenon in
the growth of microcomputer software. Microcomputer
software has simply assumed the role of minicomputer
and main frame software without our examining the
special attributes of the new medium. Small computers
add something dramaticaily new into the computer pic
ture. It is important for us to recognize those things that
they do well, not so that we an.exclude certain types of
software applications from a small computer, but to fIg
ure out how we can use the particularly strong
capabilities of the microcomputer to work in a friendly,
compatible environment with our exist~g communic3:
tions networks.

	Section 11—Miscellaneous
	Microcomputer-Based Distributed Processing

