
Everytlring You Wanted to Know
About InteIfacing to the HP3000

PART II
John J. Tibbetts

Vice President, Research & Development
The DATALEX Company

INTRODUCTION
The title of the this talk is "Everything You Wanted

to Know about Interlacing to the HP3000-Part II." In
Part I, Ross Scroggs described in great detail charac­
teristics of the internals of the asynchronous communi­
cations protocol, especially for the benefit of those who
would wish to tie foreign devices onto an HP3000
through the asynchronous port. This talk - the second
part - is intended to take that discussion into a specific
direction and discuss how, specifically, to connect in­
telligent devices, in particular microcomputers, to the
asynchronous communications protocol of the HP3000.
Note immediately that we are restricting our discussion
of microcomputer communication to the asynchronous
communications protocol. The reason for this is simply
that most microcomputers are easily configurable to
communicate asynchronously. Few microcomputer
hardware and software packages have been assembled
so far which will use bisynchronous communications
protocol. Consequently, the reality of the current state
of microcomputers suggests that asynchronous com­
munications protocol will be the standard way of hook­
ing up your microcomputer to the HP3000.

This talk will have two major parts. In the first part,
we will discuss what is at issue in terms of features and
capabilities in a remote communications program. We
will discuss in some detail what our standard ap­
proaches to handling such capabilities as terminal emu­
lation, sending and receiving files, simultaneously print­
ing to a local printer, and control of the communications
protocol from either the local end - that is, the mi­
crocomputer end - or from the remote computer end.
In this talk we will refer to the local side as being the
microcomputer and the remote side as being the remote
or the host computer.

In the second part of the talk we will describe how
you can actually get such a program running on your
own machine. The choices are twofold: either buy one
or write one. By using the criteria we have established
in part one of the talk, we will try to outline some of the
considerations of doing either of these.

One final note before we begin is that the remote

communications capabilities tend to be a very
hardware- and software-specific part of· microcomput­
ing. Whereas one can usually take a CPM program writ­
ten in BASIC, for instance, and run it on most or all
CPM implementations, one cannot expect to do the
same with remote software. Remote software usually
has to talk to pieces of your microcomputer which the
operating system tends not to know anything about.
During the course of the talk we will periodically make
reference to a specific capability that is required for the
remote program and in the published paper we will an­
notate them as a capability bullet that you will need to
either have supplied to you or you will have to imple­
ment on your microcomputer to get this particular
capability to be implemented for your remote program.

TERMINAL EMULATION
The first and perhaps the easiest capability to imple­

ment on your microcomputer is the emulation of a sim­
ple terminal.

• Capability - handling the remote port. Any of the
operations we will be discussing for remote com­
munications program presume that your mi­
crocomputer has a separate usable asynchronous
communications port. Your program should be
able to perform the following operations on that
port:
• read a character
• write a character
• test to see if a character is ready to be read.
This last capability is the one that is usually missing
in the standard microcomputing operating
environments. In particular, CPM implements the
read and write character routines as the reader and
punch devices, respectively, but do not have a
standard driver entry for testing the status of the
remote port. Usually, you have to specifically write
this capability for your own hardware if it hasn't
been provided to you by someone else.

The standard procedure for implementing a terminal
emulator is to write a polling loop. In the polling loop a
very tight program loop tests to see if a character has

6 -40-11



been entered, either at the remote port or at the
keyboard. If the character has been entered on either
one, the character is then read and written to its oppo­
site port. Thus, a character entered at the keyboard of
the microcomputer, when sensed, would be written to
the remote port and vice versa. It is important to make
the polling loop as quick as possible. No code should be
included in that loop unless it is absolutely necessary.
Especially if you are writing in a high level language and
especially if that language is interpretive, such as BA­
SIC, you may have speed problems when trying to emu­
late a terminal at higher baud rates, say over 240Q baud.
When writing in assembly language this is usually less
important and you will find that you can support
virtually any standard baud rate.

When emulating a half duplex terminal, any character
entered at the keyboard should be immediately written
back to the screen, thus providing the local echo. If
terminal emulation requirements stopped here, a termi­
nal emulator would be a very easy piece of. software to
write. Unfortunately, there are usually a few special
problems with the terminal emulator.

The first problem is handling the break key. Many
timesharing systems do not require break keys, but as
any member of the HP3000 audience knows, the break
key is a very crucial part of terminal handling on the
HP3000. Unfortunately, the break key is not a character
in the way any other keystroke on the terminal is. When
depressed, the break key actually changes the electrical
state of the transmit pin.

• Capability - sending a break. Most mi­
crocomputer communication ports have a mecha­
nism by which the output port can be put into a
break state. It almost always requires assembly
language programming to implement a break key
function. The actual reasoning behind break key
handling goes beyond the scope of this talk. Suffice
it to say that the preferred technique of break key
transmission is, when the break key ofa terminal is
sensed, to put the output port into the break state
until either 200 milliseconds have elapsed or a
character comes in on the remote port.

Thus, to properly handle the br~ak key our polling
loop now needs to be expanded to test to see if the value
entered from the keyboard is the break signal. When the
break signal is sensed, the polling loop should then, in­
stead of sending that character, invoke the send break
routine to send a break.

The second capability which makes the terminal
emulator more difficult relates to simultaneous printing
of the terminal interactions on a printer which is hooked
up to the microcomputer. The whole issue of printers,
and especially printers that might hold up communica­
tions flow, is dealt with in a subsequent section.

SENDING AND RECEIVING FILES
ProbablY the main, useful work we would like for a

6-40-12

communications program is to send files from our mi­
crocomputer to our HP3000 and receive files from the
HP3000 down to the microcomputer. At first glance this
may seem to be a rather simple operation. To send the
file we should simply read the file from the local storage
medium on the microcomputer and write it out the re­
mote port. To receive a file we should simply read from
the remote port and write to the diskette. If it were only
so simple . . . There are three issues which will signifi­
cantly complicate the issue of sending and receiving
files. They are:

1. The vast majority of computers need time for
themselves. What I mean by this statement is that at
various times in the life of a.computer it needs time to
handle data it has been sending or receiving. On an
HP3000, if you should try to type characters into it be­
fore it has put a prompt character up, you know that you
will lose those characters. On a microcomputer, if you
try to enter characters into most microcomputers while
it is reading and writing a diskette file, for example,
those characters will be lost. These phenomena reflect
the fact that most computers are not designed to be able
to handle communications of their terminal or remote
ports at any time they are activated. A newer line of
more commercially oriented microcomputers are begin­
ning now to feature interrupt systems that do have full
functioning typeahead systems which greatly ameliorate
these problems. However, these microcomputers are
definitely in the minority. Thus, our communications
program needs to somehow be able to allow each com­
puter to have time for itself when it needs it.

2. Communications lines tend to be rather noisy,
especially if we are using the telephone system to
tr~smit ·our data. Since file integrity is usually im­
portant, we need to come up with some kind of error
checking protocol which can detect errors in the trans­
mission of the data being sent or received. Interestingly
enough, most of the programs running now on mi­
crocomputers for sending and receiving data do not
handle error detection. The reason is that so far most
microcomputer users who are using communications
programs are doing so to make use of timesharing net­
works such as The Source for sending and receiving
programs. As more, real, data processing functions,
which might relate to shared databases or distributed
data entry, are being built, clear data transmission pro­
tocols will become very important.

3. Most systems have some kind of difficulty with
binary transmissions. This may not be a problem in ap­
plications. in which only textual data needs to be sent.
As time goes on, one finds the need to send "binary data,
for instance, to distribute object code of programs
through the communications program. Thus it becomes
desirable to be able to send binary files.

This is a summary of the problems - now let's take a
look at some of the possible solutions.

'-.



MESSAGE HANDLING
Message handling is the general title by which we

refer to the problem of the traffic control of the data
being passed back and forth between the micro and the
HP3000. The message handling protocol determines
when data can safely be sent or received so that we
never go faster than either of the machines can accom­
modate. The very first thing that becomes apparent
after some investigation and experimentation is that the
send and receive case are quite different from one
another with this pair of computers. This is unusual
when compared to communications software usually
existing between microcomputer and microcomputer.
In that case, the communications message handling is
usually symmetric; that is, whatever convention is used
to control data flow on the send side is also used sym­
metrically in the other direction to control it on the re­
ceive side. We have to do extra work on the HP3000
since none of it asynchronous communications protocol
was designed for access by an intelligent terminal, and it
ends up having some asymmetric properties which we
have to deal with.

First, let's consider the case of sending data from a
microcomputer to an HP3000. The first fact one must
always be aware of when trying to send data to an
HP3000 through its asynchronous communication port

. is that it can only read data from a device when a read is
up; that is, when a read has been issued from a program.
If you try to type ahead on an HP3000, the data is lost.
Fortunately, in the HP3000 communications software a
character is always sent whenever a read is put up. That
character is the Control-Q or the DCl character. Thus t

any device trying to send data to the HP3000 can simply
wait until it sees a DCI and then send its record of data
terminated by a carriage return. This type of data inter­
locking is the preferred method of sending data.to an
HP3000. For instance, this is the mechanism that
LINK-125 uses in its protocol. It simply invokes
FCOPY, and when FCOPY puts up its first read, it
hands a record of data to it, terminates it with a carriage
return, and proceeds with file transmission in that fash­
ion.

But this is not always good enough. Consider this
case: a message has been transfered to the HP3000, a
carriage return sent following it, the HP3000 has issued
another read, has sent the DCl back along the phone line
and suddenly there is a noise burst on the phone line.
The DCI coming back to the microcomputer is lost. The
microcomputer is waiting there to transmit its next rec­
ord of data with the DCI and then deadlocks because it
never sees the DCI. This type of deadlocking is charac­
teristic of trying to make too much out of a simple inter­
locking protocol. What we really find as more desirable
is to write a communications program on the HP3000
which talks to the program on the microcomputer. This
will allow the microcomputer program and the HP3000
program to issue reads with timeouts which would re-

-
quire that after a certain amount of time we give up on a
particular read because of lost protocol characters or a
dropped line. In the particular case of the missing DCI
- and this is only one of the pathological conditions
that can arise - the microcomputer program can sim­
ply, after a certain amount of time, send a message up
the line which says something like, "Hey, are you still
there?" to which the HP3000 program will response,
"Yes, I am still here and here is another DCl" or may
not respond at all if the machine has crashed or the line
has gone down. This concept of using programs on both
sides is really what differentiates very simple dumping
of files up and down the line from more sophisticated
communications protocols. I feel that this approach is
required for any serious use of communications, espe­
cially with any bulk of data transmission which we
would like to move reliably back and forth. Using this
"program-to-program" approach, we can also perform
some other more sophisticated error checking which we
will get into shortly.

As we leave the send case, note this important fact.
Make sure that after a record has been sent to the
HP3000 with its carriage return the very next piece of
work the microcomputer does is to tum around and wait
for the DCI before it does anything else. One might be
tempted to put up the next read to the diskette to pull
the next record off while waiting for the DCI. If your
microcomputer has the appropriate communications
typeahead software on its remote port, you might be
able to get away with this. However, in general the
micrcomputer needs to wait for that interlock character
to come back before it tries to do any other useful work.
Otherwise, ·you will start missing. DCls and your pro­
gram will get hung up ~

RECEIVING FILES
Just as we have done with the send case t let's exam­

ine the most trivial method of receiving files which
would not rely on a program being run on the HP3000
side. The basic fact of life when receiving files is that the
remote computer - the HP3000 - will be instructed to
start sending down a file; perhaps we use FCOPY or the
editor to start sending a file to us. The microcomputer is
going to periodically need to write out the buffer it is
accumulating to the disk drive. When it does this there
will usually be a second in which it can't receive any
data. The first approach is to just receive small files, in
which case the microcomputer never writes out its data
until it has collected the full file in memory. This of
course limits the size of the file you can receive to the
amount of available memory on the microcomputer,
usually somewhere between 10,000 and 40,000 bytes.
Obviously, this is an unsatisfactory method of receiving
files unless your application is very limited. The next
idea that comes to mind is making use of the X-on/X-off
characteristics of the HP3000 to control this flow. As a
human user, sometimes when a listing is coming out too
quickly onto the CRT, we stop the flow by typing the

6-40-13



X-off key which is a Control-S and most of the time the
HP3000 stops its transmission flow until you have done
what you wanted and then you hit a Control-Q and the
scrolling of the data output continues. Maybe we could
have the microcomputer perform this function for us as
a simple interlocking method.

The answer is that "Yes, we can," however, it is not
the preferred method of receiving files. The reason for
this is that, surprisingly, Control X-on/X-off protocol
seems to have some holes in it on the HP3000 side.
Someone told me that after some extensive testing they
found that one out of five X-off characters seems to
drop into a hole when sent to the HP3000. I have abso­
lutely no way of verifying this other than to tell you it
has happened a number of times to me. This doesn't
make the use of this mechanism impossible, it simply
complicates it somewhat. .

Using this technique then, what you need to do is:
1. Build a large receive buffer.

~. Start receiving data until the buffer gets to 80% or
90% full.. .

3..Send an X-off character to the HP3QOO but keep
receiving ~he characters onto your mi­
crocomputer.

4. After some predetermined timeout time - perhaps
a second of no characters coming in - assume it
has fmally absorbed the.X-off character, and then
you can proc~ed with your disk writes of the buf­
fer.

But, if 4 or 5 characters have passed without stop­
ping, send the X-off character again. Repeat these steps
until the data transmission actually stops.

Just like the send file case, I recommend the use of a
program on both sides. Using this technique we will
simulate the kind of data interlocking protocol that the
HP3000 uses. That is, every time the microcomputer is
ready to issue a read to the remote HP3000 it will issue a
character, perhaps for symmetry's sake a Control-Q, or
any character of your choice. When that character is
received by the program on the far side, that program
will then send down the next record of data to the mi­
crocomputer followed by some standard termination
character. After the message has been received, the mi­
crocomputer can set to work writing that message to the
disk or doing whatever other housekeeping it would like
to do. It then issues the next interlock character, and
proceeds. This protocol also allows for the kind of time­
out mechanisms that I described in the send case so that
you can recover from lost transmission and especially
lost protocol transmission. It will also easily accommo­
date the kind of error checking we will be talking about
in the next section.

As always, there is a complication and a warning.
Even in the case we have just described, we have not
really built a symmetric communications protocol to the
HP3000. The interlock character itself, which is going to
be sent to the HP3000, has to be read by an HP3000

6-40-14

read. Of course, that HP3000 read will have a DCI com­
ing right before it and any. attempt to write the protocol
character up the line before the HP3000 is able to read it
results in a lost protocol character. Thus, some real
world experimentation is usually needed in which some
delay is required after the record has been received
from the HP3000 so that it will have had time to finish
writing the record and then put up the read which will
read the next character interlock. It's for reasons like
these, incidentally, that interfacing microcomputers to
the HP3000 has not always been the simplest and the
least frustrating of tasks.

The other item of note is that on reading characters
into the microcomputer it 'is usually wise to strip out
occurrences of the protocol characters that have ac­
cumulated in the asynchronous communication chip.
These characters would'be the line feed character which
the HP3000 will usually tag onto the end of the carriage
return unless you turn that off, and also the DCl charac­
ter itself. Although these characters will be flying
around during the transmision of the data, you don't
want to include them into the data stream itself. They
should be filtered out of the actual data flow.

'ERROR HANDLING
Now that we have described the actual methods by

which data can be sent and received, let's go on to the
second defined problem in our data communications
task - error handling.

The fact is that there are very few asynchronous
communications. protocols which go to this level, and I
fmd this fact to be extremely regrettable. No serious
large-scale interface of microcomputers to any kind of
data processing network can be accomplished· without
real error checking. However, once we have built the
proper send and receive frameworks with the right
kinds of i~terlocking and assuming there is some in­
telligence and flexibility on both ends, it becomes rather
easy to add the error handling phase. What are some of
the usual techniques for adding error handling to the
send and receive cases that we've described?

The standard mechanism, of course, is to add to each
message sent or received some kind of check character
or checksum which is used to check out the validity of
the data. The simplest form of a checksum is an addition
of the various character values of the message. For in­
stance, if one record of data I am sending to the HP3000
is 40 characters long, the microcomputer can run
through those 40 characters, add up the ASCII value of
the 40 characters, and then produce a new character for
the string and tag it onto the beginning or the end of that
string. The HP3000 on the other end, when it has re­
ceived the data, will go through the very same operation
except that this time it will strip the character off and
compare it with its own calculation of that string and see
if they match.

There are some problems with the simple add-ern-up



checksum and there are many other sophisticated al­
gorithms around - I can refer you to literally any book
on communications for a description of CRC al­
gorithms. The problem with CRC algorithm is that it's
usually a fairly difficult algorithm to execute quickly
enough on a microcomputer unless you are programm­
ing in an assembler language. The algorithm I have
found to be very simple but very effective is an al­
gorithm which adds and shifts the bits as the characters
roll in. In this algorithm each character is added on to
the checksum and then the checksum is multiplied by 2
which shifts all the bits to the higher order by one bit.
Then it receives the next character and repeats the pro­
cess. This final 16-bit quantity is then tagged onto the
message.

You have to remember not to freely insert binary in­
tegers into the communications stream. Some adjust­
ment of the value must be done when we are sending it
to the HP3000 to make certain we are not sending a
character it Will have difficulty receiving.

Once a message has been sent to the other side with a
checksum on it, the other side has the opportunity to
examine that message and respond. The typical re­
sponse is for the receiver to send back some
predetermined character message which says· either: the
data was received successfully and you should proceed
to the next block; or, alternatively, the data was not
received correctly so retransmit the block just transmit­
ted. I usually include a third state in this message traffic
which indicates that something terrible has happened on
one end or the other and to abort the entire transmission
process altogether. You can include in this function the
ability for the user to hit some kind of escape key and
abort the communicatons traffic.

One other item I have found to increase reliability is
to add sequence numbers on each of the messages sent
or received. This would ensure that in some pathologi­
cal case we don't actually get the blocks out of order;
that is, in a case wher~ an entire block has dropped out
of the communications traffic. Although this is fairly
rare, there are actually certain conditions which can
cause something like that to happen. A sequence
number which is checked on both sides for each block
transmitted can protect against this possibility.

BINARY TRANSFERS
We have mentioned previously that it is generally un­

reliable to transmit 8-bit binary characters from a mi­
crocomputer up to an HP3000. What are the possible
ways around this problem? The standard way is to sim­
ply convert the 8-bit binary traffic into hexadecimal
strings, that is convert a binary character 255 into the
ASCII string FF, etc. Of course, you would probably
immediately see this means that there is a 50% reduc­
tion in communications efficiency. This technique is
usually simple to perform and it is useful when the bi­
nary traffic is somewhat limited. A technique that I
prefer is to translate seven 8-bit bytes into eight 7-bit

bytes. This is quickly accomplished by gathering the 8th
level bit of the 7 bytes input and building another byte
and tagging it onto the back end of each 7-byte block.
This effectively chops the 8th level off the communica­
tions stream at transmission time and is then reassem­
bled on the far side. If this technique is used on the
entire message, including checksums, sequence num- .
bers or any kind of message identifier on the block, the
whole communications interface becomes considerably
simpler.

USING PRINTERS
It is often desirable in a communications protocol to

log the data to the printer. For instance, on receiving a '
file to a microcomputer you may want to get a listing of
it. Alternatively, you may· wish, during terminal emula­
tion, to get a copy of that session onto a hardcopy
printer..

Like everything else mentioned in this talk, there are
hidden catches. It seems simple enough to be able to put
in a switch in the software - for instance, in the polling
loop of the terminal emulator - that when a character
has been sent or received, it should be sent to the printer
port. However, many printers don't print at the com-'
munications speed. We will therefore distinguish be­
tween a fast printer and a slow printer. In this context,
fast and slow do not have any absolute meaning to

.them. Fast means that the printer operates faster than
the current communications context, and slow means
that the printer operates slower than the current com­
munications context. For example, in a 300-baud
environment most printers (for example, an Epson mat­
rix printer or a TI-810) will be fast printers. However, at
1200 baud most of the inexpensive matrix printers are
slow printers, that is, they cannot keep up with the
1200-baud stream. Surprisingly, even printers such as
the TI-810 which are rated at from 120 to 150 characters
per second often cannot keep up with the 1200-baud
flow of data. Therefore, the determination of whether a

. printer is a fast or slow printer can only be done by
running a series of tests.

As you might now be able to suspect, there is very
little difficulty with a true, fast printer in our communi­
cations program. Any characer we wish to print we
simply output to the printer port. However, on a slow
printer we have to do more resource balancing in that
there is now another resource in the communications
environment which needs time of its own. Adding a
slow printer to a communications program can easily
double the complexity of the communications environ­
ment.

At this point let me summarize a few of the major
elements of printer integration: .

• If the communications program has been im­
plemented, as I have been suggesting, with a pair of
programs on either end which have an interlocking
mechanism, the simplest approach of integrating a slow

6-40-15



printer is to print out the block of data during the time
that the program is performing activities such as writing
to the diskette or reading from the diskette. That is,
after the message has been sent or received and before
the interlock causes the pair ofprograms to proceed, the
buffer of data sent or received can be put to the printer.
An unfortuante side effect of thiS approach is that the
printer is only printing between records. This does not
take advantage of the fact that there may be sufficient
time during the actual communications transmission to
have the printer doing soine useful work.

• Improvement on this scheme requires a new capa-
bility:

Capability - Printer Ready - The printer ready
capability says that our communications software
can sense when the printer is available; that is,
when a character can be written to the printer in
such a way that the, printer buffer will absorb the
character instantly.

With a printer-ready capability in our software, we
can build a more sophisticated operating environment in
which we have, in effect, a small spooler being oper-·
ated. That is, any data which has been successfully sent
or received and is ready to print can be added to a print
buffer. This buffer is metered out to the printer when
the printer is ready. It is important that the remote
communications facility always have top priority. The
other mechanism that needs to be in effect in this type of
environment is that as the printer buffer gets close to
being full, a flag will go up which will hold'the interlock
the next time around until the print buffer has been
totally cleared. Although this mechanism sounds
somewhat obtuse, it actually provides a very effective
method of integrating a slow printer into a communica-
tions environment. '

• Integrating a slow printer into the terminal
emulator mode can be accomplished by using the
X-on/X-off character techniques I described in the re­
ceive section. That is, if printing is active, a mechanism
will go into effect, during terminal emulation mode, such
that the microcomputer dispatches X-on/X-off to con­
trol the characters coming from the remote computer
into the microcomputer.

BIDIRECTIONAL CONTROL
The last major capability we will discuss in our com­

munications program is the ability for the remote com­
puter to assume control of the communications pro­
gram. This can be very desirable in applications in
which an operator may activate a communications pro­
gram and get online with an HP3000 and perhaps start a
DDC. At that point the UDC might take over all control
of the microcomputer through the communications pro­
gram such that it can request files to be sent and re­
ceived. The following are a couple of points concerning
bidirectional control:

• The basic concept in bidirectional control. is that
the remote computer can have some escape character

6-40-16

which it can send to the microcomputer during terminal
emulation that will cause the remote computer to as­
sume command of the microcomputer. Commands can
then be dispatched by the remote computer directly to
the microcomputer. Be sure that all of the issues
previously mentioned about interlocking and protocol
are also supported by any direct interaction between the
remote computer and the microcomputer.

• It is very useful to be able to have a capability
whereby the remote computer can ask for directory list­
ings directly from the microcomputer. This gives the
remote computer a list of what files may need to be sent
or received.

• You may wish to give the remote program the abil­
ity to actually terminate the communications session
itself and to remove the user from the terminal emulator
mechanism.

IMPLEMENTATIONS
The best thing you can do with communications

software is to buy it rather than develop it. Unfortu­
nately, this assumes that someone has developed the
type of software running on the type of machine you
desire. As we've indicated during the course of this talk,
remote communications software tends. to be more
hardware dependent than almost any other software
running on your computer. Not only is it hardware de­
pendent, it is also operating system dependent. Thus, on
a single machine - for instance, the Apple which can

. run the Apple DOS, the PASCAL operating system, and
CPM. (if the CPM card is added) - each of these three
operating systems has a different file system and each
has different requirements for its communications pro­
gram. This means that no one program will solve all of
your problems.

Let's consider some of the available implementations.
Under CPM, there are a couple of programs fairly well
known in the CPM community for doing file-to-file
transfers. They are a program called CROSSTALK and
a program called COMMX. Both of them are available
through the major CPM software distributors. Both of
the programs feature a non-protocol mode and a pro­
tocol mode. In the non-protocol mode you can easily
make the software talk to your HP3000 by setting the
DCI character to the interlock character. Unfortunately,
on both of these programs the protocol mode which
includes the checksumming algorithms is only usable
when the program is talking to another CPM program of
its own type. Clearly, these programs are written for
CPM systems to talk to other CPM systems, not to
another computer system. This means that if you do
wish to tum one of these systems into a protocol
checked operating environment, you need to do a little
extra work on it. If you have an HP125 you can acquire
LINK-125 which does a good, but not error-checked,
link with the HP3000. .

None of the programs I have s~en feature bidirec­
tional control which would allow, as I have described in



the talk, the remote computer to assume the control of
the microcomputer.

If you are running some variant of the UCSD PAS­
CAL or UCSD p-System operating environment, then,
with all due modesty, there is no better communications
software available than that provided by our own com­
pany. It incorporates in a table-driven fashion, ready­
to-run for the HP3000, all of the capabilities described in
this talk, that is: full error-checked protocol, the ability
to support fast and slow printers, full bidirectional con­
trol, and blank compression of the data. All of the
.software for communicating with an HP3000 has been
worked out in great detail. Incidentally, we also support
protocol-oriented communication for other p-Systems
- that is, for p-System to p-System communication ­
as well as communication with the IBM 370 interactive
operating system such as CMS, CSS, or TSO, and
DEC-10, -11, and -20 support.

Something new is that the software distributors for
the UCSD p-System now have a CPM file compatibility

mode which, when available, will mean that we can also
use our communications software to send and receive
CPM files as well.

CONCLUSION
If there is any theme for a discussion of communica­

tions software, it is t(There is More Than Meets the
Eye." As I have repeatedly stressed, the very best way
of solving your communication problems is finding
someone else who has already solved them and acquire
the software from them. This is my very strong recom­
mendation when attempting to establish a remote com­
munications network for your system.

I would also refer to the other talk I am giving at this
meeting which 'encompasses distributed processing ap­
plications using micrQcomputers. It is entitled.
"Microcomputer-based Transaction Processing with
Your HP3000" and it goes' into some detail about the
state of the art in microcomputer software for distrib­
uted processing.

6-40-17



r
/

~'''--.'

.~.

.._--~-~:::--


	Section 6—Peripheral Software
	Everything You Wanted to Know About Interfacing to the HP3000—PART II


