
Everything You Wanted to Know
About Interfacing to the HP3000

PART I
Ross Scroggs

The Type Ahead Engine Company
Oakland, California

INTRODUCTION
It is important to realize that the information

presented in this paper is my interpretation of the facts.
The interpretation is not perfect, for surely I have in
cluded incorrect statements. If you believe that some
thing here is incorrect, bring it to my attention. If I
believe that you are wrong I will try to set you straight,
but I will not argue about anything. I have included a list
of references at the end of this paper from which I have
obtained most of the information included here. If you
desire to make all ofyoufterminal attachments success
ful, obtain all of the references and read them. The most
important piece of information I can give you is to start
planning early when attaching terminals to the HP3000
and don't believe anything you read, if you haven't seen
it work yourself, plan on having to solve a few 'prob
lems. This paper is a guide to solving those problems,
but it won't solve them for you.

Most of the experiments outlined in this paper were
performed with the Bruno release of MPE-IV, I have
subsequently been informed that the C release of
MPE-IV fixed many terminal driver problems as
sociated with the ADCC.

Asynchronous terminals are attached to the HP3000
Series I, II, and III through the Asynchronous Terminal
Controller (ATC) and to the Series 30, 33, 40, and 44
through the Asynchronous Data Communications Con
troller (ADCC). This paper addresses issues involved in
making a successful connection to one of these two de
vices. Terminals attach to the Series 64 through the Ad
vanced Terminal Processor (ATP) which should make
all of our lives simpler (though expensive) in the coming
years. In its earlier versions the ATP will act much like
the ATC in terms of interfacing to terminals. It features
two major advances over the previous terminal control
lers. First, there is a microprocessor controlling each
terminal line, this removes considerable work from the
CPU, the "character interrupt" problem. Second, the
ATP can use either the RS-232 or RS-422 interface
standards. RS-422 is a completely new electrical and
mechanical interface that supports very high data rates
over great distances with no errors, a typical example
would be 9600 baud at 4000 feet. What this flexibility

costs you is about $200 extra per terminal to provide a
RS-232 to RS-422 adapter. These won't be required
when terminals provide RS-422 interfaces.

Termmals attached to the ATC or ADCC are acces
sed primarily in two ways: as a session device or as a
programmatically controlled device. A session device is
one on which a user logs on with the HELLO or ()
commands and accesses the HP3000 through MPE
commands. A programmatic device is one which is con
trolled by an application program that is run indepen
dently from the device. These two access methods are
not mutually exclusive, a session device can. be acces
sed programmatically and many MPE commands' can be
executed on behalf of a user who is accessing the sys
tem programmatically.

SESSION DEVICES
Attaching- a terminal as a session device is typically

the easier of the two methods. You must set the termi
nal speed, parity, subtype, and termtype correctly and
provide the proper cable to complete the hookup.

Terminal Speed

The speeds supported by the ATC are 110, 150,300,
600, 1200, and 2400 baud. The speeds supported by the
ADCC are those of the ATC plus 4800 and 9600 baud.
Unfortunately these two higher speeds can not be
sensed by the ADCC and thus you must log on at a
lower speed and use the MPE SPEED command to ac- .
cess the higher speed. (Use of subtype 4 and specifying
any speed will allow a terminal to log on at that speed
only, this includes 4800 and 9600. Note however, that if
you use the :SPEED command the new speed specified
will be required at your next logon.)

Terminal Parity

The format of characters processed by the HP3000 is
a single start bit, seven data bits, a parity bit, and one
stop bit (two at 110 baud). The parity bit may always be
zero, always be one, computed for odd parity, or com
puted for even parity. Choosing the proper parity set
ting has been complicated by differences between the
ATC and ADCC. The ATC inspects the parity bit of the

6-40-1

initial carriage return received from· the terminal and
sets'parity based on that bit. If the bit is a zero the ATC
generates odd parity on output, if it is a one the ATC
generates even parity on output. In either case the par
ity of incoming data is ignored and the parity bit is al
ways set to zero before the data is passed tothe request
ing program. The ADCC also sets parity based on the
parity bit of the initial carriage return but does so with a
slight, but nasty twist. If the bit is a zero the ADCC
passes through the parity bit supplied by the application
program on output, if it is a one the ADCC generates
even parity on output. If pass through parity was
selected the parity of the incoming data. is passed
.through to your program buffer ~ If even parity was
selected the input data is chec~ed for proper even par
ity. :rhus, you shoul9.not use odd or force to one parity
on the ADCC. The odd parity will be int~rprete<;tas pass
through and the pari~y bits will wind up in your. data
buffer, string comparisons will fail because of the parity
bits. Force to one p~rity .will be interpreted as even an.d
all input will cause parity errors. .

Subtype

The ATC ,supports subtypes 0, 1, 2, 3, 4,5,6,7,. the
ADCC support subtypes 0,1,2,3,4,5. Subtypes 2,3,6,
7 concern half duplex modems and not me, so I will
ignore them. Subtype 0 is the standard for directly at
taching t~rminals without modems. (Note that terminals
that are attached to multiplexors can fit in this category,
the modem .involved is managed by the multiplexor, not
the HP3000.) S~btype.l is the standard for attaching
tetrilinals that use full duplex modems such as Bell 103,
212',and Vadic 34xx. Both subtypes 0 and 1 speed sense
on the initial carriage return. Sub~ype 4 is .for direct
attach terminals that will not be speed sensed, they will
run at a fixed speed that is" Siet at configuration time.
This subtype is often used to prevent the' HP3000 froin
trying to speed sense garbage, this sometimes occurs
when using short-haul modems (line-drivers) that do not
have a terminal attached to the other end. Subtype 5 is
for modem attached terminals that will not be speed
sensed.

Termtype

The ATC supports terminal types 0, 1, 2, 3, 4, 5, 6, 9,
10, 12, 13, 15, 16, 18, 19,31, the ADCC supports terminal
types 4, 6, 9, 10, 12, 13, 15, 16, 18, 19. Termtype 4 is for
Datapoint 3300 terminals, it outputs a DC3 at the end of
each output line and respond's to backspace with a
Control-Y, truly bizarre. (Termtype 4 on the ADCC
does not output DC3s at the end ofeach line.) Termtype
6 is for low speed printers, it outputs a DC3 at the end of
each line but responds to a backspace with a linefeed.
(The linefeed is· on the first backspace of a series, this
allows you to type corrections under the incorrect
characters.) Termtype 9 is the general purpose non-HP
CRT terminal type. No DC3s are output at the end of
the line (whew!!) and nothing strange happens on
backspace, the cursor backs up just as you would ex-

6-40-2

pect. Termtype 10 is the standard for HP-26xx termi
nals. Termtype 13 is typically for those terminals at a
great distance from the HP3000 for whic~ 'some local
intelligence echos characters and the 3000 should not.
(Telenet and Tymnet charge you for those echoed
characters, that's reason enough not to have the HP3000
echo them.) Termtypes 15 and 16 are for HP-263x prin
ters. 'rermtype 18 is just like termtype 13 except that no
DC1 is issued on a terminal read. Certain termtypes less
than 10 specify a delay after carriage control characters
are output to the terminal. The ATC handles this by
delaying for the designated number of character times
b~t does not output any characters. The ADCC actually
outputs null charact,ers. The most extreme case is
termtyp~ 6 whi~h causes 45 nulls to be output after a
crllf 'at 440lcPS.

Cable

Direct attach terminals, .subtypes 0 and ~,·use only
three signals in the cable: pin 2, Transmit Data, pin 3,
Receive, Data, and .pin(7, Signal.Ground. (Note that all
signal names .are given. from the point of view· of the
terminal, not the modem or. the HP3QOO which acts like a
modem.) Typically the cable will conneot-pin 2 ~t the
terminal end to pin 2 at the HP3000, pin 3 at the terminal
to pin 3 at the HP3000 and pin 7 at the terminal to pin 7
at the HP3000. This is not tq say that·your terminal does
no.t require other signals, it just says that the H~3000 is·
not going to provide them, you must. If your termjnal
requires signals' like Data Set .Ready, Data Carrier De- .
tect, or Clear To Sen<;f, you can. usually supply these
signals to' the ter~iIlal with a simpl~, cable patch..
Jumper pin 4, E,equest To Send to pin 5, Clear To Send.
Jumper pin 20, Data Terminal Ready to pin 6, Data S~t

Ready and pin. 8,Data Carrjer Detect. These two jum
pers cause ,the tel1l1inal to, supply its required signals to
itself. .'. ,

Modem attach t.erminals, subtypes 1 and 5, use seven
signals in the cable: pin 2, Transmit Data; pin 3, Receive
Data; pin 4, Request To Send; pin 6, Data Set Ready;
pin 7, Signal Ground; pin 8, Data Carrier Detect; and pin
20, Data Terminal Ready. Naming the signals gets com
plicated since the ·HP3000 is acting like a modem and it
is being attached to a modem. Typically, the cable that
connects the HP3000 to the modem will connect pin 2 at
the modem end to pin 3 at the HP3000, pin 3 at the
modem to pin 2 at the HP3000, pin 4 at the modem to pin
8 at the HP3000, pin 6 at the modem to pin 20 at the
HP3000, pin 7 at the modem to pin 7 at the HP3000, pin 8
at at the modem to pin 4 at the HP3000, and pin 20 at the
modem to pin 6 at the HP3000.

The cable that attaches your terminal to a modem
should be specified in your terminal owners manual,
consult it for proper connections.

Flow Control

Flow control is the mechanism by which the speedl
amount of data from the HP3000 to the terminal is con-

trolled. The HP3000 supports two flow control
methods, ENQ/ACK and XON/XOFF. The ENQ/ACK
protocol is controlled by the system, after every 80 out
put characters the systems sends an ENQ to the termi
nal and suspends further output until and ACK is re
ceived back from the terminal. The suspension is of
limited duration for termtypes 10 to 12, output resumes
if no ACK is received in a short amount of time. The
suspension is indefinite for termty.pes 15 and 16, the
ENQ is repeated every few seconds until an ACK is
received. (It is the ENQ/ACK protocol that fouls up
non-HP terminals that attempt to access the HP3000
through a port that is configured for an HP terminal.
Most terminals do not respond to an ENQ with an
ACK, you must do it manually by typing Control-F
which is an ACK. An ENQ is generated by the HP3000
when the initial carriage return is received from the ter
minal, thus you get hung immediately. But, hit
Control-F, and logon and specify the proper termtype in
your HELLO command.)

The XON/XOFF flow' control protocol is controlled
by the terminal. When the terminal wishes to suspend
output from the HP3000 it sends an XOFF (Control-S or
DC3) to the HP3000 and sends an XON (Control-Q or
DCl) to resume output. Unfortunately the HP3000
sometimes fails to properly handle one of the two
characters and you either overflow your terminal or get
hung up. This is particularly nasty when your terminal is
a receive-only printer and you can't supply a missing
XON~ You're 'really dead if the HP3000 misses the
XOFF. Termtype 13 has in my experience been the best
termtype to use if your terminal requires the XONI
XOFF flow control protocol. You can tum the echo
back on with ESC :.

A special note on XON. If you inadvertently send an
XON (DCl) to the HP3000 when output is not sus
pended, surprise you are now in paper tape mode and
backspace, Control-X, and linefeed will act most
strangely. Hit a single Control-Y to get out of this mode,
the Control-Y will not be received by your program.

begin

Some terminals perform flow control by raising and
lowering a signal on their interface, the HP3000 can not
handle this. You must either run the terminal at a low
enough speed to avoid overflowing it or provide
hardware to convert the high/low signal to ENQ/ACK
or XON/XOFF, a costly affair.

A form of flow control used by HP terminals when
inputting data to the HP3000 is the DC2IDC1 protocol.
When the enter key is pressed on the terminal, aDC2 is
sent to the HP3000 to alert it to a pending block mode
transfer. When the HP3000 is ready to receive the data
it sends a DC1 back to the terminal to' start the data
transfer. (Your program does not handle the DC2/DC1,
but see below FCONTROL 28, 29.) This works fine
except in certain circumstances. In certain modes the
HP actually sends DC2 carriage return when the enter
key is pressed. This is no problem unless the DC2 and
CR do not arrive together. The CR may be seen as-the
end of the data if it comes sufficiently far behind 'the
DC2, .your program completes its request for data 'with
nothing and the real data bites the dust when it finally'
shows up. The separation of the DC2 and CR can occur
when using statistical multiplexors or when using Tele
net or Tymnet. Be aware, this problem is infrequent, but
unsettling when it occurs.

PROGRAMMATIC DEVICES ' ,
Attaching a terminal as a programmatic device is usu- ,

ally done when you want to attach a serial printer, in- :
strument, data collection device, or other strange beast
to the HP3000. An application program you write will
typically cOlltrol all access to the device, a user will not
walk up to it, hit return, and log ·on. I will explain the
various intrinsics that are used to access programmatic
devices and will give short (incomplete) program seg
ments that illustrate the access method.

Declarations

The following declarations will be assumed for. all
pr~gram segments shown.

in teger
ilen,
olen,
pfnum:=O,
pifnum:=O,
pofnum:=O,
precsize:=-256; «** pick a number large enough for the

maximum data transfer **»
log ical

fcontrol'parm:=O,
prev'echo;

logical array
ibuff' (0:255),
obuff' (0: 255),

6-40-3

byte array
. pfname(O:7):="PROGDEV";

byte array
pdevice(O:7):="PROGDEV";

byte array .
pifname(O:7):="IPROGDV ";

byte array
pidevice(O:7):="IPROGDV ";

byte array
pofname(O:7):="OPROGDV ";

byte array
podevice(O:7):="OPROGDV";

define
fs'error'on'ccl= if < then file'error(#,
fs'error'on'ccne=if <> then file'error(#;

procedure print'message(enum);
value

enum;
integer

enum;
option external;

intrinsic
fclose,f control ,fopen, f read,f setmode ,f~r i te ,pr i-nt' fi Ie' info,
getprivmode,getusermode,iowait,terminate;

subroutine file'error(fnum,enum);
value

fnum,enum;
integer

fnum,enum;
begin

«** simple file error handling subr?utine, basic, not fancy
or very good. **»

print'file'info(fnum);
print'message(enum); «** supply something, but remember your

cliches, make it user-friendlyl **»
terminate «** simple·, (flrect, not too graceful **»

end; «* file'errnr *»

\,."----

FOPEN
You must call FOPEN to gain access to the device, I

always use a formal file name to allow control of the
open with file equations. If the device is unique in the
system, I use its device name as the file name. The
foptions specify CCTL, undefmed length records, AS
CII, and a new file. The aoptions specify exclusive ac
cess and input/output. Choose a record size that is
larger than the maximum data transfer that will take
place.

ATC - Opening a terminal with an HP termtype
causes an initial ENQ to be output to the device on the
fIrst output, there must be an ACK reply from the de
vice or your program will wait until the ENQ time-out
occurs.

ADCC

For devices that are to be used exclusively in pro
grammatic mode it is recommended that you REFUSE
the device so that extraneous carriage re~ums from .the
device will not be speed sensed by the HP3000.

pfnum:=fopen(pfname,%604,%104,precsize,pdevice);
fs'error'on'ccl(pfnum,l);

6-40-4

FCLOSE

You call FCLOSE to release access to the device,
some FCONTROL options exercised while the device
was open are not reset by FCLOSE.

ATC - MPE sends a crllf to the device if it believes

that the "carriage" is not at the beginning of the line,
Le., the last character output was not a linefeed.

ADCC - MPE sends a cr/lfto the device if it believes
that the "carriage" is not at the beginning of the line,
Le., the last character output was not a linefeed or
formfeed.

fclose(pfnum,O,O);
fs'error'on'ccl(pfnum,9);
pfnum:=O; «** I do this for error handling purposes **»

FREAD

You call FREAD to get data from the device, many of
the FCONTROL calls shown below affect how FREAD
works. End-of-file is indicated by a record that contains
":EOF:". Any record with a colon in column one is an
end-of-file to $STDIN, ":EOD", ":EOJ", ":JOB",
":DATA", and ":EOF:" are end-of-file to $STDINX.
You should avoid linefeeds that follow carriage returns
because garbage characters will be echoed to the termi
nal. (The inbound linefeed collides with the outbound
linefeed coming as a result of the carriage return.)

ilen:=fread(pfnum,ibuff' ,precsize);
fs'error'on'ccl(pfnum,2)i
if >

then i «** handle eof **»

You may want to trap' certain errors returned by
FREAD to your program: 22, software time-out; 31, end
of line (alternate terminator); and 33, data lost.

ATC - The characters NULL, BS, LF, CR, DC1,
DC3, CAN (Control-X), EM (Control-Y), ESC, and
DEL are stripped from the input stream for both session
and programmatic devices.

ADCC - The characters BS, LF, CR, CAN
(Control-X), and EM (Control-Y) are stripped from the
input stream for session'devices. The characters BS,
CR, and CAN (Control-X) are stripped from the input
stream for programmatic devices.

The default parity cases are handled quite differently
between the ATC and ADCC, you should exercise ex
treme caution when dealing with parity on the ADCC.

ATC - If the ATC is in the odd/out, no check/in
mode all incoming characters have their parity bits set
to zero. The same is true for even/out, no check/in
mode.

ADCC - If the ADCC is in pass thru/out/in mode all
incoming characters retain their parity bits, they are not
set to zero. All special characters must have a zero
parity bit to be recognized. If the ADCC is in even/out,
check even/in mode the incoming characters must have
proper even parity and their parity bits are set to zero.
The second time you open this terminal the ADCC has
switched to pass thru mode and all incoming characters
retain their parity bits!!!

Each time you issue an FREAD to the terminal MPE
sends a DC1to the terminal to indicate that it is ready to
accept data. Most devices ignore, totally, the DC1. If
your a device reacts negatively to the DC 1, use
termtype l~ which suppresses the DCI on terminal re
ads. The device must not send data to the HP3000 until
it has received the DCI, otherwise the data will be lost.
If the device does not wait for the DCI you must supply
external hardware that will provide buffering and wait
for the DC 1or you can solve the problem on the HP3000

. by using two ports to access the device. One port is
opened for reading and the other for writing. A no-wait
read is issued before the write that causes the device tc
send data, then the read is completed.

getprivmode; «** necessary for nobuf, no-wait i/o W*»
pifnum:=fopen(pifname,%204,%4404,precsize,pidevice)i
if <

then begin
getusermode;
file'error(pifnumvl)

end;
getusermodei
pofnum:=fopen(pofname v%604,%404,precsize,podevice)i
fs'error'on'ccl(pofnum,l)i

ilen:=fread(pifnum,ibuff' ,precsize)i
fs'error'on'ccl(pifnurn,2)i
fwrite(pofnum,obuff' ,-olen,%cctl)i
fs'error'on'ccne(pofnum,3)i
iowait(pifnum,ibuff' ,ilen);
fs'error'on'ccne(pifnum,22)i

6-40-5

When you attach your device to the two ports, con
nect pin 2, Transmit Data of the terminal to pin 2 of the
read port, connect pin 3, Receive Data of the terminal to
pin 3 of the write port, and pin 7, Signal Ground of the
terminal to pin 7 of both ports. (This two port scheme
was first introduced to me by Jack Armstrong and Mar
tin Gorfinkel of LARC.)

FWRITE

You call FWRITE to send data to the device. The
carriage control (cctl) value of %320 is often used to
designate that MPE send no carriage control bytes, such
as crllf, to the device. Some FCONTROL calls shown
below affect how FWRITE works. Control returns to
your program from FWRITE as soon as the data is
loaded into the terminal buffers, it does not wait until all
data has been output to the device.

ATC - Carriage control %61 is output as carriage
return, formfeed (termtype 10).

ADCC - Carriage control %61 is output as formfeed
(termtype 10).

The default parity cases are handled quite differently
between the ATC and ADCC, you should exercise ex
treme caution when dealing with parity on the ADCC.

ATC - If the ATC is in odd/out mode all outgoing
characters are given odd parity, even parity is generated
when the mode is even/out. Simple.

ADCC - If the ADCC is in pass thru/out mode all
outgoing characters retain their parity bits as passed to
FWRITE. If the ADCC is in even/out mode all outgoing
characters are given even parity. The second time you
open this terminal the ADCC has switched to pass
thru/out and all outgoing characters retain their parity
bits!!!

fwrite{pfnum,obuff' ,-olen,%cctl);
fs'error'on'ccne{pfnum,3)i
«** eof here is probably an error, I mean what is going on? **»

FSETMODE - 4 - Suppress carriage return/
linefeed

In normal operation a line feed is sent to the terminal
if the input line terminates with a carriage return, a cr/lf
is sent to the terminal if the line terminates by count,
and nothing is sent if the line terminates with an alter
nate terminator. FSETMODE 4 suppresses these
linefeeds and carriage returns. FSETMODEO r~turns to
normal line termination handling, an FCLOSE also re
turns the device to the normal mode.

fsetmode(pfnum,4);
fs'error'on'ccl(pfnum,14);

FCONTROL
FCONTROL is the workhorse intrinsic for manag

ing a programmatic device on the HP3000. Each use
ofFCONTROL which be shown separately but it will
usually be the case that several calls will be used.

Most calls are required only once, but the timer calls
are required for each input operation. Each call will
be identified by the controlcode parameter that is
passed to FCONTROL.
FCONTROL - 4 - Set input time-out

This option sets a time limit on the next read from the
terminal. It should always be used with devices that
operate without an attached user to prevent a "hang." If
something goes wrong with the device, your program
will not wait forever, control will be returned to your
program. The FREAD will fail and a call to FCHECK
will return the errorcode 22, software time-out. No data
is returned to your buffer in the case of a time-out, any
data entered before the time-out is lost. If you issue a
timeout for a block mode read the timer is stopped when
the DC2 is received from the terminal, a new timer is
then started which is independent of the timer set by
this FCONTROL call. See the section below on
enabling/disabling user block mode transfers.

fcontrol'parm:=30; «** 30 second time-out **»
fcontrol{pfnum,4,fcontrol'parm);
fs'error'on'ccl(pfnum,413)i
ilen:=fread{pfnum,ibuff' ,precsize);
if <

then begin
fcheck(pfnum,erroreode);
if errorcode <> 22

then file'error{pfnum,errorcode*100+2); «** something else **»
«** handle time-out **»

end;

FCONTROL -10,11 - Set terminal input/output speed

These FCONTROL options allow you to change the
terminal input and output speeds. FCONTROL 37 can
also be used to set terminal speed, it sets termtype as

6-40-6

well and is the method that I prefer.
ATC - Split speeds are allowed.
ADCC - Split speeds are not allowed, FCONTROL

10 and 11 set both input and output speed.

FSETMODE 4 completely turns off input echoing.
(Control-X is handled separately.) Echoing is not re
stored when a file is closed so you should always put
echo back the way it was found.

FCONTROL -12,13 - Enable/disable input echo
These FCONTROL options allow you to enable and

disable terminal input echoing. Many devices that at
tach to the HP3000 do not expect or desire echoing of
the characters they transmit. This option along with

fcontrol(pfnum,13,prev'echo)i
fs'error'on'ccl(pfnum,1313)i

«** turn echo back on if it was previously on **»
if prev'echo = 0

then begin
fcontrol(pfnum,12,prev'echo)i
fs'error'on'ccl(pfnum,1213)

endi

FCONTROL -14,15 - Disable/enable system break
The break key is typically disabled when terrible

things will happen if the user hits break and aborts out
of a program. You, the programmer, always seem to
need break for debugging purposes and discover that
you have it turned off. System break can only be
enabled for session devices, it is not allowed for pro
grammatic devices. If break is entered on a session de
vice the data already input will be retained and provided
to the user program after a resume and the completion
of the read. If a break is entered on a programmatic
device a null will be echoed to the device but no data is
lost.
FCONTROL-16, 17 -Disable/enable subsystem break

Subsystem break is recognized only on session de
vices, it can be enabled on programmatic devices but
has no effect. Ifa Control-Y is entered during a read, the
read terminates and the data already input will be re
tained and provided to the user program after the
Control-Y trap prodedure returns. If Control-Y is dis
abled any Control-Y will be stripped from the input but
no trap procedure is called and the read continues.
Control-Y trap procedures are armed by the XCON
TRAP intrinsic. A subsystem break character other
than Control-Y may be specified when unedited termi
nal mode (FCONTROL 41) is used.

ATC - In progra~atic mode Control-Y's are al
ways stripped from the input.

ADCC - In programmatic mode Control-Y is not
stripped from the input if subsystem break is enabled.
FCONTROL -18,19 -Disable/enable tape mode

ATC - This is effectively an FSETMODE 4, an
FCONTROL 35, and suppression of backspace echoing
all rolled into one.

ADCC - Tape mode can not be enabled.
FCONTROL - 20, 21, 22 - Disable/enable terminal
input timer, read timer

These options can be used to determine the length of
time it took to satisfy a terminal read. It is not a time
out, 'that is FCONTROL 4. The manual states that you
must enable the timer before each read so why is there a
disable option? If you read the timer without enabling

the timer, you get the tim~ of the most recent read that
did have the timer enabled. The number returned is the
length of the read in one-hundreths of a second. Condi
tion code> implies that the read exceeded 655.35 sec
onds.

fcontrol(pfnum,21,fcontrol'parm)i
fs'error'on'ccl(pfnum,2113);
ilen:=fread(pfnum,ibuff' ,precsize)i
fs'error'on'ccne(pfnum,2)i
fcontrol(pfnum,22,fcontrol'parm);
fs'error'on'ccl(pfnum,2213);

FCONTROL - 23, 24 - Disable tenable parity checking
This option enables parity checking on input for the

parity sense specified by FCONTROL 36. Parity·check
ing is overridden by binary transfers (FCONTROL 27)
or unedited.mode (FCONTROL 41).

ATC - This option affects input parity checking
only, output parity generation is controlled by FCON
TROL 36.

ADCC - This options controls both input parity
checking and output parity generation, FCONTROL 36
only specifies the type of parity.
FCONTROL - 25 - Define alternate line terminator

This option is used to select an alternate character
that will terminate terminal input in addition to carriage
return. It is useful if your device terminates input with
something other than return.

ATC - Backspace, linefeed, carriage return, DCl,
DC3, Control-X, Control-Y, NULL, and DEL are not
allowed as terminators. The manual claims that DC2
and ESC are not allowed as terminators but they work.
Ifa DC2 is the first input character from an HP termtype
terminal the HP3000 drops the DC2 and sends a DCl
back to the terminal, it thinks a block mode transfer is
starting. Any other DC2 is recognized as a terminator if
enabled. By enabling user block mode transfers
(FCONTROL 29) a DC2 as the first character will also
be recognized as a terminator when enabled. For
non-Rp termtype terminals a DC2 is always recognized
as a terminator when enabled.

ADCC - Backspace, linefeed, carriage return,

6-40-7

.Control-X, Control-Y, and NULL are not allowed as
terminators. The manual claims that DCI, DC3, ESC,
and DEL are not allowed as terminators, but they work.
DC2 is allowed as a terminator but produces bizarre
results unless unedited terminal mode (FCONTROL 41)
is also enabled in which case the DC2 is recognized as a

terminator in any position.
If a line terminates with an alternate terminator, it will

be included in the input buffer and length and an error
will be indicated for the read. You must call FCHECK
to determine that the read terminated with the alternate
character.

fcontrol'parm:=[8/0,8/"."]; «** period is alternate terminator **»
fcontrol(pfnum,25,fcontrol'parm);
fs'error'on'ccl(pfnum,2513);

ilen:=fread(pfnum,ibuff' ,precsize);
if <

then beg in
fcheck(pfnum,~rrorcode);

if errorcode <> 31
then file'error(pfnum,errorcode*lOO+2); «** something else **»

«** handle alternate terminator **»
end;

FCONTROL -26,27 -Disable/enable binary transfers
Binary transfers can be used to transmit full 8-bit

characters to and from the terminal. On input a read will
only be satisfied by inputting all characters requested, a
carriage return or alternate terminator will not terminate
the read. No cr/lfis echoed to the terminal at the end of
the read. Thus, you must always know how many
characters to read on each input from the terminal.
Enabling binary transfers also turns off the ENQ/ACK
flow control protocol and carriage control on output.
No special characters are recognized on input. See the
note under FCONTROL 25 about DC2 as the first input
character on a line. If a session device is being accessed
in binary mode, a break will remove the terminal from
binary mode but it will not be returned to binary mode
when a resume is executed.
FCONTROL -28,29 -Disable/enable user block mode
transfers

As described above the normal sequ.ence of events in
a block mode transfer from an HP terminal to the 3000 is
for the HP3000 to send a DC1 to the terminal indicating
it readiness to accept data, the terminal sends a DC2
when the enter key is struck to indicate that it is ready
to send data, the HP3000 responds with another DC I
when it is really ready to take the data, and the terminal
sends the data. All of this is transparent to your program
which just issues a big read. If your would like to par
ticipate in this handshake you e,nable user block mode
transfers and MPE relinquishes control of the hand
shake. Your program would issue a small read, get the
DC2, and issue another read to accept the data. This
allows you to meddle around before the data shows up.

The terminal driver only supports block mode trans
fers with HP termtypes and performs one other function
during block mode transfers. Normally you wouldn't
put a timeout (FCONTROL 4) on a block mode read
because the user can take an indefinite amount of time
to fill a screen; but you would like to avoid terminal
hangs because the block terminator from the terminal

6-40-8

gets lost. This situation is handled by the driver for you,
the portion of the read after the second DCI is sent to
the terminal is timed for (#chars in read/#chars per
sec)+30 seconds. If the terminator is lost and the read
times out, the read will fail and FCHECK will return
error 27.

fcontrol(pfnum,29,fcontrol'parm);
fs'error'on'ccl(pfnum,29l3);

ilen:=fread(pfnum,ibuff' ,-1);
fs'error'on'ccne(pfnum,2);
«** meddle/muddle **»
ilen:=fread(pfnum,ibuff' ,precsize);
fs'error'on'ccne(pfnum,2);

FCONTROL - 30, 31 - Disable/enable V/3000 driver
control

This option is an undocumented option in which the
terminal driver provides low level support for V/3000
use of terminals. When V/3000 issues a read to the ter
minal the driver outputs a DCI; the terminal user hits
enter which causes a DC2 to be sent to the 3000; the
driver responds with ESC c ESC H DC1 which locks
the keyboard and homes the cursor; it appears that the
driver also enables binary transfers because the second
read only terminates by count, not by terminator. The
portion of the read following the second DC I is timed as
described under FCONTROL 28, 29.

FCONTROL - 34, '35 - Disable/enable line deletion
echq suppression

This option suppresses the !! !cr/lf echo whenever a
Control~X is received from the terminal, the Control-X
still deletes all data in the input buffer.
FCONTROL - 36 - Set parity .

This FCONTROL option sets the sense of the parity
generated on output and checked on input. The four
possibilities are: 0, no parity, all 8 bits of the data are
passed thru; 1, no parity, the parity bit is always set to

one; 2, even/odd, even parity is generated if the original
parity bit of the data was a zero, otherwise odd parity is
generated; and 3, odd parity, odd parity is generated on
all characters.

ATC - FCONTROL 36 sets the parity sense and
enables output parity generation. FCONTROL 24 must
be called to enable parity checking on input. An un
documented effect of this FCONTROL call is that the
previous parity setting is returned in the controlcode
parameter wiping out its original value!

ADCC - FCONTROL 36 sets the parity sense only.
FCONTROL 24 must be called to enable output parity
generation which results in input parity checking as
well. An undocumented effect of this option is that the
previous parity setting is returned in the controlcode
parameter wiping out its original value!

Parity is not reset to th,e default case when a device is
closed. This can be useful if you have a session device
that can not run with the default parity. Each time the
system is started run a program that opens the device,
sets the parity, and closes the device. It can then be
accessed as a session device with the required parity.

ATC - The following results were obtained when
parity generation was enabled on output. All options
performed as described in the manual.

ADCC - The following results were obtained when
parity generation was enabled on output. Option 0, par
ity pass thru, resulted in even parity on all characters.
Option 1, parity forced to one, resulted in odd parity on
all" characters. Option 2, even/odd parity, resulted in
even parity on all characters regardless of the original
parity bits of the characters. Option 3, odd parity, re
sulted in odd parity on all characters. Only option 3
performed as expected.

ATe, ADCC - The following results were recorded
I when parity checking was enabled on input. Option 0,
parity pass thru, resulted in parity errors on all input
except that with even parity. Option 1, parity forced to
one, resulted in pari~y errors on all input except that
with odd parity. Option 2, even/odd parity, resulted in
parity errors on all input except that with even parity.
Option 3, odd parity, resulted in parity errors on all
input except that with odd parity. Options 2 and 3 per
formed as expected, options 0 and 1 did not. In all cases,
parity bits are always set to zero before the data is
passed to your program buffer.

HP has told" me that the following is the parity story as
of the C-delta version of MPE-IV.

ATC - Options 0 and 1 will not check parity on
input, everything else as described above.

ADCC - Option 0 and 1 will be parity pass thru,
everything else as described above.
FCONTROL - 37 - Allocate a terminal

In the old days you had to allocate a programmatic
terminal before it could be used. Now you don't even
though the manual claims that you do. This option is
still useful because it allows you to set the termtype and

terminal speed with one FCONTROL call. Common
sense, mine at least, says to set termtype and speed each
time a device is opened even if the proper values are
configured in the i/o tables. Using this option allows use
of a file equation redirecting the program to another
device that might not be properly configured.

fcontrol'parm:=[11/speed,5/type];
fcontrol(pfnum,37,fcontrol'parm)i
fs'error'on'ccl(pfnum,37)i

FCONTROL - 38 - Set terminal type
This option allows you to set the terminal type, but

use FCONTROL 37 and set type and speed all in one
shot.
FCONTROL - 39 - Obtain terminal type information

Before changing the t~rminal type, get the current
value and reset it when you are through.
FCONTROL - 40 - Obtain terminal output speed

Before changing the terminal speed, get the current
value and reset it when you are through.
FCONTROL - 41 - Set unedited terminal mode

Unedited terminal mode is about the most useful
FCONTROL option used to communicate with pro
grammatic devices. It allows almost all control charac
ters to pass through to the HP3000 but does not require
reads of exact length as in binary transfers. Input will
terminate on a carriage return or an alternate terminator
if specified. The subsystem break character, replacing
Control·Y, can also be specified.

ATC - Unedited terminal mode overrides input par
ity checking, no checking is performed and all input

, parity bits are set to zero. Output parity generation is
performed normally.

ADCC - Unedited terminal mode processes parity in
the same manner as edited mode, see the section on
FREAD for an explanation.

Binary transfers enabled overrides unedited terminal
mode enabled. If the input terminates with the end-of
record character or alternate terminator no cr/lf is sent
to the terminal. If the input terminates by count a crllf is
sent to the terminal unless an FSETMODE 4 has been
done. Unedited mode does not turn off the ENQ/ACK
flow control protocol on the ATe or ADCC. See the
note under FCONTROL 25 about using DC2 as a ter
minator.

PTAPE

The manual describes PTAPE as the intrinsic to use
to read paper tapes. (A fancy data-entry media that is
becoming increasingly popular.) It can be used on the
HP3000 to access devices that send up to 32767 charac
ters all in one shot subject to a few limitations. The data
must be record oriented with carriage returns between
records, MPE will cut the data into 256 character rec
ords if there are no returns, and the whole mess must be
terminated by a Control-Y. Certain buffering terminals
allow you to fill their memory off-line, connect to a

6-40-9

computer, and transmit all the data. This could save
considerable time and money over dial-up phone lines.

DEBUGGING
If you have a requirement to attach a programmatic

device to the HP3000 the worst strategy is to write some
code on the 3000, plug the device in and start testing.
Murphy says it won't work and it won't. The method I
use is to test the device, then the code, and then the
code and device together. I test the device by plugging it
into an HP-2645 (or equivalent) terminal, turning on
monitor mode, and simulate the HP3000 by typing on
the keyboard. (Remember that you are hooking two
terminals together, you will probably hook device pin 2
to 2645 pin 3, device pin 3 to 2645 pin 2, and device pin 7
to 2645 pin 7.) You can stimulate the device and observe
all responses quite simply. Any strange behavior can be
noted at this point. The next step is to write the code on
the HP3000 to access the device in the manner deter
mined by the first tests. Then plug the HP-2645, not the
device, into the HP3000. Now type on the 2645 to simu
late the device, continue until your code is debugged.
Now you can plug the device into the HP3000 and you

6-40-10

have a good (modulo Murphy) chance.of actually getting
it to work.

REFERENCES

Communications Handbook, Hewlett-Packard Company, April 1981
Part #30000-90105. This manual supersedes the HP Guidebook to
Data Communications and the Data Communications Pocket
Guide.

Don Van Pernis, "HP3000 Series II Asynchronous Terminal Control
ler Specifications," Computer Systems Communicator, # 15, De
cember 1977, page 2. This explains the terminal subtypes and sig
nal requirements for the ATC.

Charles J. Villa, Jr., U Asynchronous Communications Protocols ,"
Journal of the HP General Systems Users Group, Volume 1, #6,
March/April 1978, page 2. Good introductory material.

John Beckett, "Poor Man's Multidrop," Journal of the HP General
Systems Users Group, Volume 2, #1, May/June 1978, page 7. How
to hook several terminals to the same port.

Tom Harbron, "Lightning, Transients and the RS-232 Interface,"
.Journal of the HP General Systems Users Group, Volume III, #3,
Third Quarter 1980, page 14. How to avoid being zapped.

MPE Intrinsics Manual, Hewlett-Packard Company, January 1981
Part #30000-90010. Chapter 5 discusses most of the FCONTROL
options that are applicable in terms of the ATe, it is often inaccu
rate in describing the ADCC.

~.,n.......

")

	Section 6—Peripheral Software
	Everything You Wanted to Know About Interfacing to the HP3000—PART I

