Putting the HP3000 to Work
For Programmers

Thomas L. Fraser
Forest Computer Incorporated
East Lansing, MI

I. THE OPPORTUNITY

The demand for software is exploding as businesses
and other organizations which use computers strive to
be more productive, control costs, and improve the
quality of management information. The acceleration of
this demand is forecasted to continue throughout the
early 1980s.

Software is produced for the most part by people,
skilled people. These ‘“‘programmers’ are a limited re-
source. If the increasing demand is to be met, either the
size of this resource must be increased or the prod-
uctivity of the resource must be improved.

Looking at the issue from the viewpoint of an indi-
vidual DP shop, increasing the size of the resource
means hiring people. Skilled people are expensive, and
costs are going up. Especially expensive are program-
mers, due to the already existing shortage. This short-
age also makes it difficult to find quality people. So
increasing the size of the resource is not always easy
and is very costly.

Another trend that is evident is the decreasing cost of
computer hardware. This contributes to the increasing
demand for software, and thus is part of the problem.
However, it can be made part of the solution by putting
computers to work for the programmers.

This is the opportunity. Use the computer to increase
the productivity of programmers. Provide software
tools which allow the people to work efficiently and
quickly. The expensive and scarce programmer should
not have to wait for or adapt to the increasingly inex-
pensive computer. In a word, the computer needs to be
made more friendly toward the programmer.

II. THE HYPOTHESIS

In the specific environment of the HP3000, program-
ming is usually done online. A majority of the programs
are written in COBOL with FORTRAN also popular.
There are several types of tools which can be intro-
duced to this environment. Report generators, high
level file systems, COBOL generators, forms
generators, and very high level languages such as
RAPID/3000 can all help. However, in most shops pro-
grammers still spend a large amount of time at a termi-
nal working with source code. This therefore is the first

place to look when considering how to get the HP3000
working for the programmer.

By far the most prevalent software tool used by pro-
grammers is the HP editor. Compared to the primeval
batch methods of source input and maintenance,
EDIT/3000 is vastly superior. Because the editor is in-
teractive, changes can be viewed as they are made
within the context of the rest of the program. Also the
editor provides many features such as searches and
global changes previously unavailable. And best of all
there is no problem keeping card decks in sequence.

However, the new features and capabilities come
with a price, that of increased demand on the system
resources. The programmers are competing with each
other, as well as with production users, for precious
disk accesses and CPU time. An obvious result of any
delay in system response is lower productivity. This
applies to all users of the system, including program-
mers.

EDIT/3000 is not without weaknesses. It is a line-by-
line editor. This is a logical carryover from the days of
cards. (Remember, the VDT was originally intended as
a keypunch replacement.) All I/O is organized around
the line as a standard unit. I/O from the terminal inter-
rupts the hardware once for each character because of
lack of block-mode handling. Moreover, the software
must get involved each time “RETURN" is hit; this is a
minimum of once per line with the exception of the
“CHANGE’ command, and with many commands can
be several times per line. Disk I/O is blocked, but the
binary search used to locate the card-image formatted
records i very expensive in terms of disk accesses. This
line orientation has obvious negative performance im-
plications. Moreover, it means that the programmer
must work with a line at a time. Despite the ability to
display 20 lines on a single CRT screen, only one line at
best can be entered or changed per transmission except
for the noted exception.

Believing that the overall demand on resources might
be reduced, and system performance improved, there
still remain other areas to be investigated when seeking
to improve upon the editor. For example, the “TEXT”
and “KEEP” commands are very slow due to the fact
they are actually file copying commands.

4—36—1



One of the nice features of EDIT/3000, that of being
able to see the changes in context, is mitigated against
by two major factors. The first is screen clutter. Unless
one repeatedly does “LIST” commands, the screen be-
comes full of old source lines and already executed
commands as well as current source lines. The second
is the inability to access everything on the screen.

Performing some operations, even on a single source
line, require several commands to be transmitted. This
makes more effort by the programmer necessary, and
slows the coding process. This, together with the other
factors, are seriously impairing the speed of software
development and system performance.

Thus the hypothesis, that a full screen block-mode
editor, written for maximum features with minimum
demand on machine resources, would dramatically im-
prove programmer productivity. Improved response
time for other users could also be anticipated.

III. THE METHOD

To test the hypothesis a full screen, block-mode
editor was designed and written. The result of this ef-
fort, called “CHICKEN” by its architects, was a
COBOL and SPL program which can be used to edit
source code, documentation, stream-files, and other
text. No operating system modifications are required,
and the program runs in ordinary session-mode.

Block-mode transmissions dramatically reduce the
overhead of terminal I/0. This is especially true when

the line is driven from the Asynchronous Data Com- .

munications Controller (ADCC). The number of
transmissions is also reduced making life easier for the
programmer. The terminal has a microprocessor;
block-mode enables taking advantage of this to reduce
load on the HP3000. If one has paid for a “smart termi-
nal,” it behooves one to use it. By the way, CHICKEN
can automatically switch the terminal between block-
mode and character as needed. Implicit is that the VDT
being used is an HP compatible terminal with block-
mode capability.

Full screen access is another way of putting the ter-
minal to work. With the new editor, all twenty-four lines
of the screen are used. One line is for entering com-
mands, one line for error messages, and the other
twenty-two are used to display source lines. The pro-
grammer can change, delete, or insert lines of code any
place on the screen by using just the terminal
capabilities. Only after completing an entire screen, is
the source transmitted to the HP3000. At that time
CHICKEN will determine which lines should be de-
leted, changed, or added to the file. There is no need to
use commands to tell it what is a change, delete, etc.

The disk organization of source files also effects sig-
nificant advantages. Standard MPE files are used, but
CHICKEN has its own access techniques. The old
card-image format is replaced by a compressed format
which is designed to maximize performance while using
less disk space. Because of the file organization and

4—36—2

access methods, CHICKEN can retrieve any single line
of source code in one disk access, and any twenty-two
consecutive lines in an average of 1.4 seeks with a
maximum of two required. This single technique has
great performance implications.

Ease of use is always an important design considera-
tion and CHICKEN is easy to use. The command set
uses language similar to EDIT/3000 to make it easy to
quickly get acquainted. Any command can be issued at
any time. Moreover, it is seldom necessary to issue mul-

tiple commands to accomplish a single task. Recall also,

that the software frequently will figure out what you
want done without having to be specifically told. Prob-
ably the biggest factor in ease of use, though, is the full
screen access. A simple list of commands is below.

CHICKEN has other features which contribute to
improved productivity:
® Screens are automatically formatted for COBOL,
FORTRAN or SPL source if desired.

® The programmer has access to most MPE com-
mands from the editor.

® Compiles can be submitted without leaving the
editor.

® Special passwords are put on source files.

® An optional log of changes provides a means of
recovery and a means of “backing out” modifi-
cations. This also can be used to provide an audit
trail.

Several commands are listed below to show general
syntax and to compare their operation with the similar
commands available in EDIT/3000. In general, the
commands follow a standard format as shown here:

CMD <starting-line <ending-line>> required-params
<optional-params> '
CMD <starting-line <ending-line>> required-params
<optional-params>

Most command key-words are the same as found in
EDIT/3000, and all can be invoked by entering only the
first letter. For instance, “LIST 120.5” can be entered
as “L 120.5>.

CHICKEN attempts to give the user as much flexibil-
ity in entering a command as possible, so as to accom-
modate differing user styles acquired through exposure
to various other editors. Thus the following commands
would all have the same effect if entered:

DELETE 20/30
D (20.00:30.00)
DEL 20 30

DELETE 20,30

" The goal here is to make the editor easy to learn by
not requiring strict adherence to particular syntax rules,
and easy to remember by keeping command formats
simple and regular.

Following are some representative commands:
TEXT edit-file < NEW < mpe-source-file > >
This command opens and grants access to an edit-file.

ﬂ

-



If another edit-file is currently open and being worked
on, it is automatically closed. If the NEW option is
entered, a new edit-file is created. The ‘“‘mpe-source-
file” refers to an EDIT/3000 source file which can be
copied to the CHICKEN edit-file. This command exe-
cutes very quickly because there is no copy operation
from a source file to a work file as in EDIT/3000, except
when an MPE source file is copied in, which happens
only rarely.

KEEP < A < B > > mpe-source-file < PURGE >

This command makes a copy of the currently acces-
sed edit-file to an EDIT/3000 formatted source file.
Normally all lines will be copied. If line A is specified,
all lines from line A through the end of the edit-file will
be copied. If line B is specified, the copy will only in-
clude the lines from line A through line B. If the
PURGE option is entered, the edit-file is closed and
purged from the system after a successful copy opera-

 tion.

This command is used infrequently, usually for bac-
kup purposes. Since compiles can be implemented di-
rectly from within the editor on the existing edit-files,
there just isn’t much need to KEEP files. If one edit-file
is TEXTed in and modified, a second TEXT automati-
cally closes the first edit-file with changes intact. The
improvement in response time to access edit-files can
be dramatic even on only a moderately loaded system.

LIST<{A/LAST}>

A simple LIST command without parameters will
display the first 22 lines of text in the edit-file. Sub-
sequent transmission will display the next 22 lines, in
effect paging through the text. If line A is specified, then
line A and the next 21 lines of text following line A will
be displayed. Again, paging applies after entering the
command once. If “LAST” is specified, then the last
line of text and 21 blank lines are displayed.

This is where some of the power and flexibility of a
full screen block-mode editor can be seen. The user can
now be free to move the cursor anywhere on the screen,
modifying, inserting, and deleting lines. Changes can be
reviewed in context of the surrounding text. Even line
numbers can be changed simply by typing over the old
ones displayed. All of this goes on without bothering the
host computer. Of course, this frees up the HP3000 for
other tasks at hand.

FIND < A < B > > *textl* < ALL >

This command performs a search for the next occur-
rence of textl and displays the line containing the textl
along with the following 21 lines of text. If line A is
specified, the search will begin at line A and continue
until a match is found or the end of the file is reached. If
line B is specified, the search will only encompass lines
A through B. The asterisks surrounding textl represent
delimiters, which can be any non-alphanumeric charac-
ters including a space.

Examples:

FIND MEN
F/ALL MEN/

<spaces as delimiters>
<slashes -as delimiters . . . space
is part of the search string>

The ALL option will cause the editor to attempt to
find all occurrences of textl and display all correspond-
ing lines. If 22 occurrences are found before the search
line limit, the lines containing occurrences of textl are
displayed along with a message stating that the search is
not finished. The user can modify any of the lines on the
screen. To resume the search, the user only needs to
enter “F”’, and the editor picks up the search where it
left off. The user can even begin a search and then use
other commands such as LIST or CHANGE, add and
delete lines, etc., and will still be able to resume a
search.

RENUMBER<A<B>> <BYN>

Renumbers the edit-file. If no parameters are entered,
all text lines are renumbered. If line A is specified, the
numbering will begin at line A and continue through the
end of the file. If line B is specified, the renumbering
will only be done on lines A through B. The BY N
option allows the user to override the default line
number increments used by CHICKEN in a renumber
operation.

The renumbering is done to the file in place, rather
than through a copy procedure. This significantly
speeds up the operation in comparison to, say, EDIT/
3000’s GATHER command.

Other commands found in EDIT/3000 as well as many
other line editors, are either unnecessary or have their
utility reduced with a full screen editor. The ADD
command in EDIT/3000 is a good example. With
CHICKEN lines are inserted right on the screen be-
tween other lines of text, and transmitted back to the
editor. The line number does not even have to be in-
cluded. The editor identifies the surrounding text and
calculates a line number for the new line. To add text at
the end of a file, the user enters L LAST. CHICKEN
displays the last line of text followed by 21 numbered
blank text lines. Along the same vein, line deletes can
be handled on the screen simply by placing the letter
“D” before a displayed line of text. The DELETE
command itself is only needed for global deletes, as in D
100/200.

The above are just a sampling of the full screen
editor’s command list. As was mentioned previously,
command keywords have, for the most part, been kept
the same to facilitate learning to use CHICKEN. Thus
the user will find such familiar key-words as GATHER,
JOIN, HOLD, CHANGE, EXIT, etc., along with a few
new commands, such as ZIP which initiates a compile
for an edit-file without having to either exit the editor or
KEEP the source code.

THE RESULT
(A Personal Digression) -

The most notable difference upon the installation of

4—36—3



CHICKEN was not programmer productivity, it was
programmer euphoria. After using it for even a short
time, one gets hooked. In our shop we have a mixture of
block-mode and character-mode terminals used for pro-
_gram development. To say that the character-mode
terminals are collecting dust would be an exaggeration,
but we have noticed people arriving quite early in the
morning to stake claim to a “CHICKEN" terminal.
The productivity, response time, and performance
improvements are also accomplished. As of this writing

4—36—4

(December 1981), quantitative data are not available.
Anyone desiring more information of this nature, or
having any further interest in learning more about
CHICKEN can write to:
Tom Fraser
Forest Computer
P.O. Box 1010
East Lansing, Michigan 48823

or call (517) 332-7777.

‘D



	Section 4—Language Support
	Putting the HP3000 to Work For Programmers


