Transaction Logging and Its Uses

Dennis Heidner
Boeing Aerospace Company
Seattle Washington

For some time database users have been concerned
about the integrity of their databases and methods to
prevent them from being corrupted. Another concern is
performance measurement. When H-P introduced
MIT-1918, they also introduced ‘“‘Transaction Log-
ging.” Transaction logging is intended to provide a
means of repairing databases which are either damaged
or are suspected of being so. There are however many
additional benefits to be derived from transaction log-
ging including automatic audit trails, historical records
of the database users, and information on the database
performance.

The purpose of is paper to discuss the basic concepts
of transaction logging, its benefits, and drawbacks. Var-
ious logging schemes, such as long logical blocks, and
multiple IMAGE databases are discussed. Several dif-
ferent database logging cycles and HP recommended
recovery procedures are discussed, and a method of
recovering and synchronizing multiple databases is
proposed.

Finally this paper covers a user written program
which has been used to monitor the database perfor-
mance, to validate and debug new user-written applica-
tion software, and provide a complete audit trail for
future reference.

INTRODUCTION

Many computers are justified only because they can
keep track of large quantities of information in ‘“real
time”’ databases. In such cases it becomes extremely
important that the integrity of this information remains
consistent.

The database can be destroyed or corrupted in a
number of ways. These include program errors, person-
nel errors, and computer hardware problems. A consid-
erable amount of time and resources can be expended to
eliminate most of the program errors, but it is almost
impossible to guarantee a perfect program. The second
source of inconsistencies is people. While it is possible
to protect the information from human error by increas-
ing the complexity of the program or by eliminating the
human contact with the machine and its peripherals,
both are often undesirable. Finally the third cause is
system failures. System failures can be caused by
numerous events including such things as fires,
earthquakes, vandalism, hardware problems, power
failures, and of course, MPE flaws.

We can take steps, however, to protect our invest-
ment in the database. There exist several very good
programs,! such'as DBCHECK and DBTEST, which
will look for and can correct minor structural problems
caused by crashes. But what about the user who must
update a critical path in IMAGE? To do so requires a
DBDELETE followed by a DBPUT. If the system
crashes between the two, there will be no structural
damage to be found. If you don’t mind losing a $50,000
item or a $100,000 check, you have no worries. . . An
effective database protection method is transaction log-
ging. Logging takes many forms, the simplest of which
only requires that we file away the paperwork used to
generate the modifications to the database. Although
this is convenient, it is a poor approach when it comes
to recovering the database from a crash or system fail-
ure. For instance let’s assume that we have a failure
after two or three thousand transactions have been en-
tered from terminals at several locations. Who wants to
re-enter all the old data, while all the normal work is
stacking up?

A better method is to have the computer keep dupli-
cate copies of the information used to make the
changes. Then it would only be necessary to instruct the
computer to use the duplicate to reconstruct the
database following a crash.

There are several ways that computers can be used to
generate these duplicate copies. The most efficient
method is to write the programs with an intrinsic
transaction-logging system. This logging system can
either be supplied by HP or could be a custom logging
scheme. The problem with custom schemes is that they
generally require as much or more design time as many
of the applications programs that will use them. Since
this work is not readily visible to either the end user or
management, there is a temptation to do a quick job.
The resultant lack of planning causes poor database and
system performance. Additionally, in-house logging
schemes only work with the in-house programs. If we
use externally-written software (such as QUERY), we
may find it difficult or impossible to get these routines
to use our logging schemes.

TRANSACTION LOGGING (USERLOGGING)

HP recognized this need for database protection, and
developed a version of transaction logging which runs
on the HP3000.2-3 HP’s transaction logging is actually a

2—34—1

process which runs under the control of the MPE
operating system. If the database is enabled for logging,
a logging process then attaches itself to the database
when it is opened up for any update access. If the
database is opened up in a read-only mode, the logging
process is not attached. When the logging process is
running it intercepts transactions after the IMAGE
check has been made, yet before the actual transaction
has been made in the database. This captured data (old
and new values) are then blocked up in a buffer in mem-
ory. When the memory buffer fills up, the transactions
are moved out to a logging file on the disc. If we are
logging to the disc only, then this becomes our duplicate
copy of the transactions. If we are logging to the tape
drive, then the disc buffer is periodically moved out to
the tape drive (see figure 1).4

If we have a system failure (or any other event which
could cause a database inconsistency) then we use a
database recovery procedure which uses a good copy of
the database and the duplicate copy of the transactions
to restore the information in the database to its condi-
tion only moments before the crash.

The recovery program which HP supplies is called
DBRECOV. The program literally re-works all the
transactions in the same sequence as originally made;
this repetition assures that the database structure is cor-
rect and undamaged.

Once the database has been corrected and brought
back into a consistent state, a backup copy is made and
a new logging media is used. The act of making a bac-
kup copy and using a new logging media is known as
beginning the logging cycle.

In order to implement transaction logging, HP intro-
duced several new user-callable DBMS procedures:
DBBEGIN, DBEND, DBMEMO, WRITELOG, BE-
GINLOG, ENDLOG, OPENLOG, and CLOSELOG.
These new procedures are extremely useful because
they let us define how transactions are logically
grouped.®

To illustrate the importance of logical grouping of
transactions, assume we have two mutually-dependent
pieces of information. It is important that if any change
is made to one item, the change that is made to the
second item must also be made. If either item is not
changed, then neither should be modified. We can do
this by using DBBEGIN to mark the beginning of the
dependent changes, and DBEND to mark the end (see
figure 2). The intrinsic routines ensure that if there is a
system crash or failure between the DBBEGIN and the
DBEND, neither transaction is made. While transaction
logging does not guarantee that we will not have
crashes, it does provide some relief in recovering from
their effects.

Now let’s talk about the drawbacks. Anytime we ask
the CPU to perform additional work, there is an in-
crease in the overhead cost for our process. The object

2—34—2

is to balance the additional workload on the computer
with the benefits that we hope to gain.

Every time the memory buffer is moved out to disc,
or the disc buffer is moved to magnetic tape, these
transfers tie up the disc controller. Although this may
be for very short periods of time, one of the biggest
problems plaguing many HP3000 sites is slow response
time due to a large number of disc accesses. -

If we install logging then, our response time may be-
come worse. Your alternative of course is to use abso-
lutely no logging at all! Thus transaction loggings may
be one of the necessary evils in life.

LOGGING STRATEGIES

The placement of the calls to DBBEGIN and .
DBEND can play a crucial role in the success or failure
of logging. Since each call to DBBEGIN or DBEND
causes a logging record to be written, and thus
additional overhead, it is tempting not to use these at
all. The people in the logging laboratory at HP wrote
DBRECOYV to handle both blocked and unblocked
transactions (QUERY does not block its transactions).
However while this is ideal for existing programs, we
may be losing some very valuable information about our
databases.

By properly placing the DBBEGIN and DBEND it is
possible to measure the performance of our database.
This information can later be used to tune-up our appli-
cations programs. Additionally proper placement of the
calls enhances our crash recovery procedures.

The worst possible thing that we can do is to take the
easy way out, calling DBBEGIN when we open up the
database and calling DBEND as we close the database.
This results in large recovery blocks. As long as we
never have a crash everything works fine. However the
first time we must recover after a crash, we might find
that DBRECOV is unable to help us out. This is be-
cause the recovery process tries to resolve all
transactions made between periods when the database
is inactive. With the long blocking scheme the database
is almost always active. DBRECOV will attempt to
build a monstrous file to look for dependent
transactions, and inevitably fail! ,

HP recommends that we make all the necessary locks
on the database, call DBBEGIN, make the transaction,
the call DBEND before unlocking (see Figure 3A). This
will ensure that we have a minimum chance of large
concurrent blocks.®

Another strategy that appears to work well is to call
DBBEGIN, then lock the database or sets, and make
our updates. Conversely we would unlock, and then call
DBEND (see Figure 3B). This method allows us to
measure the time between the begin and the end, which
reflects the performance of our database. This proce-
dure works quite well, as long as the following condi-
tions are met:

&

® Always use ASSIGN LOCK OPTION OFF in
QUERY

® Qur transactions are made by terminals, and de-
signed so that they collect the data from the screen,
perform edits, then go through the DBBEGIN,
DBLOCK, updates, DBUNLOCK, DBEND.

If you cannot operate under these conditions, then

stay with HP’s recommendations.

MULTIPLE DATABASES

When HP first introduced transaction logging, they
did not make any provisions for synchronizing
transactions which span multiple databases. The
DBBEGIN and DBEND intrinsics work only for a
single database at a time.” However with MIT 2028, HP
introduced the BEGINLOG and ENDLOG intrinsics.
These new intrinsics now make it possible to develop a
method for synchronizing multiple database
transactions. This is done by calling BEGINLOG be-
fore any multiple database transaction, and ENDLOG
at the completion of the transaction (see figure 4). A
user-written program could then scan the transaction
log for complete BEGINLOG-ENDLOG blocks and in-
dentify the record number of the last complete transac-
tion.

To recover the database you then run DBRECOV
and specify @@CONTROL EOF=recordnum.” It may
be necessary to run DBRECOV for each database that
was involved.

LOGGING CYCLES

The method and length of our logging cycles depends
heavily on the application and previous experience with
the computer system’s reliability. There were several
possible methods proposed by HP during the MPE 1918
update course. These include:

® DBSTORE, then start a new logfile

® DBSTORE, start a log tape, when it fills start a new
one, when it fills start another

® SYSDUMP, start a logfile

The first logging cycle method is the perferred meth-
od. It is straightforward, the recovery procedure is easy
to follow, and in the event of a system failure, downtime
is limited to the time needed to recover one logfile.

The second type of logging cycle should only be used
on databases which require backing up, but have very
little activity. This is because each logfile complicates
the recovery procedure, and adds a considerable
amount of time to recover each logfile.

The third logging cycle option omits the DBSTORE.
We have found that a DBSTORE takes about 2 minutes
for 3 megabytes of database (1600 bpi tape, series 33
computer). At first glance it would appear that the use
of DBSTORE wastes time. However DBSTORE sets
some internal flags and time stamps which SYSDUMP
does not. These internal stamps and flags are used by
DBRECOV to provide added protection against using

logfiles from the wrong time period.

If you use a SYSDUMP tape, you must remember to
request SYSDUMP store all the files. If partial backups
are done, the database must be restored from the latest
full backup, then restored from each succeeding partial,
before DBRECOV is used. Because the time stamp and
flags were not set by SYSDUMP, we must then specify
that DBRECOYV is to ignore all time stamps and flags.
This is often difficult or dangerous to do, especially if
your system operators are inexperienced.

SYSDUMP should only be used as a backup for the
previous two logging methods. If you do not want to
have your database stored on your backup tapes, then
you should look into Alfredo Rego’s STORENOT pro-
gram. STORENOT allows the creator of a database to
‘“tie it up” so that it is not stored by full or partial
backups.

The logfile can reside on either the disc or magnetic
tape. It is faster to log to the disc; however, if the reason
for the system failure is a disc hardware or free space
problem, you could lose both your database and the
backup copy of the transactions. The other choice is for
the logfile to reside on tape. This has two drawbacks:
first, it ties up the tape drive, and second, it periodically
requires the CPU to move the logging buffer from the
disc to tape. If the system is already heavily loaded this
can only worsen the problem.

If you decide to log to a disc file, you should be care-
ful to build the logfile large enough to hold all of your
expected transactions plus a reserve. You can obtain a
rough estimate of the log size by:

of sectors = 4*number of database opens
+ (number of updates * up-
date rec len)
+ (number of puts * put re-
cord length)
+ (number of deletées * de-
lete rec len)
+ 1 for DBEND
+ 1 for DBBEGIN
update rec len (in sectors)
= (# of items in list
+ update buffer size)/256
delete rec len (in sectors)
= (# of items in list
+ delete buffer size)/256
put record length (in sectors)
= (# of items in list
+ put buffer size)/256

If the buffer sizes are not known — use the
media record size . .. you can get that
from a DBSCHEMA compilation.

You can count the # of items in the item
list or if “@;” was used then just use the
item count in that particular set.

If you are not sure you calculated the size correctly

2—34-3

then use the :SHOWLOGSTATUS command to
monitor the number of records in the log. If you run out
of space in a disc file while logging, you can put the
database in a state similar to a crash; this may require
that you go through a complete database recovery pro-
cedure!

CRASH RECOVERY

HP implies that a recovery procedure must be fol-
lowed every time there is a database crash.® This can be
disastrous. On one occasion we followed the recom-
mended crash recovery procedure, purged the
database, restored the database, and started
DBRECOYV. It bombed, and upon investigation we dis-
covered that approximately 500 transactions had been
lost because the logtape was blank due to a tape drive
malfunction. Moral of the story: You should first de-
termine the cause of the crash, then verify that the log-
file is good via LOGLIST or DBAUDIT.

We also found that it is important to write your appli-
cations programs so that they abort to prevent further
transactions if they detect a logging problem. It is pos-
sible for the program to pass the IMAGE checks for
DBDELETES, delete an item, then find out there is a
logging problem! The end result is one less item in the
database. This becomes especially critical if you are one
of the many IMAGE users who have to update critical
items by deleting and re-adding.

If the crash is because the logfile was too small and
filled up, then the end result of trying to recover is that
your data-entry personnel spend hours reconstructing
previous transactions. It is better to run a program such
as LOGLIST, and find out what data have been ef-
fected. Then run DBSTORE, build a new, larger logfile,
and start a new logging cycle. One note of caution: we
found that parity errors on the tape drive cause a crash
whose symptoms are almost identical to those of one
caused by running out of space on a disc logfile.

If the crash is because of a system failure, the correct
procedure is:

® Perform a memory dump for HP

® WARMSTART (if possible); this causes MPE to
try to recover the transactions in the internal disc
buffer. (THIS IS VERY IMPORTANT!)

¢ SHUTDOWN

® COOL or COLDSTART

® Run LOGLIST or DBAUDIT to determine who,
what, when and how bad the crash is.

® If the database was not open in an update or modify
mode then simply start a new logging cycle and get
your users back on.

® If the database was open in an update or modify
mode, then purge the database using DBUTIL, re-
store the database using DBRESTOR and recover
using DBRECOV. BE SURE TO START A NEW
LOGGING CYCLE!

2—-34—4

AUDIT TRAILS

Good data processing applications have some form of
built-in controls which allow for the verification of the
accuracy of the database. This is especially true if the
application is in the banking, inventory control, or gov-
ernment fields. In many applications some form of an
electronic “‘paper trail” is mandatory.

The information which is logged by IMAGE exceeds-

most audit requirements and can provide the required
electronic trail. Transaction logging records information
about who, when, where, and how an item or entry was
modified. This information can be extracted in several
ways. Bob Greene has a package called DBAUDIT
which can analyze the log.? I have contributed a similar
program called LOGLIST (via IUG 1982 swaptape)
which can expand the transaction log per directions. It
is described in a appendix to this paper.

The audit trail recorded by transaction logging can be
enhanced by carefully planned use of the ’text’ area on
DBBEGIN, DBEND and DBMEMO. We record the
information which leads to a transaction when we call
DBBEGIN. The results of the update or special error
conditions are logged on the DBEND. If needed,
DBMEMO is used to record special remarks and initials
of the person making the change.

If you foresee a requirement for frequent analysis of
the transaction log, it is also important to include a
time-stamp as an item in individual data entries. This
forces IMAGE to log both the present time-stamp and
its previous value. The value of this information is ap-
parent when tracing the history of a specfic data entry.
With a time-stamp on your data entries, it is possible to
pull and analyze only those logfiles which contain the
time interval about the time-stamp of interest. Since
analysis of a transaction log takes about 10-15 minutes
for 40,000 records, the time saved in this manner can be
considerable.

Perhaps more importantly from a programmer’s point
of view, we can use the audit trail as a method of provid-
ing continuous software monitoring. The concensus
among data-processing people is that it is virtually im-
possible to guarantee that a complex program will cor-
rectly handle all cases regardless of what data is fed to
it. When an error does occur at our site, experience
indicates that it is generally several months before we
notice that something is wrong. By maintaining transac-
tion logfiles for a sufficient length of time (6 months), it
is possible to locate the source of most errors. This
makes it much easier to correct latent program errors.
In addition we have found that if the problem was
caused by human error, the hard-copy printout that can
be generated from the log tape goes a long way toward
refreshing the memory of the person who made the mis-
take.

For users at sites whose software must be accepted
by Quality Assurance, audit trails have an additional
advantage. As part of the acceptance testing on new

=

releases of our applications programs, we DBSTORE
the database, then run the test programs and fully
analyze the log. This enables us to provide a visual
check on fields and items in a manner easier than usin,
QUERY. " .

After using the transaction log as an audit trail and
debugging aid during the last two years I would estimate
that we have saved probably a hundred man-hours
which would otherwise have been spent looking for the
cause of “freak errors.”

As with all good things in life there is a “Catch-22.”
IMAGE3000 is structured as a closely-knit group of files
tied together with the root file. When modifications are
made to the database , only the set number, item
number and item buffer are logged. If the root file is
altered (by using ADAGER, DBGROOM, etc.), then
the link between the database and the transaction log is
broken. The most obvious problem occurs when the
order of data sets is changed with ADAGER’s DE-
TSLIDE. Suddenly your Employee-Detail becomes
your Part-Master and the log analysis program either
bombs or gives ridiculous answers. You have two
choices: either don’t use ADAGER (not a very realistic
choice), or use ADAGER’s SCHEMA to generate a
dummy version of the database structure as it appeared
before changes were made. Then use the editor to
shrink the capacity of all the sets down to 3 or 5. Assign
this schema some version number and identify on all
logfiles under which version of the schema the logfile
was made. I have set up a separate group in our account
for these “‘old, shrunk databases.”” Then when I need to
look at an old logfile, I set up a file equation referencing
the old ““database’ and run LOGLIST under that condi-
tion.

TRANSACTION-LOGGING PERFORMANCE

There is a great emphasis on designing systems with
better response time. For this reason any type of over-
head (regardless of how beneficial) is generally shun-
ned. To make matters worse, when HP introduced
transaction logging with MIT 1918, they had indicated
that there would be a ““through-put reduction of 30% for
large modication-intensive online applications running
10 or more concurrent processes.’’!® Unfortunately the
test environment used for that statement was not com-
pletely explained. During the past two years we have
been using transaction logging on a Series 33 with 768
kbytes and typically 11 active processes. Our experi-
ence has shown that there was probably less than 10%
reduction in throughput. So, what is the overhead cost
of transaction logging?

In order to find out, I wrote a program (DBPERF)
which allows me to benchmark IMAGE transactons
with and without logging. The benchmarks are deliber-
ately run with as light a load as possible in order to
isolate the overhead caused by logging from the effects
of other users’ activities (see APPENDIX: DBPERF).
The results of the tests are shown in Figures 5-7. In

Figure 5 we see the comparison of the time to DBPUT
verses pathcount, on series 33 and 44 CPU’s. As seen in
Figure 5 the added overhead caused by transaction log-
ging, is marginal. The anomalies on series 44 data was
caused by a user logging on and using FCOPY during
the benchmark test. Figure 6 shows the comparison of
the time to DBDELETE verses pathcount, on the series
33 and 44 CPU’s. The overhead caused by transaction is
marginal, again the anomalies on the series 44 data was
caused by a user logging on and using FCOPY during
the benchmark test. Figure 7 shows comparisons of the
time to DBOPEN, DBUPDATE and block transactions
with DBBEGIN and DBEND. Earlier I mentioned that
logging blocks up the IMAGE transactions (approxi-
mately 32 transactions), then moves this buffer out to
disc. The overhead caused by this movement is com-
parable to the roll-in and -out of an inactive user process
by the memory manager (MAM).

In most on-line applications the overhead added to
the transaction is considerably less than the threshold
point at which the system becomes overloaded. How-
ever batch jobs are generally another story, if you have
batch jobs which require a considerable amount of sys-
tem resources, run them without logging. Store your
database before the job begins, stream the job, and
when it completes, then store the database and start a
new logging cycle. If you have a crash during the unpro-
tected batch jobs it will only require that you DBRES-
TOR and rerun the jobs.

PREDICTION OF RESPONSE TIMES

At this point it will be worthwhile to discuss a little
queueing theory and how it is used to estimate response
times so that we can illustrate the effects of transaction
logging on the system. A queue is just a waiting line.!!
When we analyze queueing systems, we talk about such
things as number of servers, arrival rate, transaction
rate and number of users. The classical example of
queues in operation is the waiting lines at banks. With
only one cashier (number of servers), if the customers
arrive at a rate of one per hour (arrival rate) and the
cashier takes only 15 minutes to complete an average
transaction (transaction rate), then there will be no wait-
ing line and the cashier can perform some overhead
functions such as washing windows while waiting for
the next customer. If, on the other hand, customers
arrive every 15 minutes, then we can expect to find a
person at the cashier constantly. The windows start to
collect dirt and grime since the cashier no longer has
time to wash them. When the arrival rate of the custom-
ers increases to one every 10 minutes, we soon find that
a line is forming. If sufficient time is allowed to pass,
customers start to switch banks, the cashier demands a
raise and the windows now appear to have several
layers of dirt and grime and strange creatures crawling
on them.

Transaction processing on an HP3000 performs in a

2—34—-5

similar manner. As long as the arrival rate is sufficiently
slower than the transaction rate, MPE is able to perform
its necessary overhead functions and the response time
is good. Unfortunately the HP3000 cannot ignore its
overhead as the cashier did, so as the arrival rate ap-
proaches the transaction rate, response time begins to
suffer.

It is possible to estimate the response time of the
computer if you are able to estimate the number of us-
ers, the average time each user ‘‘thinks’ about what
needs to be done, and the time required to complete the
transaction. The average “‘think time” is equal to:

arrival rate

number of users

Think time =

For example: ﬂ%
The XYZ Company has an HP3000 Series 33 com- “
puter on which they wish to implement an application
which will support 10 users. The “think time” of these
users is about 30 seconds each per transaction. The
transactions consist of a DBDELETE and a DBPUT on
a detail set with four paths. What will their transaction
response time be?

The transaction response time is equal to:

Transaction response time= Queue length * transaction rate

Queue length = the greater of

1
or

number of users * transaction rate
"""""" think time
Using the IMAGE benchmark results, we then determine:
Transaction response time = Queue length * 1.3 sec
10*1.3 13

Queue length = --=--- = -- ; as noted above, use 1
30 30

then Transaction response time = 1.3 sec

If XYZ adds logging, it will be:

10*1.4
Queue length = ~====-

14
= -=- ; as noted above, use 1
30

then Transaction response time = 1.4 sec

Our model works well as long as the computer has
time to perform its overhead functions, i.e. code-
segment swapping, MAM function, and garbage collec-

tion. The time available for the computer was approxi-
mately:

User think time

Computer idle time = -------

- transaction rate

number of users

In the case of the XYZ company this averaged 1.6

seconds per user transaction (with logging).

The overhead that was added due to transaction log-
ging is:

transaction transaction
time with - time without
logging logging

Added overhead

transaction time without

or, for XYZ,

logging

(1.4-1.3)

"

Added overhead

2—34—6

If 7.6% overhead is enough to cause XYZ’s machine
to have problems, can you imagine what an additional
user using QUERY, the editor, or any of the compilers
would do?

An additional benefit from transaction logging is that
we are able to collect the arrival rates, transaction rates,
and number of users during our actual production en-
viroment. With this knowledge we can make more ac-
curate design decisions when developing new and
additional applications.!2

CRASH-PROOF?

How crash-proof is your database? Damage to
databases can be caused in several ways. The typical
cause of damage is a crash occurring while adding or
deleting an item to or from a detail set. If the DBPUT or
DBDELETE was manipulating the internal pointers in
the database, then you can probably count on having at
least one broken chain. Other types of database crashes
occur when MPE or some “neat” privelege-mode pro-
gram adds its own kind words to a random data set!

When discovered, this error has the same symptoms as
a broken chain; however, you may also be missing a
considerable amount of data.

Perhaps the worst kind of database crash is the one
you can’t find. That is, DBTEST, DBCHECK, AD-
AGER and even DBUNLOAD-DBLOAD say every-
thing is ok. These errors occur when the data set has a
critical path which must be updated. Since IMAGE will
not let us update critical paths, we have to delete and
re-add. If a crash occurs after the DBDELETE is com-
plete and before the DBPUT re-adds the item, then we
have lost an entry in the database though the database
structure remains intact (see Figure 8). DBTEST,
DBCHECK and the other routines have no way of test-
ing for or detecting this error. If your HP3000 is an
accounting system, this is intolerable. This type of error
could be prevented by using transaction logging and
placing the DBBEGIN at the start of the transaction and
DBEND at its finish.

It is possible to estimate your chances of having some
form of damage to your database in the event of a crash.
This Crash Figure of Merit (CFOM) is given by:

(transaction rate * number of users)

think time

If your CFOM is high, say 20 or 30 percent, then it is
probably worth the effort to run DBTEST and
DBCHECK on every database that was open when a
crash occurred. It may also be very much worthwhile to
try transaction logging. If the CFOM is very low (one to
two percent), then it is probably easier to manually cor-
rect errors and run DBCHECK at some convenient
time.

SUMMARY

This paper discusses the merits and drawbacks of
transaction logging, and provides some basic guidelines

to aid in the successful implementation of transaction
logging. Since most applications are designed to “earn”
money, it is only fair to treat transaction logging in the
same manner. As summarized in figure 9, the decision
to log or not to log should be made only after a careful
review of the associated system costs, its performance
cost, alternatives, and by establishing values for the in-
tangibles such as improved data security, benefits from
audit trails, etc.

ACKNOWLEDGEMENT

I wish to thank the HP sales office in Bellevue, Washington, for
allowing me to run DBPERF on their Series 44.

APPENDIX LOGLIST

LOGLIST is a logfile analysis program written by the

author; it has the following capabilities:

A. Show who, what, when, and how a database
which was running with transaction logging
was accessed.

B. Trace the changes made to the database and
expand the values in a format similar to
QUERY so that the dump is easily readable.

C. Selectively track user-requested database
items which fall within user-specifiable limits.

D. Show when the log was opened, closed, or re-
started and identify all users that were acces-
sing the database during a crash!

E. Provide statistics showing the database activi-
ty, transaction elapsed time, detail sets acces-
sed, the ratio of BEGIN-ENDS to database
transactions, average transaction times, and
worst-case transaction response time.

F. F. Identify (if any) the processes which had
“broken” transactions.

Running LOGLIST

LOGLIST should be run in the same account and
group in which the database resides. If the log to be
examined is on disc, then that file must also be accessi-
ble. LOGLIST cannot analyze a logtape that is cur-

2—34—7

rently active. Finally, the log analysis consumes con-
siderable CPU time (even though the elapsed time of the
analysis may be very short). It is advisable the log
analysis be either streamed in a low JOBPRIORITY

(DS or ES) or run during periods of low computer us- ‘

age.

LOGLIST Commands

LOGLIST commands are listed below, each followed
by a short summary of its function. '
HELP — print additional instructions
DATABASE=[dbname[.groupl.acct]l]

(if not specified the values are set to @.@.@ and no

expansion of the log records may be done. Only the

Log User Summary and histograms will be gener-

ated.) .
PROCESS=[program[.groupl.acct]l]

(if not specified the values are set to @.@.@)
LOGON=[user[.groupl.acct]l]

- (if not specified the values are set to @.@.@)
LIST[=range]
expand the transactions made to the database (in the
QUERY report format) showing:
the user that made the modification
if an UPDATE, what was changed
if a DELETE, what was deleted
if a PUT, what was added

The transactions are outlined in asterisks (*) to in-
dicate indicate ‘logical transactions.”” When the
beginning or end of a transaction cannot be deter-
mined, the program leaves the outlined block open
(see Figure 10). On such blocks, the LOGID of the
process is printed and it is possible to rerun the
analysis — specifying that those items be ex-
panded separately.

RANGE — The range field is optional, and is in the
following form:
LIST=startingrecord:endingrecord
If the ending record is not supplied then LISTLOG
will continue to expand until the end of the log file.

NOLIST disable expansion of the transactions made to
the database
DATE=m1/d1/y1 [TO m2/d2/y2]

look only for transactions made between and includ-

ing the specified dates. The default for m2/d2/y2 is

99/99/99.

TIME=H1:M1 [TO H2:M2]

look only for transactions made during the specified

time interval. The default for H2:M2 is 24:00.

FIND dset.itemname (EQ,LT,GT[,IB])
‘valuel’[,'value2’]

look only for transactions made to dset.itemname and

falling within the bracketed area as specified by the *

relational operators.

FIND dset record#
look only for transactions made to record# of dset.

2—34—8

{ TAPE;LABEL=label }
LOGFILE={ }
{filename([.group[.acct]] }

if a filename is specified, you must have exclusive
read-access to the file. If tape is specified, you must
be able to use this non-sharable device.

RUN — begin processing the transaction log.

EXIT — exit the program and return to MPE.

SHOW — display current parameters.

INIT — initialize the files, plots and data back to the
way they were when LOGLIST first started. Any
data accumulated so far will be sent to the LP.

LIMIT — limit and identify the ‘“worst” transactions.
This causes all transaction response-time data which
exceeds 20 times the current running average to be
thrown out. The time of day, user and process are
printed on $STDLIST. This command has no effect
until ten logical transactions have been completed. It
is useful in locating deadlocks.

'<CONTROL Y> — (“CNTL” and “Y” keys pressed

simultaneously) interrupt the program (sessions
only). The program will give the the time and date of
the transaction which it is currently processing and
ask if you wish to continue. A “Y” or “N” is ex-
pected.

Interpretation of the

Log User Summary (see Figure 11)
USER — Logon user name
GROUP — Logon user’s group
ACCT — Logon user’s account
DBASE — Database that was accessed
PROCESS — Process run by user
GROUP — Group in which the process resides
ACCT — Account to which the Process belongs
LOGON TIME — Time the process began

LOGOFF TIME — Time the process closed the
database

LG# — LOGID # for the process (assigned by MPE)

DEV — Logical device from which the process was run

O — Database open mode

CAPABILITY — User’s capability (see WHO intrinsic
of MPE)

UP — Number of DBUPDATES

PUT — Number of DBPUTS

DEL — Number of DBDELETES

#BLKS — Number of complete logical transaction
blocks

Inferences from the LOGLIST Statistics

Several histograms and charts are derived from the
data; these are provided by LOGLIST to aid in the
interpretation of the data.

DATABASE ACTIVITY (see Figure 12)

The DATABASE ACTIVITY histogram plots the
number of transactions on the y-axis and the time of day
(in 15 minute intervals) on the x-axis. This histogram
can be useful in determining when the peak database
loads occur.

DATABASE RESPONSE TIME (LOGI10) (see Figure
13)

The LOG10 plot is a useful tool in determining if a pro-
cess or processes are suffering from very bad response
time or may be causing database deadlocks. The
LOGI10 plot covers the range from .1 sec to 10,000 sec-
onds.

DATABASE RESPONSE TIME (LINEAR) (see Fig-
ure 14)
The LINEAR plot is a useful in determining if a pro-
cess or processes are suffering from poor database
response times. The y-axis represents the number of
transactions made. The x-axis represents the time,
from 0 to 30 seconds.

LOGICAL BLOCK SIZE (see Figure 15)
The LOGICAL BLOCK SIZE histogram is useful in
evaluating the effectiveness of the transaction block-
ing of a process. This chart may also be used to de-
termine if a program is calling the DBBEGIN-
DBEND pair only at the beginning and end of pro-
cesses or after making single database modifications.
DATABASE RESPONSE TIME (AVERAGE) (see
Figure 16)
The AVERAGE histogram can be useful in evaluating
modifications made to existing programs by aiding in
the determination of whether or not the system (as seen
by the database users) is getting slower or faster.

DATABASE RESPONSE TIME (WORST CASE) (see

Figure 17)
The WORST CASE histogram is useful in locating
processes that may have caused database deadlocks.
The histogram is also useful in determining if there
are certain times during the day in which stream jobs
may be run with little or no impact on the response
time for on-line users.

TRANSACTION FREQUENCY (see Figure 18)
The TRANSACTION FREQUENCY histogram is a
measure of the time between logical blocks, often
called the user’s “think time.” This plot, in conjuc-
tion with the database response time charts, can be
helpful in determining if and/or how improvements
can be made to the application programs and the sys-
tem.

ADD-DELETE-UPDATE TO BEGIN-END RATIO
(see Figure 19)
The ratio of DBPUTS, DBDELETES, and DBUP-
DATES to DBBEGINS and DBENDS is a good in-
dication of how the transactions are blocked by the
user’s application programs. The desirable range is
0 < [PUTS + DELETES + UPDATES] / [BEGINS
+ ENDS] < 100.
If the ratio is less than one, this usually indicates that

there is a process or processes which are making only
one database transaction per BEGIN-END set. Al-
though this is not harmful, it does not fully utilize the
benefits of transaction logging, resulting in more
overhead during the logging process and during re-
covery.

AVERAGE + STANDARD DEVIATION

LOGLIST provides the averages for the response
time and block lengths. With the averages and the
standard deviations which are also supplied, it is pos-
sible to determine your chances of attaining desired
response times or block lengths. For instance, the
interval covered by the sum of the average plus one
standard deviation includes approximately 85% of all
data base transactions logged.

DETAIL SET (DATA BASE) SUMMARY
The DETAIL SET summary provides totals based on
the actual activity in the sets. As shown in Figure 20,
this information includes the number of DBDE-
LETES, DBPUTS, and DBUPDATES. The capacity
and number of entries are also printed.

How LOGLIST Works

When processes are using the “USER LOGGING”
facility of MPE, the process opens up a path to the
transaction log for each process and each database ena-
bled for logging. As part of this “opening” procedure
the user’s name, acct, process name, capability, LDEV,
and database (if one) are logged in a special record.
LOGLIST looks for these records and builds its internal
working tables from them.

As processes make transactions to their databases,
the logging process intercepts a copy of the changes,
adds a time and date stamp then routes them to the
logging file. LOGLIST uses the time stamp from the
DBBEGIN and DBEND records to determine the total
elapsed transaction time. (If you don’t use DBBEGIN

or DBENDS then you can never measure your response
times with LOGLIST!)

Broken transactions can be located by looking for a
special “ABNORMAL END” record, and by checking
to make sure that all process issued a DBEND before
closing the log and terminating.

If the process did not (or was unable) to close the log
before terminating, and LOGLIST detects an EOF on
the log then it is assumed that there has been a system
crash. System crashes can also be determined by look-
ing for the crash marker which was written out at the
time of a WARMSTART recovery.

Transactions are expanded by using the information
gathered when the process first opened up the log, and
the actual data- base ‘‘change” records. (These records
are marked with “DE,” “PU” or “UP.”) LOGLIST
uses the item-list recorded as part of the transaction and
calls DBINFO to determine the types and lengths of the
individual items logged.

2—34—-9

APPENDIX DBPERF

This program was written to benchmark the time re-
quired to perform a wide range of DBPUTS, DBDE-
LETES and DBUPDATES. The primary area of inter-
est was the overhead added to IMAGE/3000 when the
user is using transaction logging.

The benchmark process follows the procedure listed
below:

A. Disable the database XYZ for logging

B. Perform 50 DBOPEN’s and DBCLOSE’s to
measure time to initially startup the logging
process. (NOTE: this will really clobber the
response time for everybody else.)

C. Perform 50 DBPUTS to a detail set which con-
tains a single path and various data types. The
data used for these operations is generated
using the RAND function from the compiler
library.

D. Perform 50 DBDELETES to the detail set.

E. Setup a loop so that we can perform 50
DBPUTS and DBDELETES on detail sets
which contain from 0 to 15 paths.

F. Generate the plots and data summaries.

G. G) Enable database XYZ for logging, then re-
peat steps B) thru F)

The database modifications are performed without
signaling the start of the transactions with DBBEGIN or
the end with DBEND. This was done so that the com-
parison could be made, without the overhead added by
the BEGIN-END blocking. This type of test is fair since
the DBBEGIN and DBEND calls are made only to sig-

= user =
=program
= user = = =
=program = = IMAGE
======== = = data base
= = management
= user = = = system
=program = =
\/
= disc =
= drive =

nify that that are changes which are dependent.

The time required to perform the BEGIN-END block
is measured and plotted on a separate chart. It should
be noted that since DBBEGIN and DBEND do not re-
quire immediate access to the disc drives, the time re-
quired to perform these intrinsics is very low. The can

however add a significant number of records to the -

memory buffer, which of course means that there is an
additionaly load on the I/O channel which controls the
disc drives.

REFERENCES

1F. Alfredo Rego, “DATABASE THERAPY: A practitioner’s expe-
riences,” in HPGSUG 1981 Orlando Florida Proceedings, Vol 1, pp.
B12-01 to B12-13

2P. Sinclair, “MPE 1918: A BONANZA OF ENHANCEMENTS,”
in COMMUNICATOR issue 23, pp. 4-17

3HP, “MPE III 1918 USER UPDATE COURSE”

4HP, “MPE III Intrinsics Reference Manual,” pp. 3-92 to 3-96

SHP, “IMAGE Data Base Management System reference manual,”
pp. 4-22 to 4-23

SHP, “IMAGE Data Base Management System reference manual,”
pp. 4-23

P, Sinclair, “MPE 1918: A BONANZA OF ENHANCEMENTS,”
in COMMUNICATOR issue 23, pp. 14

SHP, “MPE III 1918 USER UPDATE COURSE,” pp. 60

®Robert M. Green, Robelle Consulting Ltd., 5421 10th Avenue, Suite
130, Delta, British Columbia V4M 3T,. Canada.

10HP, “MPE III 1918 USER UPDATE COURSE,” pp. 71

1A, O. Allen, “Queueing Models of Computer Systems,” in COM-
PUTER, pp. 13-24, Apr. 1980 (an IEEE publication)

12C, Storla, “MEASURING TRANSACTION RESPONSE TIMES,”

in 1981 IUG Orla.nd(; Florida Proceedings, Vol. 1, pp. C7-01 to C7-08

T = = = = =

r = = 8 = = =

al = = KB = = =

n o= = u = =D = ====

s g = =M f = = i = = ===
ag ===> g f ===> g ==>= Tape =
ci= =me= =s= = (if =
tn-= =or = = = =used) =
i g = = r = = = ====

o = =y = = =

n = = = = =

Figure 1. IMAGE transaction logging flow

2—34—10

ﬁ%

CALL DBBEGIN (BASE,...)
CALL DBLOCK(BASE,...)

CALL DBDELETE (BASE,...)
At this point,

if there is a crash we lose
this data entry!

OO0 00O

change made to search item
o
o
o
CALL DBPUT (BASE,...)
o this item has now been re-added
CALL DBUNLOCK(BASE,...)
CALL DBEND(BASE,...)

Figure 2. Dependent Changes

CALL DBIOCK (...)
CALL DBFIND (...)
CALL DBGET (...)
** MAKE CHANGES TO ITEM VALUES HERE **#
CAILL DBBEGIN(...)
DBPUT
CALL {DBUPDATE } (...)
DBDELETE
CALL DBEND(...)
CALL DBUNLOCK(...)

Figure 3A

CALL DBFIND(...)
CALL DBGET (...)

** MAKE CHANGES TO ITEM VALUES HERE **

CALL DBBEGIN (...)
CALL DBLOCK(...)

DBPUT
CALL{DBUPDATE} (...)
DBDELETE
CALL DBUNLOCK (...)
CALL DBEND (...)
Figure 3B

2—34—11

CALL BEGINIOG (...)
CALL DBFIND(BASELl,...)
CALL DBGET (BASEl,...)
** MAKE CHANGES TO ITEM VALUES HERE **

CALL DBBEGIN (BASEl,...)
CALL DBLOCK(BASEl,...)

DBPUT
CALL {DBUPDATE} (BASEl,...)
DBDELETE

CALL DBUNLOCK (BASEl,...)
CALL DBEND(BASEl,...)

CALL DBFIND(BASEZ2,...)
CALL DBGET (BASE2,...)

** MAKE CHANGES TO ITEM VALUES HERE **

CALL DBBEGIN (BASE2,...)
CALL DBLOCK (BASE2,...)

DBPUT
CALL {DBUPDATE} (BASE2,...)
DBDELETE
CALL DBUNLOCK(BASE2,...)
CALL DBEND(BASE2,...)

CALL ENDLOG(...)

Figure 4

2—34—12

IMAGE-30808 BENCHMARK RESULTS
THE MEASURED TIME TO PERFORM DBPUT'S.

SERIES 33 SERIES 33 SERIES 44 SERIES 44
WITHOUT LOGGING WITH LOGGING WITHOUT LOGGING WITH LOGGING

— e > Sa—— — Gems o - s o ar o o =

16

2—34—13

SERIES 33
WITHOUT LOGGING

IMAGE-3880 BENCHMARK RESULTS
THE MEASURED TIME TO PERFORM DBDELETE'S.

SERIES 33 SERIES 44
WITH LOGGING WITHOUT LOGGING

—— > S Su— — e S

2—-34—14

IMAGE-3888 BENCHMARK RESULTS
MEASUREMENTS OF DBUPDATE AND DBBEGIN-DBEND

WITHOUT LOGGING WITH LOGGING
] 777

B. 28
B8 1S

-

[
218
.83

i /622 14422 _ —

DBUPDATE ¢33 DBUPDATE (44) BEGIN-END (3 BEGIN-END (44)
Figure 7

2—-34—-15

CALL DBBEGIN (BASE, ...)
CALL DBLOCK(BASE,...)

CALL DBDELETE (BASE,...) <structural damage,if crash occurrs>
< for a detail set with 5 paths >
< the 'critical' time could be >
< a half second or more! >

At this point,
if there is a crash we lose
this data entry!

O 00O

change made to search item

(o]
o
o

CALL DBPUT (BASE,...) <structural damage, if crash occurrs>
< for a detail set with 5 paths >
< the 'critical' time could be >
< & half second or more! >

o The item has now be re-added

CALL DBUNLOCK(BASE,...)
CALL DBEND(BASE,...)

Figure 8. Crash Modes

2—34—16

Benefits of [ogging

AUDIT TRAIL
Who, What, When and How

Ability to list Sets and
fields which are modified.

RECOVERABLE DATA
Ability to recover
most if not all
transactions, upto the
time of the crash.

PERFORMANCE INFO
Information available

which can lead to better

application designs
in the future.

LOGGING OF ALL CHANGES
MADE TO DATA BASE
REGARDLESS OF PROGRAM
You can use any vendor
software and still

maintain an "audit trail".

HP SUPPORT OF LOGGING

Cost of Logging

REDUCED THROUGHPUT?
Dependent on your
application, and system
load.

COST OF ADDITIONAL MEMOR
May need more memory
to maintain current
system throughput.

TAPE DRIVE OR DISC
DEDICATED TO LOGGING?
Valuable disc space
or tape drive can be
tied up with logging.

STARTUP AFTER CRASH
MORE COMPLICATED

Training and "test
recoverys" may be
required to familiarize
the programmers and
operators with the

new system restart
procedures.

Y?

2—34—-17

[TRt Itd it diitidiiditiasititdtttictiddsigdiodisditdidtisdtqttiqdidaditaqetittiosldtiiviotieqeettidtiapittotiotisttss]

8 OFFICE BAC TEINS ACCTPROGBAC TEINS
11 ZakicE
s JLOIDN 1 TRMMGACTION - 4 DELETEING 1TER IN
B
s HODELCOD U143 = 0003FIDDLE
5 NONNCODE 1 33
s EQuIPLOC It 3e10
% PROGTAD (11 1s0
& CURRUSER U10 1 = 0000000100
$ NEXTUSEI U10 1 = NONE
8 PO-BERIES [U10] = NONE
& HOLDFOR U0 3 = NONE
8 BORRDMER [UI0 1 = NONE
FRONUSER Ul0] = Noke
L]
JoyTa0 o
2 3= 8125
aLo (410 1 = BERIAL
. 7 12 1s=11
XPEN 2 1=
s NEWSED 2 3=
$ I185UEDAT (12 1 = 811220
B R
[]
i B (12 3
8 NEXTSTD? ¢ .
% HOLDATE (12 1=
8 MEXTEND: (12 1s
s XTEND ia
$ BTARICYCLE 2 3=
: TNDAT 3 -
-
$ KESSTABY .
$ MEBETAB? .
T KESEIAS .
| 3 ACCEST -
s OPTINTAD X A
$ SPECCODE 1 50
§ Bk 0 3= ¥ouazs0
L -
H 881001 1 demidactibng 22 4 aDDING 1TEW TO
= fcon 3‘% ; . %WSFIDII.E
[]
H e I 1s=3
H QUIPL I 1=10
% PROGIAG I Jeg
s Ea.musm Ul0 1 = 172670970
- “m
s Xitkies P18 32 N
HE (10 3= e
-
I fU10 1 = NOME
' L (14 1s0
-
H H?g Ei Bk g’ﬁ%
-
»
§- 8ED L]
§ ISUEDAT £12 1 811220
$ AOCODE (w2 3sa
1 mciﬁ; E 2 1= BINS
]
-
M;S 1 .
x{gu 1 [-
ND2 [L]
$ giaeicrae (12 1=
1 TNDATE .
3 DORROWDT is
3 NESSTABI e
-
1 is
8 ACCESTAQ is
3 OPTINTAS 2 J=m
: C I J=0
U U = ¥E
8 LASTUBER (U0 1 = 5{768221%0
3138 Pi

TUE, DEC 29, 1981,

EQUIP-DETL

EQUIP-DETL

8138 PN

DBFILE RECORDS! 23277

DBFILE RECORDS! 23277

G500 S0ED S50 0090 20 060 50 900000 50 S0 G050 55 S50 55 55 S00 50 02 3005 30 00 50 S S0 SE P BN NN N N N W W NN W R NWH W RPN NPNNE 0

i

s 3

piot it it d et iidtitia et Ritiddtiteitin ittt ittt sittititiinittsiininisisisiiaidesdidndiizdiittidididadipdidsiditidididditdttiydsy
Lol tis il it i iiiididsti sl idsdstididsiifiittitiginiidnisisidniididaddtiddddidedidddiadtididitiddid d e 1 it 2oz ittt]
TEINS ACCTPROBBAC TEINS

OFFICE BAC

LOSID# ¢
NEW VALUEB!
CALDATE
ADCODE

OLD VALUES!
CALDATE
AQCODE

L2 L2 L2 1 2 X X 2]

LOOIDS!
NEW VALUES!
WFO

OLD VALUES!
[{3

-

2—34—18

1 TRANBACTIONS -
(12 1=0

2 J=N

[12) = 811225
(U2] =AC

1 TRANSACTIONG -

[T 3=3

m 131=0

S UPDATING ITEM IN

1 UPDATING ITEM IN

TUE, DEC 29, 1981y

EQOIP-DETL

EQUIP-DETL

Figure 10

8139 PH

DBFILE RECORDO! 23277

DBFILE RECORDS! 23277

L2 2 L 2 2 2 2 X ¥ 2 J

8139 PN L4
[iia i id it ety it atd i ad i adiatd i idsiiidiedstitidtitiinis ttilndednindtitisisidddidniidididididisdil dlzzst il 2 2]t]

NZO=—4O0ODRZIDV~<4 NO

USER GCROUP ACCT DBASE PROCESS GROUP ACCT LOGON TIME LOGOFF TIME LG® DEV O CAPABILITY UP PUT DEL #BLKS
OFFICE BAC TEIMS TEINY QUERY PUB syYs WED,NOV 25,1981, 1:55P NOV 25, 2:02P 163 25 1 4020300611 1 [] 0 0
BML BAC TEINS TEIM! HAPROG BAC TEINS WED,NOV 25,1981, 1:S0P NQOY 25, 2:04P 162 37 1 0060300601 9 3 3 3

WED, NOVY 23, 1981, 2:13 PN #»% PROCESS ABORTED =%+ PLTI1 BRC TEINS
PLTII BAC TEINS TEIN! HAPROG BAC TEIMS WED,NOV 25,1981, 2:05P NOV 25, 2:13P 164 36 1 0020300611 3 1 1 1?
OFFICE BAC TEIMS TEIN! QUERY PUB sYs WED,NOY 25,1981, 2:07P NOV 25, 2:14P 165 25 1 4020300611 1 []] 0
oC BAC TEIMS TEIN1 HAPROG BAC TEINS WED,NOV 25,1981, 8:01A NOV 25, 2:17P 132 34 1 0020300611 98 50 38 38
BAC BAC TEINMS TEIN1 ACCTST BAC TEIMS WED,NOV 25,1981, 2:19P NOV 25, 2:20P 169 26 1 5360300613 0 0 0 0
bC BAC TEINS TEIM1 HAPROG BRC TEIMS WED,NOV 25,1981, 6:5SA NOV 25, 2:36P 127 39 1 0020300611 114 54 42 42
PRIMARY BAC TEINS TEIMY QAPROG BAC TEIMS WED,NOV 25,1981, 2:09P NOV 25, 2:368P 166 37 1t 0020300611 18 [6 6
PRIMARY BAC TEINMS TOOLS QAPROG BAC TEIMS WED,NOV 25,1981, 2:09P NOV 2%, 2:38P 167 37 1 0020300611 [} 0 0 0=
[} BAC TEIMS TEIM1 QAFROG BAC TEINS WED,NOY 25,1981, 6:32R NOV 25, 2:52P 122 32 1 0020300611 251 99 99 99
[} BAC TEIMS TOOLS QAPROG BAC TEIMS WED,NOV 25,1981, 6:32R NOV 25, 2:52P 123 32 1 0020300611 0 0 0 0
(L} BAC TEIMS TEINY QAPROG BRC TEINS WED,NOV 23,1981, 2:33P NOV 25, 2:56P 172 32 | 0020300611 0 [0 0
(L] BAC TEINS TOOLS Q#PROG BRC TEIMS WED,NOV 23,1981, 2:8S3P NOV 25, 2:36P 173 32 1 0020300611 0 0 0 O
(-] BAC TEINS TEINY QAPROG BAC TEIMS WED,NOV 25,1981, 2:58P NOV 25, 2:159P 174 32 1 0020300611 0 0 0 []
QA BAC TEINS TOOLS QAPROG BAC TEIMS WED,NOV 25,1981, 2:368P NOV 25, 2:1359P 175 32 1 0020300611 0 0 0 [1]
BAC BAC TEINS TEIM' QUERY PUB sYS WED,NOV 25,1981, 2:43P NOV 25, 3:04P 1?1 26 1 5360300613 [2 1 0
PLTII BAC TEIMS TEIM! HRPROG BAC TEINS WED,NOV 25,1981, 2:16P NOV 25, 3:05P 168 36 1 0020300611 49 23 18 16
KENT BAC TEINS TEIM! HAPROG BAC TEINE WED,NOV 23,1981, 6:398 NOV 25, 3:08P 124 33 1 0020300611 220 97 78 83
oC BAC TEIMS TEIMI HAPROG BAC TEINMS WED,NOV 25,1981, 2:37P NOV 25, 3:20P 170 34 1 0020300611 16 6 6 [
KENT BAC TEINMS TEIM! HAFROG BAC TEIMS WED,NOV 25,1981, 6:26A NOV 25, 3:24P 120 31 1 0020300611 185 99 21 71
KENT BAC TEINS TEIM! HAPROG BAC TEIMS WED,NOV 25,1981, 3:09P NOV 28, 3:26P 177 32 1 0020300611 12 8 S S
BAC BAC TEIMS TEIMt ACCTPROGBAC TEIMS WED,NOV 25,1981, 3:04P NOY 25, 3:39P 176 26 t 5360300413 L 1 1 4
WED, NOV 23, 1921, T.44 FM w»=»v PPOCESS RBROPTED m»we TEKSTAFFEAC TEIMS
TEKSTAFFBAC TEINS TEINMY TECHPRUGBAC TEIMS WED,NOV 25,1981,12:58P NOV 25, 3:44F 159 21 1 0020300611 109 20 1 98?2
OFFICE BAC TEINS TEiMt ALCTPROGBAC TEINS WED,NOV 25,1981,12.13P NOV 25, 3:47P 152 25 1 4020300611 13¢& 76 73 218
BARC BAC TEINS TEIM! ARCCTST BAC TEINS WED ,NOV 25,1981, 3:SSP NOV 25, 4:00P 178 26 1 S360300613 0 0 (] 0
BAC BAC TEINS TEIMY! HAPROG BAC TEIMS WED.NOV 25,1981, 4:27P NOV 2S, 4:45P 1?79 31 1 8360300613 g 0 0 0
#* - INDICATE: PROCESS DID NOT QUALIF. IN SELECTIYE SEARCH ? - BROKEN TRANSACTION
Figure 11
1000]
]
1
I
!
]
I
I
i
|
800 -|
I
i
]
]
|
!
I
|
i
600 ~|
I
-
] -z
‘ == L 1]
- == ==
- =
' = =n
- s
400 ~
=oo =
aca - =
=z = -
agme = = o smmccoe
wmmz - - = senscne
smoz = - = ssmozca
mann = = = = azEssss
s oums - SEx == sRannzas
I
200 ~-
! SN I
I
I mome mmww
I
] -
] -
I
-
R R TR TR T TR B B 1 I T R R T T e |
.00 2400.00
EARCH BAR IS 135 MINUTES
MAXINUN VALUE: $360.0 MIN IS .0 SCALE FACTOR: 20.0 AVG 111.86 Y AXIS MAX: 1000 TOTAL @ IN ALL CELLS: 11186
Figure 12

2—34—-19

2000 |
|
|
[]
0
F
1600 -~
T
R
A
N
S
A
c
T
1 |
0 1200 ~|
N [
s [
|
| =
| =
| =
| =
| =
| =
800 ~-| =
| =
| =
' -
| =
| =
| =
=
=
400 -
=
- =
=
=
=
=
==
ms= = sssessass
o
I I B
R 1.5 1 2 S 10 29 S0 100 200 s60 1E3 2E3 SE3 1E4
RESPONSE TIME IN SEC.CLOG10)
MAKINUM YALUE: 1066.0 MIN IS : +0 SCALE FACTOR: 40.0 AVG : 37.06 Y AXIS MAX: 2000 TOTAL & IN ALL CELLS:
Figure 13
2—34—20

3706

D

2000

|
|
|
|
|
|
L] 1
|
0 |
F I
1600 -
T 1
R |
A I
N |
s l
A |
c |
T |
1 |=
[+] 1200 ~-|=
N I=
S I=
|=
l.
|=
=
=
|=
'-
800 -|=
l:
=
|=
|=
I=
|=
|=
|=
. |=
400 -|=
'-
=
A |= =
2 1= o=
4 jo= am =
j== zxos
== esosaz
| o= socouman
|nen= BEEERRATEDCT X
| AL R N N T U N A R Y R A A I T R e R A R R A R (R R I D N R R R
.80 30.00
RESPONSE TIME IN BEC.CLIKEAR)
MAXINUM VALUE: 1272.0 MIN 1S : .0 SCALE FACTOR: 40.0 AYG : 37.06 Y AXIS MAX: 2000 TOTAL & IN ALL CELLS: 3706

Figure 14

2—-34-—-21

2000
]
0
F
1600 -
T
R -
(-] -
N - -
s = -
A - -
[+ = -
T - -
1 - =
0 1200 =~| = =
N [] -
S = =
= -
L] L]
- -
| = =
| = =
| - =
| = -
600 -} = -
| = =
| = =
| = -
| = -
| = -
| = -
| = -
| = -
| = -
00 -] = =
| = =m
| = ==
| &= ==
| = ==
| = o=
| == =a
| o= ==
| == a=
|

MAXINUM VALUE: 1338.0 MIN 1§

2—34—-22

LENGTH OF LOGICAL BLOCK

0 SCALE FACTOR:

40.0 AVG 1

Figure 15

100.00

37.06 Y AXIS WAX: 2000 TOTAL & IN ALL CELLS:

3706

()

C R & 4

MOZODOMD ZOm-{ODNZIDN

oMY X~

10 |
I
|
|
|
|
|
|
|
|

8 -
|
|
|
|
|
1
|
|
|

6 -
I
|
|
|
|
|
|
I
|

4 -
|
|
|
|
|
|
|
|
|

2 -
|
|
|
I
|
|
|
|
|

-
-
-
-
-
-
-
-
- o
= =
==
- =
- -
- =
-
- -
-
-
=
o -
- =
= - =
= - - =
== - -n = =
== == - = == = =
sw= =so msum = ssusz & =
mmaz = mxco smmz Sssusssr = =
=szasx ssss P Tl BECCERTTBTET
msssoosswoco sszans srsEsssszsnss

BAXINUM VALUE:

9.4 MIN 1S

! | I [
EACH BAR 1S

.0 SCALE FACTOR:

[1
15 MIN, WIDE

.2 AYG

Figure 16

1.60 ¥ AXIS MAX:

2400.00

10 TOTAL @ IN ALL CELLS: 160

2—-34—-23

S6o
[]
]
R
8
T 400 -~
T
R
]
N
S
R 1
c |
T
1 300 -~
o
N
R
E |
S
P B
0 =
N | =’
s 200 -| w
E | =
| =
1 -
N ! =’
! -
s ‘ -
E =
c - -
. = =
100 -) - =
i - -
| = =
| ' = =
- -
-
- ==
- -.m
- R - =
- annan momw TP
1 1 | ! I I I | | I | 1 1 | I
.00 2400.00
EACH BAR IS 1S MIN. WIDE
MAXINUM VALUE: 235.4 MIN IS 1 .0 SCALE FACTOR: 10.0 AYG 9.87 Y AXIS MAX: S00 TOTAL & IN ALL CELLS:

2—34—24

Figure 17

NDZO=—AODVIDV-Y MO

160 -
-

|
|
|
|
|
|

120 -}
|
| mmozoes
| sszssssaz
] messszaxs
| msczpoaze
|
|
|
|

80 -~| sSEsERCIwsSScE
| aEEECERSESTRR
| = EEEsIssssEEEE o
| = EReRsEEsEEREEE®
| =
| - - - -
I - - - -
| = == ma asm
| = e ==
| =

40 -|uo
'-- -
II- - -
| == - = = =
|o= = = = = = ==
|on = = s = ==
jsn mss =
|esssnas - sss - =
|sewsans en - - -
| Ll -
[N | | | | | | | | | | | |
18 1 2 S 10 20 30 1600 200 S60 1E3 2E3 SE3 1E4

TRANSACTION INTERVALS LOG10
MAXINUM VALUE : 135.0 MIN 1S .0 SCALE FACTOR: 4.0 AYG 36.25 Y AXIS MAX: 200 TOTAL @ IN ALL CELLS: 362S

Figure 18

2—34-—-25

- NUMBER OF RECORDS PROCESS 22112 .
- PUTS, DELETES, UPDATES 11186 -
- DBBEGINS & DBENDS 7418 .
. AVERAGE TRANSACTION TIME 1.60 .
. STD DEVIRTION 4.87 »
- []
- AVERAGE TRANSACTION INTERVAL 162,04 .
. BTD DEVIATION 645.69 .
- [
. AVERAGE BLOCK LENGTH 1.49 .
- 8TD DEVIATION 2.06 -
- @ OF LOGICAL BLOCKS 2625 .
Figure 19
DATA-SETCBASE OUPDATES #DELETES OPUTS CAPACITY ENTRIES PERCENT FULL
CROSSREF JOS 0 e ? 50036 . 41355 62.65
CPTION-DETL 0 0 1 987 369 37.39
SERV-DETL 210 120 129 30964 21705 ?0.05
UTIL-DETL 759 - 532 30990 7443 24.02
EQUIP-DETL 704 2018 2021 34966 27363 ?8.21
NOMCL~DETL 399 1 26 5004 3970 79.3¢
USER-DETL 3732 0 0 1704 1140 66.90
NOMH-DETL 12 1 13 1512 697 46.10
SPEC-DETL 229 s 48 34966 16369 6. 84
USEWITH-XREF 0 10 106 1014 101 92.96
VHAREHOUSELOC 0 24 27 5031 2518 50.05
Figure 20

2—34—26

	Section 2—Database Support
	Transaction Logging and Its Uses

