-

A Universal Approach an an Alternative
to Conventional Programming

Bill McAfee and Craig Winters
Futura Systems
Austin

Some two years ago we set about to find a shortcut to
programming, a way to simplify and speedup the actual
coding, to eliminate all or nearly all of the housekeep-
ing, and to improve the reliability and maintain-ability
of our work. We wanted to be able to deal with any
problem in terms of the logical operations to solve it,
rather than with a sequence of detailed programming
statements.

We identified approximately 100 routines to handle
input, validation, conversion, formatting, and other
functions not provided in the System Library. We de-
signed an English-like language and compiler to invoke
these operations as well as those in the SL and to pass
them parameters; and we designed a driver to execute
all operations in a reliable, consistent manner.

Our primary objectives were: ‘

® to define data types by the significance of their

contents (date, phone, zip code, quantities, mone-
tary amounts, etc.) and to perform data entry, vali-
dation, conversion and formatting automatically,
regardless of storage type.

® to provide a very high-level English-like language

that would be both easy to learn and self-
documenting.

® to be able to use any number and type of files
simultaneously including multiple databases,
datasets, KSAM, printer, etc.

® to automatically store and load tables to supply
values needed at run-time.

® to simplify declarations and eliminate the dull, bor-
ing redundant part of programming, where most
errors are made

® to provide text specification syntax, including lit-
eral text, program variables and control characters,
for use as program messages, report output, head-
ings, etc.

® to work equally well for interactive and batch ap-

plications.

We wrote the system in SPL. It has been in daily
operation for just over two years, during which time
there have been two major rewrites and many additions
and enhancements designed to further simplify its use
and improve performance. Presently we are just putting
the finishing touches on the final version which will

incorporate all the things we have learned from these
past two years of use and will reflect at every step what
we feel will be the best design and coding available.

Since this is a new and unique approach to program-
ming, there is no generic for it. We call it The Futura
System, and it consists of a language, compiler, driver
and an extensive procedure library. We have attempted
to give it the ability to do anything, and when we have
discovered something it would not do, we have added it.
And while our primary intent was to use it for applica-
tions programming, we have found that it is equally
strong and valuable as a powerful, versatile utility that
is able to supplement and round-out the various system
utilities quite handily.

Programming using FUTURA consists of Initializa-

. tion Commands and Mainline Commands. The compiler

reads and validates these, checks their parameters, pro-
vides default values where desirable, builds the
Mainline binary command module, and formats and
prints a program listing in one of several styles. The
binary command module resides in the data stack and
drives and controls the entire program execution.

InitCommands include:

STACK — which sets the total space the program will
require. It has a default value of 3500 bytes, which
will handle most utility needs as well as quite a lot
of applications.

ALLOCATE — which dimensions the various buffers,
should the defaults not be quite right.

BASE — used to open an IMAGE database.

SETS — for identifying the DataSets to be accessed.

FILE — for opening MPE and KSAM files.

TABLE — declares and loads a table, taking care of
data conversion, statistics and storage automati-
cally.

PRINTER — opens a printer file according to your
specifications, including headlines, page numbers
and location, forms-message, and all other
parameters used with the line printer.

LOAD — which initializes any area in the data stack
with any string or binary value.

INTEGERS — used to load a string of binary single-
word integers at any location.

5§—31—-1

IDENTIFY — an InitCmmd that may be used or im-
plied by the syntax, it sets up a table of identifiers
for use throughout your program.

All InitCmmds that may be required must precede the
Mainline.

Mainline Commands are names of logical operations
such as ADD, MOVE, UPDATE(datatype), BINARY,
etc. They may have up to five parameters, some of
which are required and some optional. There are
MainCmmds to do everything, and frequently there are
several, giving the programmer meaningful options on
how to accomplish a step. For interactive applications
there are a dozen-or-so UPDATE (datatype) com-
mands, such as UPDALFA, UPDNMBR, UPDZIP,
UPDSSNO, etc., which not only accepts, validates,
formats and displays, and stores the data, but also gives
the programmer complete control and recognizes up to
8 special characters that permit backing up one or more
fields, begin record over, check for mail, etc.

The fact that commands are the names of logical op-
erations rather than language requirements means that
when you have logically solved the problem you have
also largely written the program.

Many MainCmmds return one or more values to the
program such as the Condition Code, Length,
DBStatus, Returned Value, etc. as may be needed.

Text strings to be used as prompts for interactive
operations are passed automatically to the program, as
the compiler counts them and stores them together with
any control characters needed to handle the screen and
make an eye-appealing presentation. Text needed for
any other purpose is also passed, counted, stored, and
recalled with little or no effort on the part of the pro-
grammer.

The MainCmmds themselves, the Identifiers, and the
way the text strings are handled all provide a great deal
of self-documentation right where it is needed in a pro-
gram, and other documentation and comments may be
added at any point. There is an index-building facility
that produces an index for the documentation consisting
of the program name and all of the comments in each
program.

Many commands provide for testing and branching.
They are processed uniformly by a subroutine, and

§—31—2

branching may be either to a label or to another instruc-
tion. Subroutines may be nested up to 20 deep; they
may call themselves, and they may reside anywhere in
the Mainline. There are both Init and Mainline $IN-
CLUDE commands, allowing routines to be stored sep-
arately where they may be used by several programs by
including only the reference table.

The binary module together with any tables and initial
values may be automatically saved and used again
without recompiling by simply adding *‘$’’ to the
STACK command ($STACK). This binary file may be
purged any time changes are made, and it will be re-
compiled and saved at next compile if the “$” is in
place.

In the handout pages we have included examples
showing the program file as it is keyed using EDITOR,
the normal program listing provided by the compiler
which formats this Editor file and prints the permanent
documentation, and a look as the terminal screen as-
each of these programs would appear when run, and a
sample of the printer output where applicable.

These are some of the programs that were used to
produce the Proceedings and the Exhibit and Confer-
ence Guide. While we asked that the papers for the
Proceedings be keyed in cap and lower case using the
EDITOR, with standard 72-byte records, the facts are
that everyone used his/her own method — with record
lengths from 60 to 160 bytes and some embedded con-
trol characters that would completely snarl our typesett-
ing computer if they were not removed.

These are mostly small, simple programs that will il-
lustrate the truly universal nature of the Futura System
as a powerful and versatile utility. I have also brought
the documentation for the Automatic TimeSharing Ac-
counting and Billing System (ATSABS) which will
show how it can be used for a large, complex system.

This will also show the automatic indexing and sys-
tem documentation features that are available. We
would be glad to have you all look this over and discuss
it either at our booth or at other times and places by
arrangement. This system totally automates our
TimeSharing accounting and billing. It required approx-
imately 5,000 lines of FUTURA code, and we estimate
it would have required more than 30,000 of SPL.

	Section 5—Data & Text Processors
	A Universal Approach as an Alternative to Conventional Programming

