Process Sensing and Control

Nancy Kolitz
Hewlett-Packard Company
Cupertino, California

I. INTRODUCTION

Various MPE intrinsics on the HP3000 allow a user to
create processes, to obtain information about them, and
to control them. This paper will describe the process
sensing and control capabilities available to a user,
through illustrations and examples. The paper will also
introduce a new intrinsic, PROCINFO, currently being
developed by the MPE lab.

II. WHAT IS A PROCESS?

All user programs run as processes under MPE. A
process is the unique execution of a program by a par-
ticular user at a particular time, and is the entity within
MPE which can accomplish work. A process is also the
mechanism which allows system resources to be shared
and a user’s code to be executed. Each process consists
of a private data stack and code segments, shared by all
processes executing the same program.

As the system is brought up, the Progenitor (PRO-
GEN) is the first process created by MPE. One of the
various system processes that Progen creates is the
User Controller Process (UCOP), which creates a User
Main Process (UMAIN) as a session or job logs on.
Then when a user (or job) runs a program, a User Son of
Main (USONM) process is created. If other processes
are subsequently created from this program, User pro-
cesses are established. (See Figure 1.)

A process will be in one of two states once it has been
created: Wait or Active. If it is in a wait state, it is
waiting for some event (I/0, RIN acquistion, etc.) to
occur before it will run again. If it is in an active state,
the process is running or ready to run.

A standard MPE user has no control over his proces-
ses. The operating system creates, controls, and kills
the processes for the user. However, if the user’s pro-

PROGEN
I
UCOP
/ 1\

UMAIN UMAIN

I
USONM
/1A
A
USER USER

UMAIN

USER

Figure 1

gram has Process Handling (PH) capability, it can, to
some degree, manage its own processes. In fact, it can
even control processes in its family tree.

III. PROCESS CREATION

In MPE, there are two intrinsics that a user with PH
capability can use to create a process: CREATE and
CREATEPROCESS.

The intrinsic CREATE will load a program into vir-
tual memory, create a new process, initialize the stack’s
data segment, schedule the process to run, and return
the process identification (PIN) number to the process
requesting the creation. Once the process is estab-
lished, it will have to be activated by the creating pro-
cess. The command syntax is:

BA BA I IV LV v Iv
CREATE(progname,entryname,pin,param,flags,stacksize,dlsize,
IV LV IV o-Vv '

maxdata, priorityclass,rank).

4—-30—1

The last parameter RANK (in the CREATE intrinsic)
is not used by the intrinsic and is only there for com-
patibility with previous versions of MPE.

I I BA

CREATEPROCESS is the other intrinsic that can be
used for creating processes. Its format is:

IA LA o-v

CREATEPROCESS(error, pin, progname,itemnums,items).

The parameter ITEMNUMS indicates the options to
be applied in creating the new process, and the parame-
ter ITEMS provides the necessary information to be
used for each option specified in ITEMNUMS.

With CREATEPROCESS, a son may be activated
immediately upon creation or may be activated as a
process is with CREATE (via the ACTIVATE intrin-
sic). A user may also specify an entry point into a pro-
gram, define $STDIN and $STDLIST to be any file

other than the defaults (the defaults are the creating
father’s $STDIN and $STDLIST), control stack size,
and control the process’ priority queue. Some of these
can also be done with CREATE.

The example that follows illustrates the intrinsic
CREATEPROCESS. It will create a process, indicate
that the father should be awakened upon completion of
the son, and then activate the new process.

BEGIN

<<{CREATEPROCESS example>>

INTEGER ERROR, PIN;

BYTE ARRAY EXAMPLE(0:7) := "EXAMPLE ";

INTEGER ARRAY OPTNUMS(0:10);
LOGICAL ARRAY OPTIONS(0:10);

intrinsic CREATEPROCESS,TERMINATE;

{<set up options>>
OPTNUMS(0) := 3; OPTIONS(0) :
OPTNUMS(1) := 10; OPTIONS(1) :
OPTNUMS(2) := 0; {<{terminator>>

[}

mu
w
e

CREATEPROCESS (ERROR, PIN,EXAMPLE,OPTNUMS ,OPTIONS);

if <> then TERMINATE;

khkkkhhhhkhkhkhhhhkhhhhhkhhhkkhhhhkhhkhkkkhhhhkkkkik

When calling MPE intrinsics, a good programming
practice is to check the condition code returned, and the
error parameter, if one is used. In the case of
CREATEPROCESS, if the condition code is less than
zero the process was created, but some event occurred
to cause the operating system to give a warning to the
creator. If the condition code is greater than zero, an
error has occurred and the process was not created. If
the error occurred because of a file system problem
(error number returned is 6), a user can use the intrinsic
FCHECK with a parameter of zero to obtain more in-
formation as to why the process creation failed.

4—30—2

IV. SENSING PROCESSES

Each process in MPE has a large amount of informa-
tion about it that can be useful, providing a process can
access it. There are various intrinsics that will return
this information once a process has been created. How-
ever, a program must have PH capability to use these
intrinsics.

A user may determine the PIN number of the process
that created it via the intrinsic FATHER. Its syntax is:

I
pin := FATHER.

()

)

Once again, a programmer should check the condition
code that was returned. In this case, it will tell what
type of process the father is. Through specific codes, it
will specify whether the father is a system process, a
user main process, Or a User process.

To obtain the PIN number of any of his son proces-
ses, a program may use the intrinsic GETPROCID. The
command is: ,

I IV
pin := GETPROCID(numson).

The parameter NUMSON is a integer value that

L D D BA

specifies which son a father wants to know the PIN
number. For example, if a father has created three sons
and wants to know the PIN number of the second son,
he will supply GETPROCID with a parameter of two.

The WHO intrinsic provides the access mode and
attributes of the user running a program. The file access
capabilities (save file (SF), ability to access nonsharable
devices (ND), etc.), user attributes (OP, SM, etc), and
user capabilities (PH, DS, etc) can be obtained. Also
information about the user, his logon group name and
account name, his home group, and the logical device of
his input file may be returned. The command syntax for
WHO is:

BA BA BA L o-v

WHO(mode, capability,lattr,usern,groupn,acctn,homen, termn).

The intrinsic GETORIGIN will return, to a re-
activated process, the origin of its activation. The value
returned will specify if the PIN was activated from a
suspended state by a father, a son, or another source
(interrupt or timer). GETORIGIN looks like:

I
source := GETORIGIN.

Other information about a son or father may be ob-
tained from the intrinsic GETPROCINFO. Its format is:

D v
statinfo := GETPROCINFO(pin).

A double word is passed back giving the process’
priority number and priority queue, its activity state

I I Iv

(active or waiting), its suspension condition and source
of next activation, and the origin of its last activation.
The process number, passed as a parameter, specifies
which process you want information about. If PIN=0,
then information is returned for the father; otherwise,
the information is for a son process.

A new intrinsic currently under development in the
MPE lab is called PROCINFO. This intrinsic returns
general information about processes that is currently
unavailable, unless you have privileged mode capabil-
ity. It should simplify some of the uses of process re-
lated intrinsics because a large amount of information
may be retrieved in one call to PROCINFO. Its com-
mand syntax is:

I BA 0-v

PROCINFO(errorl,error2,pin[,itemnuml,iteml]

This intrinsic is formatted similar to FFILEINFO in
order to maintain ease of use and extensibility. It can
return to a program the process number of the process
itself, its father, all its sons, and all its descendants. It
can also supply information about the number of de-
scendants and generations in a family tree, the name of
a program that a specified process is running, the pro-
cess’ state, and the process’ priority number.

[,itemnum2,item2]
[,itemnum3,item3]
[,itemnumé4,itemé)
[,itemnum5,item5]
[,itemnumb,itemb]).

The first error word is used to return the type of error
incurred when executing the intrinsic. The second error
word returns the index of the offending item number.
The program name is returned in a byte array that is a
minimum of twenty eight bytes long. It is in the format
of <filename.group.account>.

The following example will help to illustrate the use
of the PROCINFO intrinsic:

4—30—3

khkhhkhhhkhkhkhhkhkhhhhhhrhhhhhkhkhhhhkhhhkhkkhhhihhhhkiik

BEGIN <<procinfo example>>
INTEGER ERRORL, ERROR2, PIN; -
BYTE ARRAY ITEMVAL1l (0:1),

ITEMVAL2 (0:1),
ITEMVAL3 (0:1),
ITEMVAL4 (0:1),
ITEMVALS (0:1);

INTEGER ITEMNUMI,ITEMNUMZ,ITEMNUM3,ITEMNUM4,ITEMNUM5;

INTRINSIC PROCINFO;

PIN := 0 {<{seek information about ourselves>>
ITEMNUM1 := 1; <{request our pin #>>

ITEMNUM2 := 3; <<how many sons we have>>

ITEMNUM3 := 43 <<how many descendants we have>>
ITEMNUM4 := 23 <<pin number of our father>>

ITEMNUMS5 := 5; <<how many generations we have>>

PROCINFO (ERRORL, ERROR2, PIN, ITEMNUM1, ITEMVALI,
ITEMNUM2, ITEMVAL2,
ITEMNUM3, ITEMVAL3,
ITEMNUM4, ITEMVAL4,
ITEMNUM5, ITEMVAL5);

IF <> THEN GO PROCERROR; -

PROCERROR:
{<{print message and error number>>
RETURN;

END. <<procinfo exampled>

hhkhkhhkhhhkhhkhhhhhhhhhihkkhrhhhhhhkihkikhkhhdkk

4—30—4

If the previous program was executed by pin 45 in the
process tree of figure 2, the following information would
be returned:

item number information
1 45
3 2
4 5
2 12
5 3
Pin 12
/ \
/ \
/ \
Pin 23 Pin 45
/ \
/ \
\
Pin 22 Pin 34
/ \
/ \
/ \
/ \
/ \

Pin 38 Pin 21 Pin 30

Figure 2

V. CONTROLLING PROCESSES

Once a program has created a process, it can control
its activity. As mentioned before, it can activate its sons
via the intrinsic ACTIVATE. However, only a father
can activate a newly created process. ACTIVATE is
called with the following parameters:

IV Iv o-vV
ACTIVATE (pin, susp).

The process’ pin number is required, but the susp
parameter is not. If susp is provided and not equal to
zero, then the calling process will be suspended and the
specified process will be activated. Otherwise, the
father process continues to run and the activated pro-
cess becomes ready to run. The activated process will
execute when the dispatcher selects it as the highest
priority process to launch.

A process may also suspend itself. Via the intrinsic

IV

SUSPEND, a process may place itself in a wait state
and state its expected origin of activation. The intrinsic
calling sequence is:

Lv 1V o-v
SUSPEND (susp,rin).

The RIN parameter is the Resource Identification
Number that will be locked for the process until it sus-
pends again. The RIN allows a process to have exclu-
sive access to a particular resource at a particular time.
This is one way to synchronize processes and their re-
sources running under the same job.

One other process control intrinsic is GETPRIOR-
ITY. When a process is created, it is given the same
priority as its father. This intrinsic allows a program to
change its own process’ priority or that of a son. The
process cannot, however, request a priority outside of
its allowable priority class. GETPRIORITY is called as
follows:

v o-v

GETPRIORITY(pin, priorityclass,rank).

4—30—5

The priorityclass parameter is a 16-bit word that con-
tains two ASCII characters. Depending on the priority
queue desired, the parameter is “AS,” “BS,” “CS,”
“DS,” or “ES.” (If a user has privileged mode, he can
supply an absolute number for the priority parameter
instead of the ASCII characters. It is done by supplying
the parameter “xA where “x” is an integer value and
“A” is the ASCII character A.) The rank parameter,
once again, is not used except for compatibility with old
versions of MPE.

The last two intrinsics to be discussed are used for
process termination. When a process is terminated, it
must return all the system resources that it is holding,
stop its sons from running and start their termination

sequence, and then request that its father take away its
stack. The two intrinsics used for termination are:

IV

KILL(pin) and TERMINATE.

The parameter in the KILL intrinsic is the pin
number of the process’ son that it wants deleted. TER-
MINATE can only be used for the calling process.

The following is another example using these various
intrinsics. This example illustrates the CREATE, AC-
TIVATE, GETPRIORITY and TERMINATE intrin-
sics:

khdkkhhhhhhhhhhhhhhhhkhhhkhhhhhhhkhhkhhkhkhhhhhkkkkk

BEGIN

ARRAY NAME(O0:15) := "EXAMPLE.PUB.SYS ";

BYTE ARRAY BNAME (*) = NAME;
INTEGER PIN;

INTRINSIC CREATE,ACTIVATE,TERMINATE,GETPRIORITY;

CREATE(BNAME, ,PIN,,l1);
IF <> THEN TERMINATE;
ACTIVATE(PIN,2);

IF <> THEN TERMINATE;
GETPRIORITY(PIN, "DS");
IF <> THEN TERMINATE;

END.

{{create the new process. reactivate >>
<{{the father when this one finishes.>>

<<k1ll process because of error ind>
<{{creation sequence »

Kactivate process and then reactivated>
<{{calling process by the son »

<{{process not activated due to error)>
<{{change priority of son process>>

{<new priority not granted>>

e v e v o ol o o v vk ok o e e o v i v s e vk o e ol e ol e o v e o v ok ok vk vk ol e e o e vl e ol e e e ok ok

VI. SUMMARY

This paper has summarized various intrinsics that can
be used to create new processes, obtain information
about them, control them, and then terminate them. A
new intrinsic, PROCINFO, was also introduced which
can provide the user with more information about pro-

4—-30—6

cesses without requiring privileged mode capability.
MEPE is a process oriented operating system, and with a
better knowledge and understanding of how processes
operate, a user can enhance his applications and their
performance on the HP3000.

	Section 4—Language Support
	Process Sensing and Control

