
Application Design Implications of
PASCAL/3000 Dynamic Variable

Allocation Support
or

How to Use the HEAP
Steven Saunders

Information Networks Division
Hewlett-Packard Company

Cupertino, California

ABSTRACT
This paper is intended to introduce PASCAL/3000's

dynamic variable allocation support. This introduction
is used as a basis for a discussion of application design
issues relating to the PASCAL/3000 support environ­
ment. The details of the PASCAL/3000 implementation
which are needed to interface to existing applications
are presented.

The dynamic allocation of variables is provided·
through memory-management routines operating on an
area called the HEAP. The PASCAL language and sup­
port environment provide a means of explicitly controll­
ing the allocation and deallocation of variables in the
HEAP. These features provide the programmer with
the ablity to implement designs which combine a high
degree of adaptability and reliability.

Approaches for making design and implementation
decisions based on the capabilities of dynamic variable
allocation in PASCAL/3000 are presented. Examples of
good and bad use of these capabilities are discussed.
The knowledge gained in the design and implementation
of the PASCAL/3000 compiler is used as the basis for
this discussion.

A good working knowledge' of dynamic variable allo­
cation can provide the application designer with insights
into producing designs that are more adaptable to the
user's needs. The application or systems programmer
can use knowledge of the PASCAL HEAP to more ef­
fectively implement quality software.

INTRODUCTION
The programming language PASCAL has a large

number of features that are provided by other prog­
ramming languages available on the HP3000. There are
also some significant features that are unique to PAS­
CAL, such as strong type checking and dynamic vari­
able support features.

The strong type checking feature, which will not be

covered in this paper, permits improved compiler ver­
ification of data abstractions and module·inteIfaces.

This paper discusses the dynamic variable support
features which facilitate the creation of programs which
are adaptable and versatile, yet ·simple.

The discussion of PASCAL's dynamic variable sup­
port features is broken into three sections:
The frrst section introduces the concepts of dynamic
variable support, and explains the terminology used in
this paper. The concepts are presented in the context of
the PASCAL/3000 implementation. The defming' occur­
rence of each new word of terminology is capitaIiz~d in
the text.

The second section reexamines these concepts in the
context of application design. This context is used to
contrast design approaches employing PASCAL's
dynamic variable support to more "conventional" ap­
proaches used with languages like FORTRAN or
COBOL.

The third section discusses the interaction of the lan­
guage features,'implementation details, and design ap­
proaches. That interaction is examined in the context of
problems that application designers and implementors
might encounter with the use of dynamic variables.

I. DEFINITION AND USE OF
DYNAMIC VARIABLES IN PASCAL/3000

The DYNAMIC VARIABLE support feature of
PASCAL allow a program to allocate on demand any
number of global variables, irrespective of the prog­
ram's block structure. Dynamic variables are global, in
contrast to static variables that are local to the block in
which they are declared. This reflects the most impor­
tantaspect of dynamic variables, the separation of the
declaration and allocation of storage for a variable. The
PASCAL/3000 implementation provides this basic
dynamic variable support along with several exten­
sions.

4 -27-1

Sample Program

The following sample program is used throughout this
paper to illustrate PASCAL/3000 syntax. The program
builds a linked list with dynamic variables, and then
traverses and prints the list. The numbers contained in

the comments to the left of each line are used to refer­
ence that line in the text of the paper. The lines contain­
ing "{HP}" near the right margin are extensions defmed
by the Hewlett-Packard PASCAL standard.

INTEGER;
Pointer_Type;
Record_Type;

{LINE}
{ O} $HEAP DISPOSE ON, HEAP COMPACT OFF$
{ l} PROGRAM IUG~Example (OUTPUT);

{ 2} TYPE
{3} Pointer_Type = A Record_Type;

{4} Record_Type = RECORD
{ 5} .Integer_Field INTEGER;
{ 6} Pointer_Field : Pointer_Type;
{ 7} END;

{ 8} CONST
{9} Integer_Const = 27;
{lO} Pointer_Const = NIL;

{ll} Record_Const = Record_Type [
{12} Integer_Field: 0,
{13} Pointer_Field Pointer_Const
{14}];

{15} VAR
{16}. Integer_Var
{17} Pointer Var
{18} Record_Var

{19} BEGIN
{20} Integer_Var:- Integer_Const;
{21} Pointer Var :- Pointer Const;
{22} Record_Var:= Record_Const;

{23} NEW (Pointer_Var);
{24} Recqrd_Var .P·ointer_Field :- Pointer_Var;

{25} WHILE Integer Var) 0 DO
{26} BEGIN -
{27} Pointer_VarA .Integer_Field := Integer_Var;
{28} Integer_Var := PRED(Integer_Var);

{29} NEW (Pointer Var A .Pointer Field);
{30·} Pointer_Var A

- Pointer_FieldA
: = Record_Const;

{31} Pointer_Var := Pointer_Var A
• Pointer_Field;

{32} END;

{33} Pointer Var := Record Var .Pointer Field;
{34} WHILE Pointer Var <> NIL DO -
{35} . BEGIN - .
{36} WRITELN (Pointer_VarA .Integer_Field);
{37} Pointer_Var := Pointer_Var A

• Pointer_Field;
{38} END;
{39} END.

4-27-2

{HP}

{HP}

{HP}
{HP}
{HP}
{HP}

{HP}
{HP}

{HP}

Dermition and Use of
"Conventional" Static Variables

STATIC VARIABLES can be characterized as
named storage areas that exist only during the execu­
tion of the procedure or function that in which they are
declared. 'Their existence can be determined by simply
looking at a. program listing. This static nature means
that the number of static variables and the size of each
static variable are fIXed when the program is compiled.
Thus, the storage for static variables can be allocated
when their declarations are processed. This is how
PASCAL implementations handle static·variables; stor­
age for them is allocated when the block containing
their declarations is entered.

The fIXed number and size of static variables forces
designers and implementors to wastefully reserve stor­
age for rarely used and/or large data structures (e.g.,
data structures for year-end versus month-end proces-

, sing). However, static variables are very useful for hold­
ing frequently computed results.

The variables declared in lines 16 through 18 in the
sample program are global static variables. GLOBAL
STATIC VARIABLES are the same as any other (local)
static variables, except that they are allocated before a
program begins execution and exist as long as it is
executing.

Aspects of Dynamic Variables

The separation of declaration and allocation of stor­
age for dynamic variables has one key implication: the '
number of dynamic variables is NOT fIXed when the
program is compiled. The size of an individual dynamic
variable is fIXed when the program IS compiled,just as
it is for a static variable, but the number of dynamic
variables can change. The changable number of
dynamic variables enables application designers and'
implementors to provide storage for rare, and/or large
data structures without much effort.

A dynamic variable is defmed as being pointed to by a
pointer which can only point to a single unique type,
which is the type of the dynamic variable. Line 3 of the
sample program shows the ,declaration of the type
"Pointer_Type" that points to dynamic variables of the
type "Record-Type". Line 17 shows the declaration of
"Pointer-Var," a static variable of this type.
"Pointer-Var" 's value can be used to access a dynamic
variable, but it is not itself a dynamic variable.

Line 6 shows a component, "Pointer_Field", of the
structured type "Record-Type", whose value can be
used to access a dynamic variable of the same struc­
tured type. This form of declaration can be employed to
build linked data structures.

Usage Of Dynamic Variables

Dynamic variables must be explicitly allocated and
deallocated by a program. Thus, the existence of

dynamic varjables depends on the dynamic (execution)
behavior of a program. The number and arrangement of
dynamic variables cannot be determined statically (by
simply looking at a program listing). In contrast to static
variables, dynamic variables do not have actual names.
Dynamic variables' "names" are just unique values
generated by the dynamic storage allocation mecha­
nism.

Dynamic variables are allocated in PASCAL by cal­
ling the system-supplied procedure NEW. This proce­
dure selects a storage area for the requested type of
dynamic variable from an area called the HEAP. Lines
23 and 29 of the sample program show the use of New to
allocate dynamic variables of the type "Record-Type".
New sets the values of "Pointer_Var" and
"Pointer_Field", in lines 23 and 29, respectively.

Dynamic variables are deallocated in PASCAL/3000
by one of two mechanisms. The fIrst, standard to all
PASCAL implementations, is the system-supplied pro­
cedure DISPOSE. This procedure'deallocates a single
dynamic variable at a time.

The second mechanism is a Hewlett-Packard PAS­
CAL extension. This extension provides two additional
system-supplied procedures, Mark and Release. The
procedure MARK creates a generic pointer value that
describes the state of the HEAP. The STATE OF THE
HEAP can be characterized as a temporal reference
point. All allocations of dynamic variables can be un­
ambiguously classified as occurring either before or
after this reference point. A GENERIC POINTER
VALUE can be the value of any pointer, irrespective of
the type of dynamic variable it is declared to point to.
Any pointer having a generic pointer value does not
point to any dynamic variable. The procedure RE­
LEASE uses a generic pointer value created by a previ­
ous call to Mark to restore the state of the HEAP. This
results in the deallocation of all 'dynamic variables allo­
cated after the reference point denoted by the generic
pointer value. Put very simply Release deallocates all
dynamic variables allocated after the corresponding call
to Mark.

PASCAL supplies a generic pointer value NIL which
can and should be used to indicate pointers that are not
currently pointing to any allocated dynamic variable.

The value of any dynamic variable can be inspected
or modified by DEREFERENCING any pointer point­
ing to that dynamic variable. The up-arrow "A" or the
at-sign "@" are used to syntactically denote dereferenc­
ing. Line 30 of the sample program shows an assign­
ment to the dynamic variable pointed to by the
"Pointer_Field" component of the dynamic variable
pointed to by the static variable "Pointer_Var". All de­
references take this form of starting the dereferencing
sequence with some static pointer variable (e.g.,
"Pointer-Var" in line 27). Lines 31, 33, 36, and 37 show
the use of dereferencing to inspect the value of a com­
ponent of a dynamic variable.

4-27-3

Implementation of Dynamic
Variables in PASCAL/3~

The HEAP area of any PASCAL/3000 program is the
DL-DB area of the stack segment of the process execut­
ing that program. Static variables are stored in the DB-S
area of the same stack segment. The value of a pointer
to an allocated dynamic variable is the word address of
the first word of that dynamic variable.

The generic pointer values created by Mark are of a
form known only to the PASCAL/3000 implementation.
The generic pointer value Nil is equal to the word ad­
dress +32767, the theoretical upper limit of a HP3000
stack segment.

The allocation of dynamic variables 'in PASCAL/3000'

can involve one or two methods of "finding" storage
space for a dynamic variable. The basic method essen­
tially amounts to moving DL futher away from DB to
get the needed storage area.

The second method requires that the compiler option
"HEAP-DISPOSE ON" be specified (e.g., line 0 of
sample program). If it is, a free list of deallocated areas
is searched for the first area large enough to store a
dynamic variable of the type requested. If this search
fails then the basic method is used.

The deallocation of dynamic variables in PASCAL/
3000 by the Dispose procedure depends on compiler
options as shown in the decision table below:

$HEAP DISPOSE ON$ I True True False
$HEAP-COMPACT ON$ I True False
- - - - --:- ~ - - - - I - - - - - - -,- - - - - - - - - - -
Do nothing I X
Insert area into free list I X X _
Combine wi adjacent free areas I X

It should be noted that the "Do nothing" action in the
table above is what the Dispose procedure does in many
PASCAL implementations. The "Insert area. into free
list" and "Combine w/adjacent free areas" actions re­
quire the system to have one (1) word of overhead for
each'dynamic variable allocated. -

The deallocation of dynamic variables in PASCAL/
3000 by the Release procedure amounts to moving DL
to where it was when Mark was called. The operation of
this procedure is independent of all compiler options.

Limitations of Dynamic
Variables in PASCAL/3000'

The basic limitations of dynamic variables In
PASCAL/3000 are that the 'number of variables that can
be allocated is limited, and that each has its size fIXed
when the program is compiled. The limited number is
the result of the HEAP residing entirely within the stack
segment, which is limited to 32,767 words. That is felt to
be the most realistic design choice simply because of
the large overhead associated with randomly accessing
data'not stored in the ·stack segment. All implementa­
tions have some sort of upper limit on their dynamic
storage, and this is the upper limit that makes sense on
the HP3000. This limitation makes it necessary to de­
sign and implement most applications with some use of
dyn'amic variable deallocation.

The second limitation is common to all PASCAL im­
plementations and can be overco,me by proper design.

II. DYNAMIC VARIABLE DESIGN
CONSIDERATIONS AND IMPLICAnONS
The most effective way to use dynamic variables in

4-27-4

an application is to consider their use when designing
the application. The two key aspects of this approach
are decomposing a program's data into indivisible data
items and choosing between alternative allocationl
deallocation models. The flexibility and expressiveness
of dynamic variables are also- important design consid­
erations.

Constrasting.Concepts of
What a Data Item Is

The data items used in applications written in lan­
guages without dynamic variables tend to be thought of
as counters, temporaries, buffers, and tables. The fast
three of these can be easily implemented as static var­
iables. But data items used as tables can have limited
flexibility if implemented as static arrays, excessive im­
plementation complexity if they are implemented as ad­
justable or virtual arrays, and poor petformance if im­
plemented as ftIes.

The problem is not the limitations of these methods of
implementing tables. The problem is simply that think­
ing of data items as tables does not always reflect the
reality of application's intended function. Instead of
thinking of a data item as a monolithic table, a designer

. could decompose it into small pieces, each piece repre­
senting a "chunk" of information. Each of these pieces
would be related to the other pieces in well-defmed
ways. This way of organizing information lends itself to
the dynamic variable approach. The benifits of this ap­
proach are that the number of dynamic variables is not
fIXed as is the number of elements in a static array, ~d
that well-defined relationships can be easily im­
plemented by pointers.

This is not to imply that all tables should be replaced

with structures composed of linked dynamic variables.
But any "table" data items that must support dynamic
insertion and/or deletion of "element" data items are
good candidates for implementation with dynamic var­
iables.

The application implementor could, independently of
the designer, convert any static table to a structure
composed of dynamic variables. This will work ac­
ceptably in some cases, but fail in others (e.g., convert­
ing a randomly-accessed table to a simple linked list).
The designer can, as part of the decomposition process,
make suggestions on the use of dynamic variables. But
an even more promising benefit of using dynamic var­
iables is that the whole structure of an application could
be improved. A designer that understands how dynamic
variables permit an adaptive implementation will no
doubt create more versatile designs.

Models of Dynamic Variable
Allocation/Deallocation

The limitations of the PASCAL/3000 implementation
require that most applications employing dynamic vari- .

Compiler Options
System Procedures

2. Stack Model
The STACK MODEL of deallocation requires that

the system can save and restore the state of the HEAP.
An application employing the stack model can maintain
its own free lists. This model is useful for designing
applications that will allocate new data items in groups
and then will deallocate the groups in reverse order of

Compiler Options
System Procedures

3. Pool Model
The POOL MODEL of deallocation requires that the

system is able to place deallocated dynamic variables in
a pool of free storage and allocate new dynamic var­
iables from this pool. An application employing the pool
model should not maintain its own free lists. This model
is useful for designing applications that will allocate and
deallocate data items more or less simultaneously. An
example of an application employing this model would
be a shop floor simulation program. The simulation

Compiler Options

System Procedures

..

able allocation also employ some form of dynamic deal­
location. This requirement can be met by considering
allocation/deallocation models as part of the application
design. The choice of the proper model can maximize
the number of available dynamic variables while
minimizing the system overhead. Four basic models
will be presented here, in order of increasing flexibility
and overhead.

1. Fire Sale Model
The FIRE SALE MODEL, the simplest model, does

not require any system support of deallocation. The
name of this model is used in analogy to the nonreturn­
able nature of items purchased in a frre sale. An applica­
tion employing the frre sale model can maintain its own
free lists, one list for each type of dynamic variable.
This model is useful for designing applications that will
allocate new data items, but seldom, if ever, need to
deallocate them. An example of an application employ­
ing the model is a PERT analysis program. The program
builds the PERT graph and then analyzes it. The frre
sale model makes use of the following compiler options
and system-supplied procedures:

- $HEAP_DISPOSE OFF$
- New

allocation. An example of an application employing this
model is the PASCAL/3000 compiler. The compiler
groups the allocation of data items based on the block
structure of the source program, processing and then
deallocating the innermost block frrst. The stack model
makes use of the following compiler options and
system-supplied procedures:

- $HEAP_DISPOSE OFF$
- New

Mark/Release

would allocate, process, and deallocate job, task, and
event data items in an interleaved manner. The
PASCAL/3000 implementation will support two var­
iations of this model. The frrst does not combine con­
tiguous free storage blocks, and will only work well
when very few unique types of dynamic variables are
used. This variation of the pool model makes use of the
following compiler options and system-supplied proce­
dures:

- $HEAP DISPOSE ON$
$HEAP=COMPACT OFF$

- New
Dispose

4 -27-S

The second variation does combine contiguous free
storage blocks, and will work well in all cases, but suf­
fers more execution time overhead. This variation of

Compiler Options

System Procedures

4. Hybrid Model
The HYBRID MODEL of deallocation requires that

the system support both the stack and pool models of
deallocation. An application employing the hybrid
model should not maintain its own free lists. This model
is useful for designing aplications that will allocate and
deallocate data items simultaneously as well as in
groups. An example of an application employing this

Compiler Options

System Procedures

The User's Input CAN Determine
The Number of Data Items

The major advantage that the use of dynamic var­
iabl~s can offer to the designer is adaptability. For ex­
ample, someone designing an information retrieval sys­
tem for employee data would not have to make arbitrary
decisions about the maximum number of employee de­
pendents that the system could handle. Rather, the de­
signer would simply describe the employee and depen­
dent data items and their relationship. With dynamic
allocation, the required number would be allocated
when the application was run.

The flexibility of dynamic variables was a key tool in
designing the PASCAL/3000 compiler. The compiler
was designed not to have any arbitrary limits save for
the HEAP size limit. Thus, a programmer need not, for
example, be worried that Case statements could have
no more than 1023 case label values. This general free­
dom from limits without increased complexity could
greatly enhance the usability and useful life of many
applications.

Natural Implementation of
Algorithms and Data Structures

The implementation of many algorithms and the data
structures they operate on is significantly easier with
dynamic variables. This is simply because many al­
gorithms for peforming operations on complex data
structures were designed with dynamic variables in
mind (e.g., insertion to, deletion from, and searching of
height-balanced binary trees). Thus designers, and
especially implementors, can take advantage of the

4-27-6

the pool model makes use of the following compiler
options and system-supplied procedures:

- $HEAP DISPOSE ON$
$HEAP-COMPACT ON$

- New -
Dispose

model would be a natural language query processor.
The program would allocate and deallocate data items
to build a model of the world and the necessary queries.
When a set of queries is completed, the world model
data items would be deallocated as a group. The hybrid

. model makes use of the following compiler options and
system-supplied procedures:

- $HEAP DISPOSE ON$
$HEAP=COMPACT ON$

- New
Mark/Release
Dispose

work of others to achieve better results without having
to "re-invent the wheel." As mentioned before, the re­
sults of decomposing an application's data items can be
readily expressed with dynamic variables.

Direct Representation of Data Item Relationships

The representation of the relationship between two or
more static variables can only be described by the logic
of the program. The relationship between two or more
dynamic variables can be partially represented by the
d.eclaration of pointers as components of the dynamic
variables. Thus, much of the relationship information
for dynamic variables can be maintained inside the vari­
able, while the same information for static variables is
maintained outside of the variables. All this, plus the

. added adaptability resulting from the data item decom­
position design approach make dynamic variables a
superior way t~ represent data item relationships.

III. DYNAMIC VARIABLE PITFALLS
TO BE AVOIDED

Dynamic variables can provide improvements in
software quality, but they can also be used in ways that
can seriously degrade quality. These pitfalls can take
the following forms:

• A design l;1sing a bad choice of allocation/
deallocation model.

• Interfacing with external routines that do not re­
spect the integrity of the HEAP area.

• Design or implementation flaws resulting in at­
tempts to access deallocated variables.

',---

r
• Deliberate or accidential modification of a pointer

by accessing the wrong variant of a record.
• Simply attempting to ·allocate more variables than

can fit into a HP3000 stack segment.
While these are not all the possible pitfalls, experi­

ence shows they are the most common.

Poor Selection of
Allocation/Deallocation Model

The selection of an allocation/deallocation model that
is poorly matched to the application design can increase
the complexity or reduce the dynamic variable capacity
of the application program. If a program employs a fife
sale or stack model, uses a great many dynamic variable
types and maintains free lists for each of them, then the
complexity of the program must increase and more
storage may be wasted in free lists than would be used
by the system overhead from employing a pool or hyb­
rid model. The solution would be to switch from the rrre
sale or stack model to either the pool or hybrid model
(e.g., use $HEAP_DISPOSE ON$).

The reverse could also be true, that only a few
dynamic variable types would need free lists, each con­
taining a few deallocated variables. The solution would
then be to switch to a model that used the
"HEAP-DISPOSE OFF" compiler option.

Using External Routines
That Alter DL-DB Area

The PASCAL/3000 implementation assumes it has
total control over the DL-DB area. But many library ·or.
utility routines implemented in SPL/3000 make free use
of this area (e.g., VPlus/3000 and DSG/3000 previously
used this area). The solution was for PASCAL/3000 to
provide the intrinsics GETHEAP and RTNHEAP that
function just like New and Dispose. These intrinsics can
only solve the problem if the routines were designed, o~
can be modified, to request storage in independent
chunks whose individual location is unimportant. There
is one further constraint on using this solution with
either the stack or hybrid allocation/deallocation mod­
els: all areas that an external routine allocates after
Mark is called must be deallocated before the corre­
sponding call to Release (e.g., a correct sequence is
Mark, GetHeap, RtnHeap, Release).

Accessing Deallocated Dynamic Variables

Dynamic variables that have been deallocated either
by Dispose or MarklRelease cannot be accessed. That
is the rule, but given that pointer values in PASCALI
3000 are implemented as word addresses, any pointer to
a deallocated dynamic variable that has not been mod~

ified still points to "something"! Some form of this
DANGLING POINTER PROBLEM exists in almost all
PASCAL implementations (e.g., it does not exist for
implementations that only support the fire sale model).
The software failures (bugs) caused by this problem

range from bounds violations to obscure, seemingly
random, failures in totally unrelated parts of a program.
Clearly, at least from the experience of implementing
the PASCAL/3000 compiler, this problem must be de­
signed out, not debugged out. The solution to this prob­
lem is very application-dependent. It represents the
dynamic variable pitfall that the designer should be
most concerned about. Below is an incomplete list of
several partial solutions that can be incorporated into
applications as the designer sees fit.

1. Never have more than one pointer to any dynamic
variable.

2. Never have pointer components of dynamic var­
iables point to other dynamic variables allocated
after successive calls to Mark.

3. Doubly-link all data structures so that all pointers
to a dynamic variable can be set to Nil before the
variable is deallocated.

4. Maintain a count of the number of pointers to a
dynamic variable in that variable and never deal­
locate it if the count is greater than 1.

5. Study, document, and analyze the deallocation
portions of an application very carefully.

6. Never deallocate any dynamic variable.

Pointers in the Variant Parts of Records

The dangling pointer problem's frrst cousin is the
CLOBBERED POINTER PROBLEM. The problem
can occur only when a pointer is a component of the
variant part of a record and some component of another
variant is modified. This is the worst of the variant re­
cord problems because the destruction can spread with
very little trace of the source of the bug. For example,
an ordinal component of one variant is modified and
then a pointer in another variant is dereferenced to mod­
ify the dynamic variable it points to. This dynamic vari­
able may now be the record length cOQlPonent of a .ftle
control block. The next Read call for this ftle will fail
with an strange error.

The solution is to always use tag fields when declar­
ing variant r~cord types and always check the tag field
before inspecting or modifing any component of the as­
sociated variant. A simpler but less-widely-useful solu­
tion is to never declare any pointer components in any
variant part.

Allocating Too Many Dynamic Variables

If dynamic variables are used to implement very ver­
satile applications, then these applications can be made
to allocate more dynamic variables than will fit into a
stack segment. This HEAP OVERFLOW condition can
only be relieved by the deallocation of some dynamic
variables. The condition can be prevented by reducing
the number or the size of dynamic variables that need to
be allocated. These two solutions, reacting to and pre­
venting HEAP overflow, are explored below.

The first requirement of any design that attempts to

4-27-7

handle HEAP overflow is that the application must be
notified of the condition. This is provided by
PASCAL/3000 through the MPE library trap mecha­
nism. The application designates a library trap handler
procedure which is called when an allocation attempt
causes a HEAP overflow. The trap handler procedure
can take whatever action is deemed appropriate by the
designer. For example, when the PASCAL/3000 com­
piler detects a HEAP overflow, it simply reports the
condition and terminates processing.

The design flexibility of preventing a HEAP overflow
is much greater than reacting to it, but it can increase
application complexity. The approaches for preventing
HEAP overflow fall into two broad classes: improving
allocation/deallocation efficiency, and allocating some
dynamic variables outside the HEAP. .

The improvement of allocation/deallocation effi­
ciency depends on reducing the lifespans, peak number,
and sizes of dynamic variables used by an application.
Reducing the lifespans can usually be best accom­
plished by using individual deallocation (Dispose) in­
stead of group deallocation (Mark/Release). Reducing
the peak or maximum number of dynamic variables al­
located is very application-dependent and requires
modelling alternative designs. Reducing the size of
dynamic variables can be accomplished by impoving

PROGRAM Allocate_Outside_Heap;
TYPE

typel_Ptr = 0 .. 32000;
typel_Rec = RECORD

data BOOLEAN;
END;

the decomposition of the data items (safe way) and/or
by allocating the smallest variant needed in each case
(dangerous way).

The approach of allocating dynamic variables outside
the HEAP results in increased application complexity
because much of the work performed by system­
supplied procedures and language syntax must be du­
plicated in the application. The most flexible approach
is to adopt coding conventions that permit migration of
dynamic variables from inside to outside the HEAP
with little modification to the application. The sample
program shown below illustrates a coding convention
that allows dynamic variables to be allocated inside or
outside of the HEAP. The main advantage of this cod­
ing convention is that it localizes any changes to three
procedures and one function for each dynamic variable
type (e.g., -New, _Dispose, _Modify, & -Access). The
main disadvantage of this convention is that it necessi­
tates a function call, a procedure call, and moving the
value of an entire dynamic variable five (5) times just to
modify a single component of it. This convention basi­
cally replaces dereferences with procedure and function
calls. The sample shows identical operations on two
dynamic variable types, prefixed "typel_" and
"typeL", one allocated in a ftIe and the other allocatee'
in the HEAP.

type2_Ptr = A type2_Rec;
type2_Rec = RECORD

data BOOLEAN;
END;'

CONST
typel_Nil = 0;
typel_Const = typel_Rec [data: FALSE];

~ype2_Nil = NIL;
type2_Const = type2_Rec [data: FALSE];

VAR
typel_Heap : RECORD

Heap_Limit typel_Ptr;
Heap_Store : FILE OF typel_Rec;

END;

typel_Ptrl., typel_Ptr2: typel_Ptr;
type2_Ptrl, type2_Ptr2: type2_Ptr;

PROCEDURE typel_New (VAR ptr: typel_Ptr);
BEGIN
WITH typel_Heap DO

4-27-8

BEGIN
Heap_Limit := SUCC (Heap_Limit);
Ptr := Heap_Limit;
END;

END;

PROCEDURE type2_New (VAR Ptr: type2_Ptr);
BEGIN
NEW (Ptr);
END;

PROCEDURE typel_Dispose (VAR ptr: typel_Ptr);
BEGIN
Ptr := type1_Nil;
END;

PROCEDURE type2_Dispose (VAR ptr: type2_Ptr);.
BEGIN
DISPOSE (ptr);
Pt.r : = type2_Nil;
END;

FUNCTION typel_Aeeess (ptr: type1_Ptr): typel_Ree;
VAR

typel_T~mpl : typel_REC;

BEGIN
WITH typel_Heap DO

BEGIN
ASSERT (Ptr <> typel_Nil, 0);
ASSERT (Ptr <= Heap_Limit, 1);
READDIR (Heap_Store, Ptr, typel_Templ);
.typel_Aeeess : - typel_Templ;
END;

END;

FUNCTION type2_Aeeess (ptr: type2_Ptr): type2_Ree;
BEGIN
type2_Access :- ptrA

;

END;

PROCEDURE typel_Modify (ptr: typel_Ptr; Ree: typel_Ree);
BEGIN
WITH typel_HeapDO

BEGIN
ASSERT (Ptr <> typel_Nil, 0);
ASSERT (Ptr <= Heap_Limit, 1);
WRITEDIR (Heap_Store, Ptr, Ree);
END;

END;

PROCEDURE type2_Modify (Ptr: type2_Ptr; Rec: type2_Rec);
BEGIN
ptrA

:- Rec;
END;

4-27-9

PROCEDURE Examplel_Procedure (Ptrl, Ptr2: typel_Ptr);
VAH

typel_Templ : typel_Rec;

BEGIN
typel_Templ := typel_Access (Ptrl);
WITH typel_Access (Ptr2) DO

BEGIN
(* omitted *)
END;

typel_Modify (Ptrl, typel_Templ);
typel_Modify (Ptr2, typel_Access (Ptrl»;
END;

PROCEDURE Example2_Procedure (Ptrl, ptr2: type2_Ptr);
VAR

type2_Templ : type2_Rec;

BEGIN
type2_Templ := type2_Access (Ptrl);
WITH type2_Access (Ptr2) DO

BEGIN
(* omitted *)
END;

type2_Modify (Ptrl, type2_Templ);
type2_Modify (ptr2, type2_Access (Ptrl»;
END;

BEGIN
.WITH typel_Heap DO

BEGIN
Heap_Limit := typel_Nil;
OPEN (Heap_Store);
END;

typel_New (typel_Ptrl);
typel_Modify (typel_Ptrl, typel_Const);
typel_New (typel_Ptr2);
typel_Modify (typel_Ptr2, typel_Const);
Examplel_Procedure (typel_Ptrl, typel_Ptr2);
typel_Dispose (typel_Ptrl);
typel_Dispose (typel_Ptr2);

type2_New (type2_Ptrl);
type2_Modify (type2_Ptrl, type2_Const);
type2_New (type2_Ptr2);
type2_Modify (type2_Ptr2, type2_Const);
Example2_Procedure (type2_Ptrl, type2_Ptr2);
type2_Dispose (type2_Ptrl);
type2_Dispose (type2_Ptr2);
END.

4-27-10

'--..

SCMMARY

This paper introduced dynamic variables as sup­
ported by the PASCAL/3000 implementation. The con­
cepts and models needed to use dynamic variables in
designing more adaptive applications were covered. Fi­
nally, some possible pitfalls designers and implementors
using dynamic variables might encounter were dis­
cussed. The inter~sted reader might consider the follow­
ing two publications.

for experts:
Pascal13000 Program Language

Reference Manual
Hewlett-Packard Company
Part No. 32106-900001

for beginners:
Programming in PASCAL with

PASCAL11000
Peter Grogono
Addison-Wesley Publishing

Company Inc.
Special thanks to Wendy Peikes for her editoral

suggestions.

4 -27.-11

....

'--..'

	Section 4—Language Support
	Application Design Implications of PASCAL/3000 Dynamic Variable Allocation Support—or How to Use the HEAP

